Drinking Water Nitrate and Human Health: An Updated Review
Abstract
:1. Introduction
2. Drinking Water Nitrate Exposures in the United States and Europe
3. Exposure Assessment in Epidemiologic Studies
4. Nitrate Intake and Endogenous Formation of N-Nitroso Compounds
5. Methemoglobinemia
6. Adverse Pregnancy Outcomes
7. Cancer
8. Thyroid Disease
9. Other Health Effects
10. Discussion
11. Conclusions
Acknowledgments
Conflicts of Interest
References
- Davidson, E.A.; David, M.B.; Galloway, J.N.; Goodale, C.L.; Haeuber, R.; Harrison, J.A.; Howarth, R.W.; Jaynes, D.B.; Lowrance, R.R.; Nolan, B.T.; et al. Excess nitrogen in the U.S. environment: Trends, risks, and solutions. In Issues in Ecology; Ecological Society of America: Washington, DC, USA, 2012. [Google Scholar]
- Vitousek, P.M.; Aber, J.D.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 1997, 7, 737–750. [Google Scholar] [CrossRef]
- Howarth, R.W. Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae 2008, 8, 14–20. [Google Scholar] [CrossRef]
- USEPA. Regulated Drinking Water Contaminants: Inorganic Chemicals. Available online: https://www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants (accessed on 23 September 2017).
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcionogenic Risks to Humans: Ingested Nitrate and Nitrite and Cyanobacterial Peptide Toxins; IARC: Lyon, France, 2010. [Google Scholar]
- National Research Council (NRC). The Health Effects of Nitrate, Nitrite, and N-Nitroso Compounds; NRC: Washington, DC, USA, 1981. [Google Scholar]
- Mirvish, S.S. Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett. 1995, 93, 17–48. [Google Scholar] [CrossRef]
- Ward, M.H.; deKok, T.M.; Levallois, P.; Brender, J.; Gulis, G.; Nolan, B.T.; VanDerslice, J. Workgroup report: Drinking-water nitrate and health-recent findings and research needs. Environ. Health Perspect. 2005, 113, 1607–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maupin, M.A.; Kenny, J.F.; Hutson, S.S.; Lovelace, J.K.; Barber, N.L.; Linsey, K.S. Estimated Use of Water in the United States in 2010; US Geological Survey: Reston, VA, USA, 2014; p. 56.
- U.S. Geological Survey. USGS Water Data for the Nation. Available online: https://waterdata.usgs.gov/nwis (accessed on 1 January 2018).
- Dubrovsky, N.M.; Burow, K.R.; Clark, G.M.; Gronberg, J.M.; Hamilton, P.A.; Hitt, K.J.; Mueller, D.K.; Munn, M.D.; Nolan, B.T.; Puckett, L.J.; et al. The Quality of Our Nation’s Waters—Nutrients in the Nation’s Streams and Groundwater, 1992–2004; U.S. Geological Survey: Reston, VA, USA, 2010; p. 174.
- Lindsey, B.D.; Rupert, M.G. Methods for Evaluating Temporal Groundwater Quality Data and Results of Decadal-Scale Changes in Chloride, Dissolved Solids, and Nitrate Concentrations in Groundwater in the United States, 1988–2010; U.S. Geological Survey Scientific Investigations Report: 2012–5049; U.S. Geological Survey: Reston, VA, USA, 2012; p. 46.
- Pennino, M.J.; Compton, J.E.; Leibowitz, S.G. Trends in Drinking Water Nitrate Violations across the United States. Environ. Sci. Technol. 2017, 51, 13450–13460. [Google Scholar] [CrossRef] [PubMed]
- Van Grinsven, H.J.M.; Tiktak, A.; Rougoor, C.W. Evaluation of the Dutch implementation of the nitrates directive, the water framework directive and the national emission ceilings directive. NJAS-Wagening. J. Life Sci. 2016, 78, 69–84. [Google Scholar] [CrossRef]
- Vock, D.C. Iowa Farmers Won a Water Pollution Lawsuit, But at What Cost? Available online: http://www.governing.com/topics/transportation-infrastructure/gov-des-moines-water-utility-lawsuit-farmers.html (accessed on 10 February 2018).
- Des Moines Water Works. On Earth Day, Des Moines Water Works Reflects on Resources Spent to Manage Agrotoxins in Source Waters. Available online: http://www.dmww.com/about-us/news-releases/on-earth-day-des-moines-water-works-reflects-on-resources-spent-to-manage-agrotoxins-in-source-water.aspx (accessed on 10 February 2018).
- European Commission. The Nitrates Directive. Available online: http://ec.europa.eu/environment/water/water-nitrates/index_en.html (accessed on 10 May 2018).
- European Union (EU). Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources; European Union (EU): Brussels, Belgium, 1991. [Google Scholar]
- Hansen, B.; Thorling, L.; Dalgaard, T.; Erlandsen, M. Trend Reversal of Nitrate in Danish Groundwater—A Reflection of Agricultural Practices and Nitrogen Surpluses since 1950. Environ. Sci. Technol. 2011, 45, 228–234. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency (EEA). Groundwater Nitrate. Available online: https://www.eea.europa.eu/data-and-maps/daviz/groundwater-nitrate#tab-chart_1_filters=%7B%22rowFilters%22%3A%7B%7D%3B%22columnFilters%22%3A%7B%22pre_config_country%22%3A%5B%22Slovenia%22%5D%7D%7D (accessed on 10 February 2018).
- Schullehner, J.; Hansen, B. Nitrate exposure from drinking water in Denmark over the last 35 years. Environ. Res. Lett. 2014, 9, 095001. [Google Scholar] [CrossRef] [Green Version]
- Vitoria, I.; Maraver, F.; Sanchez-Valverde, F.; Armijo, F. Nitrate concentrations in tap water in Spain. Gac. Sanit. 2015, 29, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Espejo-Herrera, N.; Kogevinas, M.; Castano-Vinyals, G.; Aragones, N.; Boldo, E.; Ardanaz, E.; Azpiroz, L.; Ulibarrena, E.; Tardon, A.; Molina, A.J.; et al. Nitrate and trace elements in municipal and bottled water in Spain. Gac. Sanit. 2013, 27, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Gunnarsdottir, M.J.; Gardarsson, S.M.; Jonsson, G.S.; Bartram, J. Chemical quality and regulatory compliance of drinking water in Iceland. Int. J. Hyg. Environ. Health 2016, 219, 724–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Alessandro, W.; Bellomo, S.; Parello, F.; Bonfanti, P.; Brusca, L.; Longo, M.; Maugeri, R. Nitrate, sulphate and chloride contents in public drinking water supplies in Sicily, Italy. Environ. Monit. Assess. 2012, 184, 2845–2855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migeot, V.; Albouy-Llaty, M.; Carles, C.; Limousi, F.; Strezlec, S.; Dupuis, A.; Rabouan, S. Drinking-water exposure to a mixture of nitrate and low-dose atrazine metabolites and small-for-gestational age (SGA) babies: A historic cohort study. Environ. Res. 2013, 122, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Taneja, P.; Labhasetwar, P.; Nagarnaik, P.; Ensink, J.H.J. The risk of cancer as a result of elevated levels of nitrate in drinking water and vegetables in Central India. J. Water Health 2017, 15, 602–614. [Google Scholar] [CrossRef] [PubMed]
- Suthar, S.; Bishnoi, P.; Singh, S.; Mutiyar, P.K.; Nema, A.K.; Patil, N.S. Nitrate contamination in groundwater of some rural areas of Rajasthan, India. J. Hazard. Mater. 2009, 171, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Gupta, I.; Salunkhe, A.; Rohra, N.; Kumar, R. Groundwater quality in Maharashtra, India: Focus on nitrate pollution. J. Environ. Sci. Eng. 2011, 53, 453–462. [Google Scholar] [PubMed]
- Weinthal, E.; Vengosh, A.; Marei, A.; Kloppmann, W. The water crisis in the Gaza strip: Prospects for resolution. Ground Water 2005, 43, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.R.; Weyer, P.J.; DellaValle, C.T.; Inoue-Choi, M.; Anderson, K.E.; Cantor, K.P.; Krasner, S.; Robien, K.; Freeman, L.E.B.; Silverman, D.T.; et al. Nitrate from drinking water and diet and bladder cancer among postmenopausal women in Iowa. Environ. Health Perspect. 2016, 124, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Schullehner, J.; Hansen, B.; Thygesen, M.; Pedersen, C.B.; Sigsgaard, T. Nitrate in drinking water and colorectal cancer risk: A nationwide population-based cohort study. Int. J. Cancer 2018, 1, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Espejo-Herrera, N.; Cantor, K.P.; Malats, N.; Silverman, D.T.; Tardon, A.; Garcia-Closas, R.; Serra, C.; Kogevinas, M.; Villanueva, C.M. Nitrate in drinking water and bladder cancer risk in Spain. Environ. Res. 2015, 137, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.H.; Rusiecki, J.A.; Lynch, C.F.; Cantor, K.P. Nitrate in public water supplies and the risk of renal cell carcinoma. Cancer Causes Control 2007, 18, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.H.; Cerhan, J.R.; Colt, J.S.; Hartge, P. Risk of non-Hodgkin lymphoma and nitrate and nitrite from drinking water and diet. Epidemiology 2006, 17, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Schullehner, J.; Stayner, L.; Hansen, B. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems. Int. J. Environ. Res. Public Health 2017, 14, 276. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.H.; Kilfoy, B.A.; Weyer, P.J.; Anderson, K.E.; Folsom, A.R.; Cerhan, J.R. Nitrate intake and the risk of thyroid cancer and thyroid disease. Epidemiology 2010, 21, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Brender, J.D.; Weyer, P.J.; Romitti, P.A.; Mohanty, B.P.; Shinde, M.U.; Vuong, A.M.; Sharkey, J.R.; Dwivedi, D.; Horel, S.A.; Kantamneni, J.; et al. Prenatal nitrate intake from drinking water and selected birth defects in offspring of participants in the national birth defects prevention study. Environ. Health Perspect. 2013, 121, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Baris, D.; Waddell, R.; Beane Freeman, L.E.; Schwenn, M.; Colt, J.S.; Ayotte, J.D.; Ward, M.H.; Nuckols, J.; Schned, A.; Jackson, B.; et al. Elevated Bladder Cancer in Northern New England: The Role of Drinking Water and Arsenic. J. Natl. Cancer Inst. 2016, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolan, B.T.; Hitt, K.J. Vulnerability of shallow groundwater and drinking-water wells to nitrate in the United States. Environ. Sci. Technol. 2006, 40, 7834–7840. [Google Scholar] [CrossRef] [PubMed]
- Messier, K.P.; Kane, E.; Bolich, R.; Serre, M.L. Nitrate variability in groundwater of North Carolina using monitoring and private well data models. Environ. Sci. Technol. 2014, 48, 10804–10812. [Google Scholar] [CrossRef] [PubMed]
- Eckhardt, D.A.V.; Stackelberg, P.E. Relation of ground-water quality to land use on Long Island, New York. Ground Water 1995, 33, 1019–1033. [Google Scholar] [CrossRef]
- Nolan, B.T.; Hitt, K.J.; Ruddy, B.C. Probability of nitrate contamination of recently recharged groundwaters in the conterminous United States. Environ. Sci. Technol. 2002, 36, 2138–2145. [Google Scholar] [CrossRef] [PubMed]
- Rupert, M.G. Probability of Detecting Atrazine/Desethyl-Atrazine and Elevated Concentrations of Nitrate in Ground Water in Colorado; Water-Resources Investigations Report 02-4269; U.S. Geological Survey: Denver, CO, USA, 2003; p. 35.
- Tesoriero, A.J.; Voss, F.D. Predicting the probability of elevated nitrate concentrations in the Puget Sound Basin: Implications for aquifer susceptibility and vulnerability. Ground Water 1997, 35, 1029–1039. [Google Scholar] [CrossRef]
- Warner, K.L.; Arnold, T.L. Relations that Affect the Probability and Prediction of Nitrate Concentration in Private Wells in the Glacial Aquifer System in the United States; U.S. Geological Survey Scientific Investigations Report 2010–5100; U.S. Geological Survey: Reston, VA, USA, 2010; p. 55.
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, D.C.; Nolan, B.T.; Flory, A.R.; DellaValle, C.T.; Ward, M.H. Modeling groundwater nitrate concentrations in private wells in Iowa. Sci. Total Environ. 2015, 536, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Ransom, K.M.; Nolan, B.T.; Traum, J.A.; Faunt, C.C.; Bell, A.M.; Gronberg, J.A.M.; Wheeler, D.C.; Rosecrans, C.Z.; Jurgens, B.; Schwarz, G.E.; et al. A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA. Sci. Total Environ. 2017, 601–602, 1160–1172. [Google Scholar] [CrossRef] [PubMed]
- Leach, S.A.; Thompson, M.; Hill, M. Bacterially catalyzed N-nitrosation reactions and their relative importance in the human stomach. Carcinogenesis 1987, 8, 1907–1912. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Neal, B.; Ehteshami, P.; Ninomiya, T.; Woodward, M.; Rodgers, A.; Wang, H.; MacMahon, S.; Turnbull, F.; Hillis, G.; et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: A systematic review and meta-analysis. PLoS Med. 2012, 9, e1001293. [Google Scholar] [CrossRef] [PubMed]
- Spiegelhalder, B.; Eisenbrand, G.; Preussmann, R. Influence of dietary nitrate on nitrite content of human saliva: Possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet. Toxicol. 1976, 14, 545–548. [Google Scholar] [CrossRef]
- Tricker, A.R.; Kalble, T.; Preussmann, R. Increased urinary nitrosamine excretion in patients with urinary diversions. Carcinogenesis 1989, 10, 2379–2382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenbrand, G.; Spiegelhalder, B.; Preussmann, R. Nitrate and nitrite in saliva. Oncology 1980, 37, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Eisenbrand, G. The Significance of N-Nitrosation of Drugs; Nicolai, H.V., Eisenbrand, G., Bozler, G., Eds.; Gustav Fischer Verlag, Stuttgart: New York, NY, USA, 1990; pp. 47–69. [Google Scholar]
- Ceccatelli, S.; Lundberg, J.M.; Fahrenkrug, J.; Bredt, D.S.; Snyder, S.H.; Hokfelt, T. Evidence for involvement of nitric oxide in the regulation of hypothalamic portal blood flow. Neuroscience 1992, 51, 769–772. [Google Scholar] [CrossRef]
- Moncada, S.; Palmer, R.M.J.; Higgs, E.A. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 1991, 43, 109–142. [Google Scholar] [PubMed]
- Rees, D.D.; Palmer, R.M.; Moncada, S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc. Natl. Acad. Sci. USA 1989, 86, 3375–3378. [Google Scholar] [CrossRef] [PubMed]
- Palmer, R.M.; Ferrige, A.G.; Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987, 327, 524–526. [Google Scholar] [CrossRef] [PubMed]
- Radomski, M.W.; Palmer, R.M.; Moncada, S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 1987, 2, 1057–1058. [Google Scholar] [CrossRef]
- Radomski, M.W.; Palmer, R.M.J.; Moncada, S. The Anti-Aggregating Properties of Vascular Endothelium—Interactions between Prostacyclin and Nitric-Oxide. Br. J. Pharmacol. 1987, 92, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Larsen, F.J.; Schiffer, T.A.; Weitzberg, E.; Lundberg, J.O. Regulation of mitochondrial function and energetics by reactive nitrogen oxides. Free Radic. Biol. Med. 2012, 53, 1919–1928. [Google Scholar] [CrossRef] [PubMed]
- Ceccatelli, S.; Hulting, A.L.; Zhang, X.; Gustafsson, L.; Villar, M.; Hokfelt, T. Nitric oxide synthase in the rat anterior pituitary gland and the role of nitric oxide in regulation of luteinizing hormone secretion. Proc. Natl. Acad. Sci. USA 1993, 90, 11292–11296. [Google Scholar] [CrossRef] [PubMed]
- Green, S.J.; Scheller, L.F.; Marletta, M.A.; Seguin, M.C.; Klotz, F.W.; Slayter, M.; Nelson, B.J.; Nacy, C.A. Nitric oxide: Cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. Immunol. Lett. 1994, 43, 87–94. [Google Scholar] [CrossRef]
- Langrehr, J.M.; Hoffman, R.A.; Lancaster, J.R.; Simmons, R.L. Nitric oxide—A new endogenous immunomodulator. Transplantation 1993, 55, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.Q.; Charles, I.G.; Smith, A.; Ure, J.; Feng, G.J.; Huang, F.P.; Xu, D.; Muller, W.; Moncada, S.; Liew, F.Y. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 1995, 375, 408–411. [Google Scholar] [CrossRef] [PubMed]
- D’Ischia, M.; Napolitano, A.; Manini, P.; Panzella, L. Secondary Targets of Nitrite-Derived Reactive Nitrogen Species: Nitrosation/Nitration Pathways, Antioxidant Defense Mechanisms and Toxicological Implications. Chem. Res. Toxicol. 2011, 24, 2071–2092. [Google Scholar] [CrossRef] [PubMed]
- Mirvish, S.S. Formation of N-nitroso compounds: Chemistry, kinetics, and in vivo occurrence. Toxicol. Appl. Pharmacol. 1975, 31, 325–351. [Google Scholar] [CrossRef]
- Ridd, J.H. Nitrosation, diazotisation, and deamination. Q. Rev. 1961, 15, 418–441. [Google Scholar] [CrossRef]
- Akuta, T.; Zaki, M.H.; Yoshitake, J.; Okamoto, T.; Akaike, T. Nitrative stress through formation of 8-nitroguanosine: Insights into microbial pathogenesis. Nitric Oxide 2006, 14, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Loeppky, R.N.; Bao, Y.T.; Bae, J.Y.; Yu, L.; Shevlin, G. Blocking nitrosamine formation—Understanding the chemistry of rapid nitrosation. In Nitrosamines and Related N-Nitroso Compounds: Chemistry and Biochemistry; Loeppky, R.N., Michejda, C.J., Eds.; American Chemical Society: Washington, DC, USA, 1994; Volume 553, pp. 52–65. [Google Scholar]
- Qin, L.Z.; Liu, X.B.; Sun, Q.F.; Fan, Z.P.; Xia, D.S.; Ding, G.; Ong, H.L.; Adams, D.; Gahl, W.A.; Zheng, C.Y.; et al. Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane. Proc. Natl. Acad. Sci. USA 2012, 109, 13434–13439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stich, H.F.; Dunn, B.P.; Pignatelli, B.; Ohshima, H.; Bartsch, H. Dietary Phenolics and Betel Nut Extracts as Modifiers of n Nitrosation in Rat and Man; IARC Scientific Publications: Lyon, France, 1984; pp. 213–222. [Google Scholar]
- Vermeer, I.T.; Moonen, E.J.; Dallinga, J.W.; Kleinjans, J.C.; van Maanen, J.M. Effect of ascorbic acid and green tea on endogenous formation of N-nitrosodimethylamine and N-nitrosopiperidine in humans. Mutat. Res. 1999, 428, 353–361. [Google Scholar] [CrossRef]
- Vermeer, I.T.; Pachen, D.M.; Dallinga, J.W.; Kleinjans, J.C.; van Maanen, J.M. Volatile N-nitrosamine formation after intake of nitrate at the ADI level in combination with an amine-rich diet. Environ. Health Perspect. 1998, 106, 459–463. [Google Scholar] [PubMed]
- Chung, M.J.; Lee, S.H.; Sung, N.J. Inhibitory effect of whole strawberries, garlic juice or kale juice on endogenous formation of N-nitrosodimethylamine in humans. Cancer Lett. 2002, 182, 1–10. [Google Scholar] [CrossRef]
- Helser, M.A.; Hotchkiss, J.H.; Roe, D.A. Influence of fruit and vegetable juices on the endogenous formation of N-nitrosoproline and N-nitrosothiazolidine-4-carboxylic acid in humans on controlled diets. Carcinogenesis 1992, 13, 2277–2280. [Google Scholar] [CrossRef] [PubMed]
- Zeilmaker, M.J.; Bakker, M.I.; Schothorst, R.; Slob, W. Risk assessment of N-nitrosodimethylamine formed endogenously after fish-with-vegetable meals. Toxicol. Sci. 2010, 116, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, N.; Abraham, S.K. Intake of anthocyanidins pelargonidin and cyanidin reduces genotoxic stress in mice induced by diepoxybutane, urethane and endogenous nitrosation. Environ. Toxicol. Pharmacol. 2014, 37, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Menichini, F. Phenolic Compounds from Plants as Nitric Oxide Production Inhibitors. Curr. Med. Chem. 2011, 18, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S.K.; Khandelwal, N. Ascorbic acid and dietary polyphenol combinations protect against genotoxic damage induced in mice by endogenous nitrosation. Mutat. Res. 2013, 757, 167–172. [Google Scholar] [CrossRef] [PubMed]
- De Kok, T.M.; (Maastricht, The Netherlands). Unpublished work. 2018.
- Haorah, J.; Zhou, L.; Wang, X.J.; Xu, G.P.; Mirvish, S.S. Determination of total N-nitroso compounds and their precursors in frankfurters, fresh meat, dried salted fish, sauces, tobacco, and tobacco smoke particulates. J. Agric. Food Chem. 2001, 49, 6068–6078. [Google Scholar] [CrossRef] [PubMed]
- Cross, A.J.; Pollock, J.R.; Bingham, S.A. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003, 63, 2358–2360. [Google Scholar] [PubMed]
- Bingham, S.A.; Pignatelli, B.; Pollock, J.R.A.; Ellul, A.; Malaveille, C.; Gross, G.; Runswick, S.; Cummings, J.H.; O’Neill, I.K. Does increased endogenous formation of N-nitroso compounds in the human colon explain the association between red meat and colon cancer? Carcinogenesis 1996, 17, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Bingham, S.A.; Hughes, R.; Cross, A.J. Effect of white versus red meat on endogenous N-nitrosation in the human colon and further evidence of a dose response. J. Nutr. 2002, 132, 3522s–3525s. [Google Scholar] [CrossRef] [PubMed]
- Bingham, S.A. High-meat diets and cancer risk. Proc. Nutr. Soc. 1999, 58, 243–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. International Agency for Research on Cancer Monograph Working, G. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcionogenic Risks to Humans: Red Meat and Processed Meat; IARC: Lyon, France, 2018. [Google Scholar]
- Phytochemicals to Reduce Nitrite in Meat Products (PHYTOME). Available online: www.phytome.eu (accessed on 3 May 2018).
- Greer, F.R.; Shannon, M. American Academy of Pediatrics Committee on Nutrition and the Committee on Environmental Health. Infant methemoglobinemia: The role of dietary nitrate in food and water. Pediatrics 2005, 116, 784–786. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Echaniz, J.; Benito-Fernandez, J.; Mintegui-Raso, S. Methemoglobinemia and consumption of vegetables in infants. Pediatrics 2001, 107, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Charmandari, E.; Meadows, N.; Patel, M.; Johnston, A.; Benjamin, N. Plasma nitrate concentrations in children with infectious and noninfectious diarrhea. J. Pediatr. Gastroenterol. Nutr. 2001, 32, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Comly, H.H. Landmark article 8 September 1945: Cyanosis in infants caused by nitrates in well-water. By Hunter H. Comly. JAMA 1987, 257, 2788–2792. [Google Scholar] [CrossRef] [PubMed]
- Walton, G. Survey of literature relating to infant methemoglobinemia due to nitrate-contaminated water. Am. J. Public Health Nation’s Health 1951, 41, 986–996. [Google Scholar] [CrossRef]
- Knobeloch, L.; Salna, B.; Hogan, A.; Postle, J.; Anderson, H. Blue babies and nitrate-contaminated well water. Environ. Health Perspect. 2000, 108, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.J.; Bonrud, P.A.; Dosch, T.L.; Kilness, A.W.; Senger, K.A.; Busch, D.C.; Meyer, M.R. Fatal outcome of methemoglobinemia in an infant. JAMA 1987, 257, 2796–2797. [Google Scholar] [CrossRef] [PubMed]
- Lutynski, R.; Steczek-Wojdyla, M.; Wojdyla, Z.; Kroch, S. The concentrations of nitrates and nitrites in food products and environment and the occurrence of acute toxic methemoglobinemias. Prz. Lek. 1996, 53, 351–355. [Google Scholar] [PubMed]
- Ayebo, A.; Kross, B.C.; Vlad, M.; Sinca, A. Infant Methemoglobinemia in the Transylvania Region of Romania. Int. J. Occup. Environ. Health 1997, 3, 20–29. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Water and Health in Europe; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Abu Naser, A.A.; Ghbn, N.; Khoudary, R. Relation of nitrate contamination of groundwater with methaemoglobin level among infants in Gaza. East Mediterr. Health J. 2007, 13, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Sadeq, M.; Moe, C.L.; Attarassi, B.; Cherkaoui, I.; ElAouad, R.; Idrissi, L. Drinking water nitrate and prevalence of methemoglobinemia among infants and children aged 1–7 years in Moroccan areas. Int. J. Hyg. Environ. Health 2008, 211, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Zeman, C.; Beltz, L.; Linda, M.; Maddux, J.; Depken, D.; Orr, J.; Theran, P. New Questions and Insights into Nitrate/Nitrite and Human Health Effects: A Retrospective Cohort Study of Private Well Users’ Immunological and Wellness Status. J. Environ. Health 2011, 74, 8–18. [Google Scholar] [PubMed]
- Manassaram, D.M.; Backer, L.C.; Messing, R.; Fleming, L.E.; Luke, B.; Monteilh, C.P. Nitrates in drinking water and methemoglobin levels in pregnancy: A longitudinal study. Environ. Health 2010, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.; Steele, G.; Isiorho, S.A. Spontaneous abortions possibly related to ingestion of nitrate-contaminated well water: LaGrange County, Indiana, 1991–1994. Morb. Mortal. Wkly. Rep. 1996, 45, 569–572. [Google Scholar]
- Aschengrau, A.; Zierler, S.; Cohen, A. Quality of community drinking water and the occurrence of spontaneous abortion. Arch Environ. Health 1989, 44, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Albouy-Llaty, M.; Limousi, F.; Carles, C.; Dupuis, A.; Rabouan, S.; Migeot, V. Association between Exposure to Endocrine Disruptors in Drinking Water and Preterm Birth, Taking Neighborhood Deprivation into Account: A Historic Cohort Study. Int. J. Environ. Res. Public Health 2016, 13, 796. [Google Scholar] [CrossRef] [PubMed]
- Stayner, L.T.; Almberg, K.; Jones, R.; Graber, J.; Pedersen, M.; Turyk, M. Atrazine and nitrate in drinking water and the risk of preterm delivery and low birth weight in four Midwestern states. Environ. Res. 2017, 152, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Joyce, S.J.; Cook, A.; Newnham, J.; Brenters, M.; Ferguson, C.; Weinstein, P. Water disinfection by-products and prelabor rupture of membranes. Am. J. Epidemiol. 2008, 168, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Mattix, K.D.; Winchester, P.D.; Scherer, L.R. Incidence of abdominal wait defects is related to surface water atrazine and nitrate levels. J. Pediatr. Surg. 2007, 42, 947–949. [Google Scholar] [CrossRef] [PubMed]
- Waller, S.A.; Paul, K.; Peterson, S.E.; Hitti, J.E. Agricultural-related chemical exposures, season of conception, and risk of gastroschisis in Washington State. Am. J. Obstet. Gynecol. 2010, 202, e241–e246. [Google Scholar] [CrossRef] [PubMed]
- Winchester, P.D.; Huskins, J.; Ying, J. Agrichemicals in surface water and birth defects in the United States. Acta Paediatr. 2009, 98, 664–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtby, C.E.; Guernsey, J.R.; Allen, A.C.; VanLeeuwen, J.A.; Allen, V.M.; Gordon, R.J. A Population-Based Case-Control Study of Drinking-Water Nitrate and Congenital Anomalies Using Geographic Information Systems (GIS) to Develop Individual-Level Exposure Estimates. Int. J. Environ. Res. Public Health 2014, 11, 1803–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weyer, P.J.; Brender, J.D.; Romitti, P.A.; Kantamneni, J.R.; Crawford, D.; Sharkey, J.R.; Shinde, M.; Horel, S.A.; Vuong, A.M.; Langlois, P.H. Assessing bottled water nitrate concentrations to evaluate total drinking water nitrate exposure and risk of birth defects. J. Water Health 2014, 12, 755–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, P.W.; Rasmussen, S.A.; Lynberg, M.C.; Moore, C.A.; Anderka, M.; Carmichael, S.L.; Costa, P.; Druschel, C.; Hobbs, C.A.; Romitti, P.A.; et al. The National Birth Defects Prevention Study. Public Health Rep. 2001, 116 (Suppl. 1), 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brender, J.D.; Kelley, K.E.; Werler, M.M.; Langlois, P.H.; Suarez, L.; Canfield, M.A. National Birth Defects Prevention Study. Prevalence and Patterns of Nitrosatable Drug Use among U.S. Women during Early Pregnancy. Birth Defects Res. A 2011, 91, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Griesenbeck, J.S.; Brender, J.D.; Sharkey, J.R.; Steck, M.D.; Huber, J.C., Jr.; Rene, A.A.; McDonald, T.J.; Romitti, P.A.; Canfield, M.A.; Langlois, P.H.; et al. Maternal characteristics associated with the dietary intake of nitrates, nitrites, and nitrosamines in women of child-bearing age: A cross-sectional study. Environ. Health 2010, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Brender, J.D.; Werler, M.M.; Shinde, M.U.; Vuong, A.M.; Kelley, K.E.; Huber, J.C., Jr.; Sharkey, J.R.; Griesenbeck, J.S.; Romitti, P.A.; Malik, S.; et al. Nitrosatable drug exposure during the first trimester of pregnancy and selected congenital malformations. Birth Defects Res. A 2012, 94, 701–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brender, J.D.; Werler, M.M.; Kelley, K.E.; Vuong, A.M.; Shinde, M.U.; Zheng, Q.; Huber, J.C., Jr.; Sharkey, J.R.; Griesenbeck, J.S.; Romitti, P.A.; et al. Nitrosatable drug exposure during early pregnancy and neural tube defects in offspring: National Birth Defects Prevention Study. Am. J. Epidemiol. 2011, 174, 1286–1295. [Google Scholar] [CrossRef] [PubMed]
- Brender, J.D.; Olive, J.M.; Felkner, M.; Suarez, L.; Marckwardt, W.; Hendricks, K.A. Dietary nitrites and nitrates, nitrosatable drugs, and neural tube defects. Epidemiology 2004, 15, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Dorsch, M.M.; Scragg, R.K.; McMichael, A.J.; Baghurst, P.A.; Dyer, K.F. Congenital malformations and maternal drinking water supply in rural South Australia: A case-control study. Am. J. Epidemiol. 1984, 119, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Croen, L.A.; Todoroff, K.; Shaw, G.M. Maternal exposure to nitrate from drinking water and diet and risk for neural tube defects. Am. J. Epidemiol. 2001, 153, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Arbuckle, T.E.; Sherman, G.J.; Corey, P.N.; Walters, D.; Lo, B. Water nitrates and CNS birth defects: A population-based case-control study. Arch Environ. Health 1988, 43, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Ericson, A.; Kallen, B.; Lofkvist, E. Environmental factors in the etiology of neural tube defects: A negative study. Environ. Res. 1988, 45, 38–47. [Google Scholar] [CrossRef]
- Cantor, K.P. Drinking water and cancer. Cancer Causes Control 1997, 8, 292–308. [Google Scholar] [CrossRef] [PubMed]
- Quist, A.J.L.; Inoue-Choi, M.; Weyer, P.J.; Anderson, K.E.; Cantor, K.P.; Krasner, S.; Freeman, L.E.B.; Ward, M.H.; Jones, R.R. Ingested nitrate and nitrite, disinfection by-products, and pancreatic cancer risk in postmenopausal women. Int. J. Cancer 2018, 142, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.R.; Weyer, P.J.; DellaValle, C.T.; Robien, K.; Cantor, K.P.; Krasner, S.; Freeman, L.E.B.; Ward, M.H. Ingested nitrate, disinfection by-products, and kidney cancer risk in older women. Epidemiology 2017, 28, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Inoue-Choi, M.; Ward, M.H.; Cerhan, J.R.; Weyer, P.J.; Anderson, K.E.; Robien, K. Interaction of nitrate and folate on the risk of breast cancer among postmenopausal women. Nutr. Cancer 2012, 64, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Inoue-Choi, M.; Jones, R.R.; Anderson, K.E.; Cantor, K.P.; Cerhan, J.R.; Krasner, S.; Robien, K.; Weyer, P.J.; Ward, M.H. Nitrate and nitrite ingestion and risk of ovarian cancer among postmenopausal women in Iowa. Int. J. Cancer 2015, 137, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Weyer, P.J.; Cerhan, J.R.; Kross, B.C.; Hallberg, G.R.; Kantamneni, J.; Breuer, G.; Jones, M.P.; Zheng, W.; Lynch, C.F. Municipal drinking water nitrate level and cancer risk in older women: The Iowa Women’s Health Study. Epidemiology 2001, 12, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Zeegers, M.P.; Selen, R.F.; Kleinjans, J.C.; Goldbohm, R.A.; van den Brandt, P.A. Nitrate intake does not influence bladder cancer risk: The Netherlands cohort study. Environ. Health Perspect. 2006, 114, 1527–1531. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.H.; Mark, S.D.; Cantor, K.P.; Weisenburger, D.D.; Correa-Villasenor, A.; Zahm, S.H. Drinking water nitrate and the risk of non-Hodgkin’s lymphoma. Epidemiology 1996, 7, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.H.; Heineman, E.F.; Markin, R.S.; Weisenburger, D.D. Adenocarcinoma of the stomach and esophagus and drinking water and dietary sources of nitrate and nitrite. Int. J. Occup. Environ. Health 2008, 14, 193–197. [Google Scholar] [CrossRef] [PubMed]
- McElroy, J.A.; Trentham-Dietz, A.; Gangnon, R.E.; Hampton, J.M.; Bersch, A.J.; Kanarek, M.S.; Newcomb, P.A. Nitrogen-nitrate exposure from drinking water and colorectal cancer risk for rural women in Wisconsin, USA. J. Water Health 2008, 6, 399–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espejo-Herrera, N.; Gracia-Lavedan, E.; Boldo, E.; Aragones, N.; Perez-Gomez, B.; Pollan, M.; Molina, A.J.; Fernandez, T.; Martin, V.; La Vecchia, C.; et al. Colorectal cancer risk and nitrate exposure through drinking water and diet. Int. J. Cancer 2016, 139, 334–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fathmawati; Fachiroh, J.; Gravitiani, E.; Sarto; Husodo, A.H. Nitrate in drinking water and risk of colorectal cancer in Yogyakarta, Indonesia. J. Toxicol. Environ. Health Part A 2017, 80, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Brody, J.G.; Aschengrau, A.; McKelvey, W.; Swartz, C.H.; Kennedy, T.; Rudel, R.A. Breast cancer risk and drinking water contaminated by wastewater: A case control study. Environ. Health-Glob. 2006, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Espejo-Herrera, N.; Gracia-Lavedan, E.; Pollan, M.; Aragones, N.; Boldo, E.; Perez-Gomez, B.; Altzibar, J.M.; Amiano, P.; Zabala, A.J.; Ardanaz, E.; et al. Ingested Nitrate and Breast Cancer in the Spanish Multicase-Control Study on Cancer (MCC-Spain). Environ. Health Perspect. 2016, 124, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
- Mueller, B.A.; Nielsen, S.S.; Preston-Martin, S.; Holly, E.A.; Cordier, S.; Filippini, G.; Peris-Bonet, R.; Choi, N.W. Household water source and the risk of childhood brain tumours: Results of the SEARCH International Brain Tumor Study. Int. J. Epidemiol. 2004, 33, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Mueller, B.A.; Newton, K.; Holly, E.A.; Preston-Martin, S. Residential water source and the risk of childhood brain tumors. Environ. Health Perspect. 2001, 109, 551–556. [Google Scholar] [CrossRef] [PubMed]
- De Groef, B.; Decallonne, B.R.; Van der Geyten, S.; Darras, V.M.; Bouillon, R. Perchlorate versus other environmental sodium/iodide symporter inhibitors: Potential thyroid-related health effects. Eur. J. Endocrinol. 2006, 155, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Van Maanen, J.M.; Welle, I.J.; Hageman, G.; Dallinga, J.W.; Mertens, P.L.; Kleinjans, J.C. Nitrate contamination of drinking water: Relationship with HPRT variant frequency in lymphocyte DNA and urinary excretion of N-nitrosamines. Environ. Health Perspect. 1996, 104, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Radikova, Z.; Tajtakova, M.; Kocan, A.; Trnovec, T.; Sebokova, E.; Klimes, I.; Langer, P. Possible effects of environmental nitrates and toxic organochlorines on human thyroid in highly polluted areas in Slovakia. Thyroid Off. J. Am. Thyroid Assoc. 2008, 18, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Tajtakova, M.; Semanova, Z.; Tomkova, Z.; Szokeova, E.; Majoros, J.; Radikova, Z.; Sebokova, E.; Klimes, I.; Langer, P. Increased thyroid volume and frequency of thyroid disorders signs in schoolchildren from nitrate polluted area. Chemosphere 2006, 62, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Aschebrook-Kilfoy, B.; Heltshe, S.L.; Nuckols, J.R.; Sabra, M.M.; Shuldiner, A.R.; Mitchell, B.D.; Airola, M.; Holford, T.R.; Zhang, Y.; Ward, M.H. Modeled nitrate levels in well water supplies and prevalence of abnormal thyroid conditions among the Old Order Amish in Pennsylvania. Environ. Health 2012, 11, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longnecker, M.P.; Daniels, J.L. Environmental contaminants as etiologic factors for diabetes. Environ. Health Perspect. 2001, 109 (Suppl. 6), 871–876. [Google Scholar] [CrossRef] [PubMed]
- Moltchanova, E.; Rytkonen, M.; Kousa, A.; Taskinen, O.; Tuomilehto, J.; Karvonen, M.; Spat Study, G. Finnish Childhood Diabetes Registry, G. Zinc and nitrate in the ground water and the incidence of Type 1 diabetes in Finland. Diabet. Med. 2004, 21, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Muntoni, S.; Cocco, P.; Muntoni, S.; Aru, G. Nitrate in community water supplies and risk of childhood type 1 diabetes in Sardinia, Italy. Eur. J. Epidemiol. 2006, 21, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Benson, V.S.; Vanleeuwen, J.A.; Taylor, J.; Somers, G.S.; McKinney, P.A.; Van Til, L. Type 1 diabetes mellitus and components in drinking water and diet: A population-based, case-control study in Prince Edward Island, Canada. J. Am. Coll. Nutr. 2010, 29, 612–624. [Google Scholar] [CrossRef] [PubMed]
- Winkler, C.; Mollenhauer, U.; Hummel, S.; Bonifacio, E.; Ziegler, A.G. Exposure to environmental factors in drinking water: Risk of islet autoimmunity and type 1 diabetes—The BABYDIAB study. Horm. Metab. Res. 2008, 40, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.E.K.; McElroy, J.A.; Klein, R.; Howard, K.P.; Lee, K.E. Nitrate-nitrogen levels in rural drinking water: Is there an association with age-related macular degeneration? J. Environ. Sci. Health Part A 2013, 48, 1757–1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahluwalia, A.; Gladwin, M.; Coleman, G.D.; Hord, N.; Howard, G.; Kim-Shapiro, D.B.; Lajous, M.; Larsen, F.J.; Lefer, D.J.; McClure, L.A.; et al. Dietary Nitrate and the Epidemiology of Cardiovascular Disease: Report From a National Heart, Lung, and Blood Institute Workshop. J. Am. Heart Assoc. 2016, 5, e003402. [Google Scholar] [CrossRef] [PubMed]
- Kapil, V.; Khambata, R.S.; Robertson, A.; Caulfield, M.J.; Ahluwalia, A. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: A randomized, phase 2, double-blind, placebo-controlled study. Hypertension 2015, 65, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Omar, S.A.; Webb, A.J.; Lundberg, J.O.; Weitzberg, E. Therapeutic effects of inorganic nitrate and nitrite in cardiovascular and metabolic diseases. J. Intern. Med. 2016, 279, 315–336. [Google Scholar] [CrossRef] [PubMed]
- Presley, T.D.; Morgan, A.R.; Bechtold, E.; Clodfelter, W.; Dove, R.W.; Jennings, J.M.; Kraft, R.A.; King, S.B.; Laurienti, P.J.; Rejeski, W.J.; et al. Acute effect of a high nitrate diet on brain perfusion in older adults. Nitric Oxide 2011, 24, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Maas, R.; Schwedhelm, E.; Kahl, L.; Li, H.; Benndorf, R.; Luneburg, N.; Forstermann, U.; Boger, R.H. Simultaneous assessment of endothelial function, nitric oxide synthase activity, nitric oxide-mediated signaling, and oxidative stress in individuals with and without hypercholesterolemia. Clin. Chem. 2008, 54, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Jadert, C.; Phillipson, M.; Holm, L.; Lundberg, J.O.; Borniquel, S. Preventive and therapeutic effects of nitrite supplementation in experimental inflammatory bowel disease. Redox Biol. 2014, 2, 73–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khademikia, S.; Rafiee, Z.; Amin, M.M.; Poursafa, P.; Mansourian, M.; Modaberi, A. Association of nitrate, nitrite, and total organic carbon (TOC) in drinking water and gastrointestinal disease. J. Environ. Public Health 2013, 2013, 603468. [Google Scholar] [CrossRef] [PubMed]
- De Roos, A.J.; Ward, M.H.; Lynch, C.F.; Cantor, K.P. Nitrate in public water supplies and the risk of colon and rectum cancers. Epidemiology 2003, 14, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Gatseva, P.D.; Argirova, M.D. High-nitrate levels in drinking water may be a risk factor for thyroid dysfunction in children and pregnant women living in rural Bulgarian areas. Int. J. Hyg. Environ. Health 2008, 211, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Toccalino, P.L.; Norman, J.E.; Scott, J.C. Chemical mixtures in untreated water from public-supply wells in the U.S.—Occurrence, composition, and potential toxicity. Sci. Total Environ. 2012, 431, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Joshi, N.; Rhoades, M.G.; Bennett, G.D.; Wells, S.M.; Mirvish, S.S.; Breitbach, M.J.; Shea, P.J. Developmental abnormalities in chicken embryos exposed to N-nitrosoatrazine. J. Toxicol. Environ. Health Part A 2013, 76, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Mitch, W.A.; Sharp, J.O.; Rhoades Trussell, R.; Valentine, R.L.; Alvarez-Cohen, L.; DSedlak, D.L. N-Nitrosodimethylamine (NDMA) as a Drinking Water Contaminant: A Review. Environ. Eng. Sci. 2003, 20, 389–404. [Google Scholar] [CrossRef]
- Krasner, S.W. The formation and control of emerging disinfection by-products of health concern. Philos. Trans. 2009, 367, 4077–4095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hezel, M.P.; Weitzberg, E. The oral microbiome and nitric oxide homoeostasis. Oral Dis. 2015, 21, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Hyde, E.R.; Andrade, F.; Vaksman, Z.; Parthasarathy, K.; Jiang, H.; Parthasarathy, D.K.; Torregrossa, A.C.; Tribble, G.; Kaplan, H.B.; Petrosino, J.F.; et al. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: Implications for nitric oxide homeostasis. PLoS ONE 2014, 9, e88645. [Google Scholar] [CrossRef] [PubMed]
- Burleigh, M.C.; Liddle, L.; Monaghan, C.; Muggeridge, D.J.; Sculthorpe, N.; Butcher, J.P.; Henriquez, F.L.; Allen, J.D.; Easton, C. Salivary nitrite production is elevated in individuals with a higher abundance of oral nitrate-reducing bacteria. Free Radic. Biol. Med. 2018, 120, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Vogtmann, E.; Chen, J.; Amir, A.; Shi, J.; Abnet, C.C.; Nelson, H.; Knight, R.; Chia, N.; Sinha, R. Comparison of Collection Methods for Fecal Samples in Microbiome Studies. Am. J. Epidemiol. 2017, 185, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Abu-Ali, G.; Vogtmann, E.; Fodor, A.A.; Ren, B.; Amir, A.; Schwager, E.; Crabtree, J.; Ma, S.; The Microbiome Quality Control Project Consortium; et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 2017, 35, 1077–1086. [Google Scholar] [PubMed] [Green Version]
- Hebels, D.G.; Jennen, D.G.; van Herwijnen, M.H.; Moonen, E.J.; Pedersen, M.; Knudsen, L.E.; Kleinjans, J.C.; de Kok, T.M. Whole-genome gene expression modifications associated with nitrosamine exposure and micronucleus frequency in human blood cells. Mutagenesis 2011, 26, 753–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebels, D.G.; Jennen, D.G.; Kleinjans, J.C.; de Kok, T.M. Molecular signatures of N-nitroso compounds in Caco-2 cells: Implications for colon carcinogenesis. Toxicol. Sci. 2009, 108, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Vineis, P.; Chadeau-Hyam, M.; Gmuender, H.; Gulliver, J.; Herceg, Z.; Kleinjans, J.; Kogevinas, M.; Kyrtopoulos, S.; Nieuwenhuijsen, M.; Phillips, D.H.; et al. The exposome in practice: Design of the EXPOsOMICS project. Int. J. Hyg. Environ. Health 2017, 220, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Hebels, D.G.; Georgiadis, P.; Keun, H.C.; Athersuch, T.J.; Vineis, P.; Vermeulen, R.; Portengen, L.; Bergdahl, I.A.; Hallmans, G.; Palli, D.; et al. Performance in omics analyses of blood samples in long-term storage: Opportunities for the exploitation of existing biobanks in environmental health research. Environ. Health Perspect. 2013, 121, 480–487. [Google Scholar] [CrossRef] [PubMed]
- International Nitrogen Initiative. Available online: http://www.initrogen.org/ (accessed on 22 April 2018).
- Dinnes, D.L.; Karlen, D.L.; Jaynes, D.B.; Kaspar, T.C.; Hatfield, J.L.; Colvin, T.S.; Cambardella, C.A. Nitrogen management strategies to reduce nitrate leaching in tile-drained midwestern soils. Agron. J. 2002, 94, 153–171. [Google Scholar] [CrossRef]
- Baron, J.S.; Hall, E.K.; Nolan, B.T.; Finlay, J.C.; Bernhardt, E.S.; Harrison, J.A.; Chan, F.; Boyer, E.W. The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States. Biogeochemistry 2013, 114, 71–92. [Google Scholar] [CrossRef]
First Author, Year, Country | Study Design Regional Description | Years of Outcome Ascertainment | Exposure Description | Pregnancy Outcome | Summary of Findings |
---|---|---|---|---|---|
Albouy-Llaty, 2016 France [107] | Historic cohort study Deux-Sèvres | 2005–2010 | Measurements of atrazine metabolites and NO3 in community water systems (263 municipalities) were linked to birth addresses | Preterm birth | No association for >26.99 mg/L vs. <14.13 mg/L NO3 in community water systems with or without atrazine detections, adjusted for neighborhood deprivation |
Brender, 2013 Weyer, 2014 USA [38] | Population-based case-control study Iowa and Texas | 1997–2005 | Maternal addresses during the first trimester linked to public water utility nitrate measurements; nitrate intake from bottled water estimated with survey and laboratory testing; nitrate from private wells predicted through modeling; nitrate ingestion (NO3) estimated from reported water consumption | Congenital heart defects Limb deficiencies Neural tube defects Oral cleft defects | ≥5 vs. <0.91 mg/day NO3 from drinking water spina bifida OR = 2.0 (95% CI: 1.3, 3.2) ≥5.42 vs. <1.0 mg/day NO3 from water: limb deficiencies OR = 1.8 (CI: 1.1, 3.1); cleft palate OR = 1.9 (CI: 1.2, 3.1) cleft lip OR = 1.8 (CI: 1.1, 3.1) |
Holtby, 2014 Canada [113] | Population-based case-control study Kings County, Nova Scotia | 1988–2006 | Maternal addresses at delivery linked to municipal water supply median nitrate (NO3-N) concentrations; nitrate in rural private wells estimated from historic sampling and kriging | Congenital malformations combined into one group | Conceptions in 1987–1997: no association with nitrate concentrations Conceptions in 1998–2006: 1–5.56 mg/L NO3-N (vs. <1 mg/L) OR = 2.44 (CI: 1.05, 5.66); ≥5.56 mg/L OR = 2.25 (CI: 0.92, 5.52) |
Joyce, 2008 Australia [109] | Record-based prevalence study Perth | 2002–2004 | Linked birth residences to 24 water distribution zones; computed average NO3-N mg/L from historical measurements; independent sampling conducted for 6 zones as part of exposure validation; also evaluated trihalomethanes (THM) | Premature rupture of membranes at term (PROM) (37 weeks’ gestation or later) | ORs for tertiles (vs. <0.125 mg/L NO3-N): 0.125–0.350 mg/L OR = 1.23 (CI: 1.03, 1.52); >0.350 mg/L OR = 1.47 (CI: 1.20, 1.79) No association with THM levels |
Mattix, 2007 USA [110] | Ecologic study Indiana | 1990–2002 | Monthly abdominal wall defect rates linked to monthly surface water nitrate and atrazine concentrations (USGS-NAWQA monitoring data b) | Abdominal wall birth defects | No correlation observed between nitrate levels in surface water and monthly abdominal wall defects Positive correlation with atrazine levels |
Migeot, 2013 France [26] | Historic cohort study Deux-Sèvres | 2005–2009 | Measurements of atrazine metabolites and NO3 in community water systems (263 municipalities) were linked to birth addresses | Small-for-gestational age (SGA) births | ORs for tertiles (vs. <14.13 mg/L NO3) in community water systems with no atrazine detections: 14–27 mg/L OR = 1.74 (CI: 1.10, 2.75); >27 mg/L OR = OR 1.51 (CI: 0.96, 2.4); no association with nitrate when atrazine was detected |
Stayner, 2017 USA [108] | Ecologic study 46 counties in Indiana, Iowa, Missouri, and Ohio | 2004–2008 | Counties had one or more water utility in EPA’s atrazine monitoring program; excluded counties with >20% of population on private wells and >300,000 population. Computed county-specific monthly weighted averages of NO3-N in finished drinking water; exposure metric was average 9 months prior to birth | Preterm birth Low birth weight | Average nitrate not associated with low birth weight and preterm birth Very low birth weight: RR for 1 ppm increase in NO3-N = 1.17 (CI: 1.08, 1.25); Very preterm birth RR for 1 ppm increase = 1.08 (CI: 1.02, 1.15) |
Waller, 2010 USA [111] | Population-based case-control study Washington State | 1987–2006 | Calculated distance between maternal residence and closest stream monitoring site with concentrations >MCL for NO3-N, NO2-N, or atrazine in surface water (USGS-NAWQA data b) | Gastroschisis | Gastroschisis was not associated with maternal residential proximity to surface water with elevated nitrate (>10 mg/L) or nitrite (>1 mg/L) |
Winchester, 2009 USA [112] | Ecologic study USA-wide | 1996–2002 | Rates of combined and specific birth defects (computed by month of last menstrual period) linked to monthly surface water nitrate concentrations (USGS-NAWQA data b); also evaluated atrazine and other pesticides (combined) | Birth defects categorized into 22 groups | Birth defect category “other congenital anomalies”: OR for continuous log nitrate = 1.15 (CI: 1.12, 1.18); adjusted for atrazine and other pesticides: OR = 1.18, CI: 1.14, 1.21); No association with other birth defects |
First Author (Year) Country | Study Design, Years Regional Description | Exposure Description | Cancer Sites Included | Summary of Drinking-Water Findings a,b | Evaluation of Effect Modification c |
---|---|---|---|---|---|
Zeegers, 2006 Netherlands [131] | Cohort Incidence, 1986–1995 204 municipal registries across the Netherlands | 1986 nitrate level in 364 pumping stations, exposure data available for 871 cases, 4359 members of the subcohort | Bladder | Highest vs. lowest quintile intake from water (≥1.7 mg/day NO3-N [median 2.4 mg/day] vs. <0.20) RR = 1.11 (CI: 0.87–1.41; p-trend = 0.14) | No interaction with vitamin C, E, smoking |
Espejo-Herrera, 2015 Spain [33] | Hospital-based multi-center case-control Incidence, 1998–2001 Asturias, Alicante, Barcelona, Vallès-Bages, Tenerife provinces | Nitrate levels in PWS (1979–2010) and bottled water (measurements of brands with highest consumption based on a Spanish survey); analyses limited to those with ≥70% of residential history with nitrate estimate (531 cases, 556 controls) | Bladder | Highest vs. lowest quartile average level (age 18-interview) (≥2.26 vs. 1.13 mg/L NO3-N) OR = 1.04 (CI: 0.60–1.81) Years >2.15 mg/L NO3-N (75th percentile) (>20 vs. 0 years) OR = 1.41 (CI: 0.89–2.24) | No interaction with vitamin C, E, red meat, processed meat, average THM level |
Jones, 2016 USA [31] | Population-based cohort of postmenopausal women ages 55–69 Incidence, 1986–2010 Iowa | Nitrate levels in PWS (1955–1988) and private well use among women >10 years at enrollment residence with nitrate and trihalomethane estimates (20,945 women; 170 bladder cases); no measurements for private wells Adjusted for total trihalomethanes (TTHM) | Bladder | Highest vs. lowest quartile PWS average (≥2.98 vs. <0.47 mg/L NO3-N) HR = 1.47 (CI: 0.91–2.38; p-trend = 0.11) Years >5 mg/L (≥4 years vs. 0) HR = 1.61 (CI: 1.05–2.47; p-trend = 0.03) Private well users (vs. <0.47 mg/L NO3-N on PWS) HR = 1.53 (CI: 0.93–2.54) | Interaction with smoking (p-interaction = 0.03); HR = 3.67 (CI: 1.43–9.38) among current smokers/≥2.98 mg/L vs. non-smokers/<0.47 mg/L NO3-N); No interaction with vitamin C, TTHM levels |
Mueller, 2004 USA, Canada, France, Italy, Spain [139] | Pooled case-control studies Incidence among children <15 years (USA <20 years) 7 regions of 5 countries | Water source during pregnancy and first year of child’s life (836 cases, 1485 controls); nitrate test strip measurements of nitrate and nitrite for pregnancy home (except Italy) (283 cases, 537 controls; excluding bottled water users: 207 cases, 400 controls) | Brain, childhood | Private well use versus PWS associated with increased risk in 2 regions and decreased risk in one; No association with nitrate levels in water supplies Astrocytomas (excludes bottled water users): ≥1.5 vs. <0.3 mg/L NO2-N OR = 5.7 (CI: 1.2–27.2) | Not described |
Brody, 2006 USA [137] | Case-control Incidence, 1988–1995 Cape Cod, Massachusetts | Nitrate levels in public water supplies (PWS) since 1972 was used as an indicator of wastewater contamination and potential mammary carcinogens and endocrine disrupting compounds; excluded women on private wells | Breast | Average ≥1.2 mg/L NO3-N vs. <0.3 OR = 1.8, (CI: 0.6–5.0); summed annual NO3-N ≥ 10 vs. 1–< 10 mg/L OR = 0.9, CI: 0.6–1.5); number of years >1 mg/L NO3-N ≥8 vs. 0 years OR = 0.9 (CI: 0.5–1.5) | Not described |
Inoue-Choi, 2012 USA [128] | Population-based cohort of postmenopausal women ages 55–69 Incidence, 1986–2008 Iowa | Nitrate levels in PWS (1955–1988) and private well use among women >10 years at enrollment residence (20,147 women; 1751 breast cases); no measurements for private wells | Breast | Highest vs. lowest quintile PWS average (≥3.8 vs. ≤0.32 mg/L NO3-N) HR = 1.14 (CI: 0.95–1.36; p-trend = 0.11); Private well (vs. ≤ 0.32 mg/L NO3-N) HR = 1.14 (CI: 0.97–1.34); Private well (vs. ≤0.32 mg/L NO3-N on PWS) HR = 1.38 (CI: 1.05–1.82); No association among those with low folate <400 µg/day | Interaction with folate for PWS (p-interaction = 0.06). Folate ≥400 µg/d: (≥3.8 vs. ≤0.32 mg/L NO3-N) HR = 1.40 (CI: 1.05–1.87; p-trend = 0.04) |
Espejo-Herrera, 2016 Spain [138] | Hospital-based multi-center case-control Incidence, 2008–2013 Spain (8 provinces) | Nitrate levels in PWS (2004–2010), bottled water measurements and private wells and springs (2013 measurements in 21 municipalities in León, Spain, the area with highest non-PWS use) Analyses include women with ≥70% of period from age 18 to 2 years before interview (1245 cases, 1520 controls) | Breast | Water nitrate intake based on average nitrate levels (age 18 to 2 years prior to interview) and water intake (L/day). Post-menopausal women: >2.0 vs. 0.5 mg/day NO3-N OR = 1.32 (0.93–1.86); Premenopausal women: >1.4 vs. 0.4 mg/day NO3-N OR = 1.14 (0.67–1.94) | No interaction with red meat, processed meat, vitamin C, E, smoking for pre- and post-menopausal women |
McElroy, 2008 USA [134] | Population-based case-control, women Incidence, 1990–1992 and 1999–2001 Wisconsin | Limited to women in rural areas with no public water system (475 cases, 1447 controls); nitrate levels at residence (presumed to be private wells) estimated by kriging using data from a 1994 representative sample of 289 private wells | Colorectal | All colon cancers: Private wells ≥10.0 mg/L NO3-N vs. <0.5 OR = 1.52 (CI: 0.95–2.44); Proximal colon cancer: OR = 2.91 (CI: 1.52–5.56) | Not described |
Espejo-Herrera, 2016 Spain, Italy [135] | Multi-center case-control study Incidence, 2008–2013 Spain (9 provinces) and population-based controls; Italy (two provinces) and hospital-based controls | Nitrate levels in PWS (2004–2010) for 349 water supply zones, bottled water (measured brands with highest consumption), and private wells and springs (measurements in 2013 in 21 municipalities in León, Spain, the area with highest non-PWS use) Analyses include those with nitrate estimates for ≥70% of period 30 years before interview (1869 cases, 3530 controls) | Colorectal | Water nitrate intake based on average nitrate levels (estimated 30 to 2 years prior to interview) and water intake (L/day) Highest vs. lowest exposure quintiles (≥2.3 vs. <1.1 mg /day NO3-N) OR = 1.49 (CI:1.24–1.78); Colon OR = 1.52 (CI: 1.24–1.86), Rectum OR = 1.62 (CI: 1.23–2.14) | Interaction with fiber for rectum (p-interaction = 0.07); >20 g/day fiber + >1.0 mg/L NO3-N vs. <20 g/day + ≤1.0 mg/L HR = 0.72 (CI: 0.52–1.00). No interaction with red meat, vitamin C, E |
Fathmawati, 2017 Indonesia [136] | Hospital-based case-control Incidence, 2014–2016 Indonesia (3 provinces) | Nitrate levels in well water collected during the raining season (Feb-March 2016) and classified based on >11.3 or ≤11.3 mg/L as NO3-N and duration of exposure >10 and ≤10 years Analyses included participants who reported drinking well water (75 cases, 75 controls) | Colorectal | Water nitrate > WHO standard vs. below (> 11.3 vs. ≤11.3 mg/L NO3-N) OR = 2.82 (CI: 1.08–7.40); > 10 years: 4.31 (CI: 11.32–14.10); ≤10 years: 1.41 (CI: 0.14–13.68) | Not described |
Schullehner, 2018 Denmark [32] | Population-based record-linkage cohort of men and women ages 35 and older, 1978–2011 Denmark | Nitrate levels in PWS and private wells among 1,742,321 who met exposure assessment criteria (5944 colorectal cancer cases, including 3700 with colon and 2308 with rectal cancer) | Colorectal | Annual average nitrate exposure between ages 20–35 among those who lived ≥75% of study period at homes with a water sample within 1 year (61% of Danish population). Highest vs. lowest exposure quintile (≥2.1 vs. 0.16 mg/L NO3-N); Colorectal: HR = 1.16 (CI: 1.08–1.25); colon: 1.15 (CI: 1.05–1.26); rectum: 1.17 (CI: 1.04–1.32) | No information on dietary intakes or smoking |
Ward, 2007 USA [34] | Population-based case control Incidence, 1986–1989 Iowa | Nitrate levels in PWS among those with nitrate estimates for ≥70% of person-years ≥1960 (201 cases, 1244 controls) | Kidney (renal cell carcinomas) | Highest vs. lowest quartile PWS average (≥2.8 mg/L NO3-N vs. <0.62) OR = 0.89 (CI 0.57–1.39); Years >5mg/L NO3-N 11+ vs. 0 OR = 1.03 (CI: 0.66–1.60) | Interaction with red meat intake (p-interaction = 0.01); OR = 1.91 (CI 1.04–3.51) among 11+ years >5 mg/L NO3-N and red meat ≥1.2 servings/day. Interaction with vitamin C showed similar pattern (p-interaction = 0.13) |
Jones, 2017 USA [127] | Population-based cohort of postmenopausal women ages 55–69 Incidence, 1986–2010 Iowa | Nitrate levels in PWS (1955–1988) and private well use among women >10 years at enrollment residence. PWS measurements for nitrate and TTHM; no measurements for private wells (20,945 women; 163 kidney cases) | Kidney | Nitrate and TTHM metrics computed for duration at water source (11+ years) 95th percentile vs. lowest quartile PWS average (≥5.00 vs. <0.47 mg/L NO3-N) HR = 2.23 (CI: 1.19–4.17; p-trend = 0.35) Years >5 mg/L (≥4 years vs. 0) HR = 1.54 (CI: 0.97–2.44; p-trend = 0.09) Private well users (vs. <0.47 mg/L NO3-N in PWS) HR = 0.96 (CI: 0.59–1.58) | No interaction with smoking, vitamin C |
Ward, 2006 USA [35] | Population-based case-control Incidence, 1998–2000 Iowa | Nitrate levels in PWS among those with nitrate estimates for ≥70% of person-years ≥1960 (181 case, 142 controls); nitrate measurements for private well users at time of interviews (1998–2000; 54 cases, 44 controls) | Non-Hodgkin lymphoma | Private wells: >5.0 mg/L NO3-N vs. ND OR = 0.8 (CI 0.2–2.5) PWS average: ≥2.9 mg/L NO3-N vs. <0.63 OR = 1.2 (CI 0.6–2.2) Years ≥5mg/L NO3-N: 10+ vs. 0 OR = 1.4 (CI: 0.7–2.9) | No interaction with vitamin C, smoking |
Inoue-Choi, 2015 USA [129] | Population-based cohort of postmenopausal women ages 55–69 Incidence, 1986–2010 Iowa | Nitrate levels in PWS (1955–1988) and private well use among women >10 years at enrollment residence; PWS measurements for nitrate and TTHM; no measurements for private wells (17,216 women; 190 ovarian cases) | Ovary | Nitrate and TTHM metrics computed for reported duration at water source (11+ years) Highest vs. lowest quartile PWS average (≥2.98 mg/L vs. <0.47 mg/L NO3-N) HR = 2.03 (CI = 1.22–3.38; p-trend = 0.003) Years >5 mg/L (≥4 years vs. 0) HR = 1.52 (CI: 1.00–2.31; p-trend = 0.05) Private well users (vs. <0.47 mg/L NO3-N in PWS) HR = 1.53 (CI: 0.93–2.54) | No interaction with vitamin C, red meat intake, smoking for PWS nitrate Interaction with private well use and vitamin C intake (p-interaction = 0.01) |
Quist, 2018 USA [126] | Population-based cohort of postmenopausal women ages 55–69 Incidence, 1986–2011 Iowa | Nitrate levels in PWS (1955–1988) and private well use among women >10 years at enrollment residence; nitrate and TTHM estimates for PWS (20,945 women; 189 pancreas cases); no measurements for private wells Adjusted for TTHM (1955–1988), measured levels in 1980s, prior year levels estimated by expert) | Pancreas | Nitrate and TTHM metrics computed for reported duration at water source (11+ years) 95th percentile vs. lowest quartile PWS average (≥5.69 vs. <0.47 mg/L NO3-N) HR = 1.16 (CI: 0.51–2.64; p-trend = 0.97) Years >5 mg/L (≥4 years vs. 0) HR = 0.90 (CI: 0.55–1.48; p-trend = 0.62) Private well users (vs. <0.47 mg/L NO3-N) HR = 0.92 (CI: 0.55–1.52) | No interaction with smoking, vitamin C |
Ward, 2008 USA [133] | Population-based case control Incidence, 1988–1993 Nebraska | Controls from prior study of lymphohematopoetic cases and controls interviewed in 1992–1994; Proxy interviews for 80%, 76%, 61% of stomach, esophagus, controls, respectively. Nitrate levels (1965–1985) in PWS for ≥70% of person-years (79 distal stomach, 84, esophagus, 321 controls); Private well users sampling at interview (15 stomach, 22 esophagus, 44 controls) | Stomach and esophagus (adenocarcinomas) | Highest vs. lowest quartile PWS average (>4.32 vs. <2.45 mg/L NO3-N): stomach OR = 1.2 (CI 0.5–2.7); esophagus OR = 1.3 (CI: 0.6–3.1); Years >10 mg/L NO3-N (9+ vs. 0): stomach OR = 1.1 (CI: 0.5–2.3); esophagus OR = 1.2 (CI: 0.6–2.7) Private well users (>4.5 mg/L NO3-N vs. <0.5) stomach OR = 5.1 (CI: 0.5–52; 4 cases, 13 controls); esophagus OR = 0.5 (CI: 0.1–2.9; 8 cases; 13 controls) | No interaction with vitamin C, processed meat, or red meat for either cancer |
Ward, 2010 USA [37] | Population-based cohort of postmenopausal women ages 55–69 Incidence, 1986–2004 Iowa | Nitrate levels in PWS (1955–1988) and private well use among women >10 years at enrollment residence (21,977 women; 40 thyroid cases); no measurements for private wells | Thyroid | Highest vs. lowest quartile PWS average (>2.46 vs. <0.36 mg/L NO3-N) HR = 2.18 (CI: 0.83–5.76; p-trend = 0.02) Years >5 mg/L (≥5 years vs. 0) HR = 2.59 (CI: 1.09–6.19; p-trend = 0.04); Private well (vs. <0.36 mg/L NO3-N on PWS) HR = 1.13 (CI: 0.83–3.66) Dietary nitrate intake quartiles positively associated with risk (p-trend = 0.05) | No interaction with smoking, vitamin C, body mass index, education, residence location (farm/rural vs. urban) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ward, M.H.; Jones, R.R.; Brender, J.D.; De Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; Van Breda, S.G. Drinking Water Nitrate and Human Health: An Updated Review. Int. J. Environ. Res. Public Health 2018, 15, 1557. https://doi.org/10.3390/ijerph15071557
Ward MH, Jones RR, Brender JD, De Kok TM, Weyer PJ, Nolan BT, Villanueva CM, Van Breda SG. Drinking Water Nitrate and Human Health: An Updated Review. International Journal of Environmental Research and Public Health. 2018; 15(7):1557. https://doi.org/10.3390/ijerph15071557
Chicago/Turabian StyleWard, Mary H., Rena R. Jones, Jean D. Brender, Theo M. De Kok, Peter J. Weyer, Bernard T. Nolan, Cristina M. Villanueva, and Simone G. Van Breda. 2018. "Drinking Water Nitrate and Human Health: An Updated Review" International Journal of Environmental Research and Public Health 15, no. 7: 1557. https://doi.org/10.3390/ijerph15071557