Removal of Pharmaceutical and Personal Care Products (PPCPs) from Municipal Waste Water with Integrated Membrane Systems, MBR-RO/NF
Abstract
:1. Introduction
2. Materials and Methods
2.1. MBR-RO/NF Pilot Plant
2.2. Model Contaminants
2.3. Sample Collection and Analysis
3. Results and Discussion
3.1. PPCPs in the Influent
3.2. Removal of PPCPs by MBR
3.3. Removal of PPCPs by MBR-RO/NF System
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vieno, N.; Tuhkanen, T.; Kronberg, L. Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Res. 2007, 41, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, G.P.; Souza, N.C.; Vidal, C.B.; Santos, A.D. Occurrence and removal of estrogens in Brazilian wastewater treatment plants. Sci. Total Environ. 2014, 490, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.D.; Cho, J.; Kim, I.S.; Vanderford, B.J.; Snyder, S.A. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 2007, 41, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Snyder, S.A. Occurrence, Treatment, and Toxicological Relevance of EDCs and Pharmaceuticals in Water. Ozone Sci. Eng. 2008, 30, 65–69. [Google Scholar] [CrossRef]
- Fent, K.; Weston, A.A.; Caminada, D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 2006, 76, 122–159. [Google Scholar] [CrossRef] [PubMed]
- Vethaak, A.D.; Lahr, J.; Schrap, S.M.; Voogt, P.D. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere 2005, 59, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Carmona, E.; Andreu, V.; Picó, Y. Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: From waste to drinking water. Sci. Total Environ. 2014, 484, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.J.; Smith, E.H. Removing dissolved organic contaminants from water. Environ. Sci. Tehchnol. 1986, 20, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Buser, H.R.; Poiger, T.; Müller, M.D. Occurrence and Fate of the Pharmaceutical Drug Diclofenac in Surface Waters: Rapid Photodegradation in a Lake. Environ. Sci. Tehchnol. 1998, 32, 3449–3456. [Google Scholar] [CrossRef]
- Lin, A.; Reinhard, M. Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environ. Toxicol. Chem. 2005, 24, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Hara, H.; Watanabe, Y. Elimination of selected acidic pharmaceuticals from municipal wastewater by an activated sludge system and membrane bioreactors. Environ. Sci. Technol. 2007, 41, 3708–3714. [Google Scholar] [CrossRef] [PubMed]
- Benitez, F.J.; Real, F.J.; Acero, J.L. Removal of selected pharmaceuticals in waters by photochemical processes. J. Chem. Technol. Biotechnol. 2009, 84, 1186–1195. [Google Scholar] [CrossRef]
- Rizzo, L.; Meric, S.; Kassinos, D.; Belgiorno, V. Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res. 2009, 43, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Giri, R.R.; Ozaki, H.; Takayanagi, Y.; Takanami, R. Efficacy of ultraviolet radiation and hydrogen peroxide oxidation to eliminate large number of pharmaceutical compounds in mixed solution. Int. J. Environ. Sci. Technol. 2011, 8, 19–30. [Google Scholar] [CrossRef]
- Radjenovic, J.; Petrovic, M.; Barceló, D. Analysis of pharmaceuticals inwastewater and removal using amembrane bioreactor. Anal. Bioanal. Chem. 2007, 387, 1365–1377. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Toshima, S.; Amy, G.; Watanabe, Y. Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes. J. Membr. Sci. 2004, 245, 71–78. [Google Scholar] [CrossRef]
- Boleda, R.; Galceran, T.; Ventura, F. Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments. Environ. Pollut. 2011, 159, 1584–1591. [Google Scholar] [CrossRef] [PubMed]
- Sahar, E.; David, I.; Gelman, Y.; Chikurel, H.; Aharoni, A.; Messalem, R.; Brenner, A. The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination 2011, 273, 142–147. [Google Scholar] [CrossRef]
- Dolar, D.; Gros, M.; Rodriguez-Mozaz, S.; Barcelo, D. Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. J. Hazard. Mater. 2012, 239–240, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Alturki, A.A.; Tadkaew, N.; McDonaldb, J.A.; Khan, S.J.; Price, W.E.; Nghiem, L.D. Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications. J. Membr. Sci. 2010, 365, 206–215. [Google Scholar] [CrossRef]
- Kim, I.; Yamashita, N.; Tanaka, H. Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments. Chemosphere 2009, 77, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Vagna, D.; Marotta, R.; Andreozzi, R.; Napolitana, A. Kinetic and chemical seesssment of the UV/H2O2 treatment of antiepileptic drug carbamazepine. Chemosphere 2004, 54, 497–505. [Google Scholar] [CrossRef]
- Pereira, V.J.; Weinberg, H.S.; Linden, K.G.; Singer, P.C. UV degradation kinetics and modeling of pharmaceutical compounds in laboratory grade and surface water via direct and indirect photolysis at 254 nm. Envrion. Sci. Technol. 2007, 41, 1682–1688. [Google Scholar] [CrossRef]
- Urase, T.; Kikuta, T. Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process. Water Res. 2005, 39, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Suarez, S.; Carballa, M.; Omil, F.; LemaJ, M. How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev. Environ. Sci. Bio-Technol. 2008, 7, 125–138. [Google Scholar] [CrossRef]
- SRC (Syracuse Research Company). PhysProp Database. Available online: www.syrres.com/esc/physdemo.htm (accessed on 2 July 2010).
- Vanderford, B.J.; Snyder, S.A. Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry. Environ. Sci. Technol. 2006, 40, 7312–7320. [Google Scholar] [CrossRef] [PubMed]
- Miège, C.; Choubert, J.M.; Ribero, L.; Eusèbe, M.; Coquery, M. Fate of pharmaceuticals and personal care products in wastewater treatment plants—Conception of a database and first results. Environ. Pollut. 2009, 157, 1721–1726. [Google Scholar] [CrossRef] [PubMed]
- Le-Minh, N.; Khan, S.J.; Drewes, J.E.; Stuetz, R.M. Fate of antibiotics during municipal water recycling treatment processes. Water Res. 2010, 44, 4295–4323. [Google Scholar] [CrossRef] [PubMed]
- Clara, M.; Strenn, B.; Gans, O.; Martinez, E.; Kreuzinger, N.; Kroiss, H. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res. 2005, 39, 4797–4807. [Google Scholar] [CrossRef] [PubMed]
- Radjenovi, J.; Petrovi, M.; Barceló, D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res. 2009, 43, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Kosma, C.I.; Lambropoulou, D.A.; Albanis, T.A. Investigation of PPCPs in wastewater treatment plants in Greece: Occurrence, removal and environmental risk assessment. Sci. Total Environ. 2014, 466–467, 421–438. [Google Scholar] [CrossRef] [PubMed]
- Cartagena, P.; Kaddouri, M.E.; Cases, V.; Trapote, A.; Prats, D. Reduction of emerging micropollutants, organic matter, nutrients and salinity from real wastewater by combined MBR-NF/RO treatment. Sep. Purif. Technol. 2013, 110, 132–143. [Google Scholar] [CrossRef]
- Gao, J.; O’Brien, J.; Peng, D.; Ortc, C.; Muellera, J.F.; Thaiad, P.K. Measuring selected PPCPs in wastewater to estimate the population in different cities in China. Sci. Total Environ. 2016, 568, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K.L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999, 225, 109–118. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, Y.; Gao, P.; Ren, N. Occurrence and removal efficiencies of eight EDCs and estrogenicity in a STP. J. Environ. Monit. 2011, 13, 1366–1373. [Google Scholar] [CrossRef] [PubMed]
- Göbel, A.; McArdell, C.S.; Joss, A.; Siegrist, H.; Giger, W. Fate of sulfonamides macrolides, and trimethoprim in different wastewater treatment technologies. Sci. Total Environ. 2007, 372, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Joss, A.; Keller, E.; Alder, A.C.; Göbel, A.; McArdell, C.S.; Ternes, T.; Siegrist, H. Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res. 2005, 39, 3139–3152. [Google Scholar] [CrossRef] [PubMed]
- Chon, K.; KyongShon, H.; Cho, J. Membrane bioreactor and nanofiltration hybrid system for reclamation of municipal wastewater: Removal of nutrients, organic matter and micropollutants. Bioresour. Technol. 2012, 122, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Clara, M.; Strenn, B.; Kreuzinger, N. Carbamazepine as a possible anthropogenic marker in the aquatic environment: Investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration. Water Res. 2004, 38, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.; Escher, B.I.; Richle, P.; Schaffner, C.; Alder, A.C. Elimination of β-blockers in sewage treatment plants. Water Res. 2007, 41, 1614–1622. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Qiu, W.; Hu, J.; Gao, W. Chemisorption of estrone in nylon microfiltration membranes: Adsorption mechanism and potential use for estrone removal from water. Water Res. 2012, 46, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Joss, A.; Baenninger, C.; Foa, P.; Koepke, S.; Krauss, M.; McArdell, C.S.; Rottermann, K.; Wei, Y.; Zapata, A.; Siegrist, H. Water reuse: >90% water yield in MBR/RO through concentration recycling and CO2 addition as scaling control. Water Res. 2011, 45, 6141–6151. [Google Scholar] [CrossRef] [PubMed]
- Gur-Reznik, S.; Koren-Menashe, I.; Heller-Grossman, L.; Rufel, O.; Dosoretz, C.G. Influence of seasonal and operating conditions on the rejection of pharmaceutical active compounds by RO and NF membranes. Desalination 2011, 277, 250–256. [Google Scholar] [CrossRef]
- Snyder, S.A.; Westerhoff, P.; Yoon, Y.; Sedlak, D.L. Pharmaceuticals, Personal care products, and endocrine disruptors in water: Implication for the water industry. Environ. Eng. Sci. 2003, 20, 449–469. [Google Scholar] [CrossRef]
- Wang, X.; Li, B.; Zhang, T.; Li, X. Performance of nanofiltration membrane in rejecting trace organic compounds: Experiment and model prediction. Desalination 2015, 370, 7–16. [Google Scholar] [CrossRef]
- Comerton, A.M.; Andrews, R.C.; Bagley, D.M.; Yang, P. Membrane adsorption of endocrine disrupting compounds and pharmaceutically active compounds. J. Membr. Sci. 2007, 303, 267–277. [Google Scholar] [CrossRef]
- Jacob, M.; Li, C.C.; Guigui, C.; Cabassud, C.; Lavison, G.; Moulin, L. Performance of NF/RO process for indirect potable reuse: Interactions between micropollutants, micro-organisms and real MBR permeate. Desalination Water Treat. 2012, 46, 75–86. [Google Scholar] [CrossRef]
Membrane Component | Texture | Type | Rejection (%) a | Effective Area (m2) | General Operation Pressure (KPa) | General Operation Flux (LMH) | |
---|---|---|---|---|---|---|---|
Average | Minimum | ||||||
RO | PA b | Duraslick RO 2540 | 98.6% (NaCl) | 97% (NaCl) | 2.5 | 1379 | 15–25 |
NF | PA b | Duraslick NF-2540 | 98.6% (MgSO4) | 96% (MgSO4) | 2.2 | 690 | 15–25 |
MBR | PVDF c + PET d | PEIER-B-80 | - | - | 0.8 | - | - |
Analytes | MW (g/mol) | Formula | CAS Number | LogKow | pKa * | Solubility * (mg/L) | Classification |
---|---|---|---|---|---|---|---|
Caffeine | 194.19 | C8H10N4O2 | 58-08-2 | −0.07 | 6.1; 0.73 | 2.16 × 104 | Stimulant |
Atenolol | 266.34 | C14H22N2O3 | 29122-68-7 | 0.16 | 13.88; 9.16 | N/A | β--blocker |
Metoprolol | 267.36 | C15H25NO3 | 51384-51-1 | 1.88 | 9.68 | N/A | β--blocker |
Amoxicillin | 365.4 | C16H19N3O5S | 26787-78-0 | 0.91 | N/A | N/A | β-lactams Antibiotic |
Trimethoprim | 290.32 | C14H18N4O3 | 738-70-5 | 0.87 | 6.3; 4.0; 7.2 | 12100 | Pyrimethamine antibiotic |
Sulfadimidine | 278.33 | C12H14N4O2S | 57-68-1 | 0.89 | 7.4 | 1500 | Sulfonamides antibiotics |
Sulfamethoxazole | 253.27 | C10H11N3O3S | 723-46-6 | 0.48 | 2.1; 5.81; 1.39 | 610 | Sulfonamides antibiotics |
Norfloxacin | 319.33 | C16H18FN3O3 | 70458-96-7 | −1.03 | N/A | N/A | Fluoroquinolone antibiotics |
Ofloxacin | 361.37 | C18H20FN3O4 | 82419-36-1 | −0.39 | N/A | N/A | Fluoroquinolone antibiotics |
Ciprofloxacin | 331.34 | C17H18FN3O3 | 85721-33-1 | 0.28 | N/A | 3.0 × 104 | Fluoroquinolone antibiotics |
Lomefloxacin | 351.35 | C17H19F2N3O3 | 98079-51-7 | −0.23 | N/A | N/A | Fluoroquinolone antibiotics |
Enrofloxacin | 359.4 | C19H22FN3O3 | 93106-60-6 | −0.63 | N/A | N/A | Fluoroquinolone antibiotics |
Oxytetracycline | 460.43 | C22H24N2O9 | 79-57-2 | −0.9 | 3.27 | N/A | Tetracycline antibiotics |
Tetracycline | 444.44 | C22H24N2O8 | 60-54-8 | −1.37 | 3.30 | N/A | Tetracycline antibiotics |
Chlortetracycline | 478.88 | C22H23ClN2O8 | 57-62-5 | −0.9 | 3.30 | N/A | Tetracycline antibiotics |
Doxycycline | 444.44 | C22H24N2O8 | 564-25-0 | −0.02 | 3.30 | N/A | Tetracycline antibiotics |
Clarithromycin | 747.95 | C38H69NO13 | 81103-11-9 | 3.16 | 8.9 | 0.33 | Macrolide antibiotics |
Erythromycin-H2O | 715.916 | C37H65NO12 | 23893-13-2 | 3.06 | 8.9 | 1.44 | Macrolide antibiotics |
Roxithromycin | 837.05 | C41H76N2O15 | 80214-83-1 | 1.7 | 8.8 | 0.019 | Macrolide antibiotics |
Azithromycin | 748.98 | C38H72N2O12 | 83905-01-5 | 4.02 | 8.8 | N/A | Macrolide antibiotics |
Carbamazpine | 236.27 | C15H12N2O | 298-46-4 | 2.25 | 13.90; −0.49 | 112 | Antiepilepti |
Benzhabeite | 361.82 | C19H20ClNO4 | 41859-67-0 | N/A | N/A | N/A | Antihypercholesterolemic |
Bisphenol A | 228.29 | C15H16O2 | 80-05-7 | 3.32 | 9.73 | 120 | Plasticizer |
Nonylphenol | 220.35 | C15H24O | 25154-52-3 | 5.76 | 10.14 | N/A | Plasticizer |
Estrone | 270.37 | C18H22O2 | 53-16-7 | 3.13 | 10.25; 10.5 | N/A | Hormone |
17β-Estradiol | 272.38 | C18H24O2 | 50-28-2 | 4.01 | 10.27; 10.4 | 3.6 | Hormone |
Estriol | 288.38 | C18H24O3 | 50-27-1 | 2.45 | 10.25; >15 | 444 | Hormone |
Compounds | LOQ (ng/L) | Range (μg /L) | Mean (μg /L) |
---|---|---|---|
Caffeine | 10.6 (4.1) | 8.53–33.7 | 18.4 |
Atenolol | 8.54 (3.32) | 0.012–0.409 | 0.166 |
Metoprolol | 9.85 (4.56) | 0.437–3.21 | 1.73 |
Amoxicillin | 6.11 (4.07) | 0.008–0.035 | 0.02 |
Trimethoprim | 11.2 (7.35) | n.d. −0.023 | 0.007 |
Sulfadimidine | 4.75 (2.32) | 0.005–0.131 | 0.059 |
Sulfamethoxazole | 6.83 (3.22) | 0.012–0.092 | 0.037 |
Norfloxacin | 10.63 (6.12) | 0.014–0.226 | 0.106 |
Ofloxacin | 14.46 (10.32) | 0.1–0.912 | 0.560 |
Ciprofloxacin | 3.65 (1.55) | n.d. −0.089 | 0.034 |
Lomefloxacin | 2.12(1.46) | n.d. −0.0388 | 0.01 |
Enrofloxacin | 3.56 (1.47) | n.d. −0.008 | 0.004 |
Oxytetracycline | 2.66 (1.75) | 0.009–0.035 | 0.018 |
Tetracycline | 2.32 (1.02) | 0.003–0.008 | 0.023 |
Chlortetracycline | 4.11 (1.36) | n.d. −0.022 | 0.008 |
Doxycycline | 2.33 (1.21) | n.d. −0.08 | 0.018 |
Clarithromycin | 35.11 (15.88) | n.d. −1.26 | 0.368 |
Erythromycin-H2O | 43.4 (45.9) | n.d. −0.082 | 0.020 |
Roxithromycin | 35.3 (15.44) | n.d. −0.253 | 0.079 |
Azithromycin | 23.12 (4.98) | 0.047–4.42 | 1.41 |
Carbamazpine | 3.13 (1.78) | n.d. −0.032 | 0.014 |
Benzhabeite | 20.3 (8.65) | 0.022–0.151 | 0.074 |
Bisphenol A | 16.46 (6.21) | 0.3–1.52 | 0.833 |
Nonylphenol | 15.2 (10.6) | 0.126–0.873 | 0.421 |
Estrone | 7.65 (3.32) | 0.078–0.158 | 0.106 |
17β-Estradiol | 10.1 (4.40) | 0.011–0.054 | 0.030 |
Estriol | 8.32 (4.67) | 0.042–0.162 | 0.092 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, X.; Li, M.; Dong, J.; Sun, C.; Chen, G. Removal of Pharmaceutical and Personal Care Products (PPCPs) from Municipal Waste Water with Integrated Membrane Systems, MBR-RO/NF. Int. J. Environ. Res. Public Health 2018, 15, 269. https://doi.org/10.3390/ijerph15020269
Wang Y, Wang X, Li M, Dong J, Sun C, Chen G. Removal of Pharmaceutical and Personal Care Products (PPCPs) from Municipal Waste Water with Integrated Membrane Systems, MBR-RO/NF. International Journal of Environmental Research and Public Health. 2018; 15(2):269. https://doi.org/10.3390/ijerph15020269
Chicago/Turabian StyleWang, Yonggang, Xu Wang, Mingwei Li, Jing Dong, Changhong Sun, and Guanyi Chen. 2018. "Removal of Pharmaceutical and Personal Care Products (PPCPs) from Municipal Waste Water with Integrated Membrane Systems, MBR-RO/NF" International Journal of Environmental Research and Public Health 15, no. 2: 269. https://doi.org/10.3390/ijerph15020269