Association of Exposure to Fine-Particulate Air Pollution and Acidic Gases with Incidence of Nephrotic Syndrome
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Sampled Participants
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Atkins, R.C.; Briganti, E.M.; Lewis, J.B.; Hunsicker, L.G.; Braden, G.; Champion de Crespigny, P.J.; DeFerrari, G.; Drury, P.; Locatelli, F.; Wiegmann, T.B.; et al. Proteinuria reduction and progression to renal failure in patients with type 2 diabetes mellitus and overt nephropathy. Am. J. Kidney Dis. 2005, 45, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Bierzynska, A.; McCarthy, H.J.; Soderquest, K.; Sen, E.S.; Colby, E.; Ding, W.Y.; Nabhan, M.M.; Kerecuk, L.; Hegde, S.; Hughes, D.; et al. Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int. 2017, 91, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Tapia, C.; Bashir, K. Nephrotic Syndrome; Updated 2018 Nov 10, [Internet]; StatPearls Publishing: Treasure Island, FL, USA, January 2018. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470444/ (accessed on 10 November 2018).
- Hull, R.P.; Goldsmith, D.J.A. Nephrotic syndrome in adults. BMJ 2008, 336, 1185–1189. [Google Scholar] [CrossRef] [PubMed]
- Feehally, J.; Kendell, N.P.; Swift, P.G.; Walls, J. High incidence of minimal change nephrotic syndrome in Asians. Arch. Dis. Child. 1985, 60, 1018–1020. [Google Scholar] [CrossRef] [PubMed]
- Korbet, S.M.; Genchi, R.M.; Borok, R.Z.; Schwartz, M.M. The racial prevalence of glomerular lesions in nephrotic adults. Am. J. Kidney Dis. 1996, 27, 647–651. [Google Scholar] [CrossRef]
- Banh, T.H.; Hussain-Shamsy, N.; Patel, V.; Vasilevska-Ristovska, J.; Borges, K.; Sibbald, C.; Lipszyc, D.; Brooke, J.; Geary, D.; Langlois, V.; et al. Ethnic Differences in Incidence and Outcomes of Childhood Nephrotic Syndrome. Clin. J. Am. Soc. Nephrol. 2016, 11, 1760–1768. [Google Scholar] [CrossRef]
- Canetta, P.A.A.; Radhakrishnan, J. The Evidence-Based Approach to Adult-Onset Idiopathic Nephrotic Syndrome. Front. Pediatr. 2015, 3, 78. [Google Scholar] [CrossRef]
- Benoit, G.; Machuca, E.; Antignac, C. Hereditary nephrotic syndrome: A systematic approach for genetic testing and a review of associated podocyte gene mutations. Pediatr. Nephrol. 2010, 25, 1621–1632. [Google Scholar] [CrossRef]
- Kazantzis, G.; Schiller, K.F.; Asscher, A.W.; Drew, R.G. Albuminuria and the nephrotic syndrome following exposure to mercury and its compounds. Q. J. Med. 1962, 31, 403–418. [Google Scholar]
- Braunstein, G.D.; Lewis, E.J.; Galvanek, E.G.; Hamilton, A.; Bell, W.R. The nephrotic syndrome associated with secondary syphilis. An immune deposit disease. Am. J. Med. 1970, 48, 643–648. [Google Scholar] [CrossRef]
- Frenk, S.; Antonowicz, I.; Craig, J.M.; Metcoff, J. Experimental nephrotic syndrome induced in rats by aminonucleoside; renal lesions and body electrolyte composition. Proc. Soc. Exp. Biol. Med. 1955, 89, 424–427. [Google Scholar] [CrossRef] [PubMed]
- Bell, G.M.; Gordon, A.C.; Lee, P.; Doig, A.; MacDonald, M.K.; Thomson, D.; Anderton, J.L.; Robson, J.S. Proliferative glomerulonephritis and exposure to organic solvents. Nephron 1985, 40, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Bullich, G.; Trujillano, D.; Santín, S.; Ossowski, S.; Mendizábal, S.; Fraga, G.; Madrid, Á.; Ariceta, G.; Ballarín, J.; Torra, R.; et al. Targeted next-generation sequencing in steroid-resistant nephrotic syndrome: mutations in multiple glomerular genes may influence disease severity. Eur. J. Hum. Genet. 2015, 23, 1192–1199. [Google Scholar] [CrossRef]
- Xu, X.; Wang, G.; Chen, N.; Lu, T.; Nie, S.; Xu, G.; Zhang, P.; Luo, Y.; Wang, Y.; Wang, X.; et al. Long-Term Exposure to Air Pollution and Increased Risk of Membranous Nephropathy in China. J. Am. Soc. Nephrol. 2016, 27, 3739–3746. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.-H.; Shi, N.-X.; Tseng, C.-H.; Pan, S.-Y.; Chiang, P.-C. Socioeconomic costs of replacing nuclear power with fossil and renewable energy in Taiwan. Energy 2016, 114, 369–381. [Google Scholar] [CrossRef]
- Chen, T.-L. Air Pollution Caused by Coal-fired Power Plant in Middle Taiwan. Int. J. Energy Power Eng. 2018, 6, 121–124. [Google Scholar] [CrossRef]
- Gawda, A.; Majka, G.; Nowak, B.; Marcinkiewicz, J. Air pollution, oxidative stress, and exacerbation of autoimmune diseases. Cent.-Eur. J. Immunol. 2017, 42, 305–312. [Google Scholar] [CrossRef]
- Shao, X.S.; Yang, X.Q.; Zhao, X.D.; Li, Q.; Xie, Y.Y.; Wang, X.G.; Wang, M.; Zhang, W. The prevalence of Th17 cells and FOXP3 regulate T cells (Treg) in children with primary nephrotic syndrome. Pediatr. Nephrol. 2009, 24, 1683–1690. [Google Scholar] [CrossRef]
- Chang, K.H.; Chang, M.Y.; Muo, C.H.; Wu, T.N.; Hwang, B.F.; Chen, C.Y.; Lin, T.H.; Kao, C.H. Exposure to air pollution increases the risk of osteoporosis: A nationwide longitudinal study. Medicine (Baltimore) 2015, 94, e733. [Google Scholar] [CrossRef]
- Chang, K.H.; Hsu, C.C.; Muo, C.H.; Hsu, C.Y.; Liu, H.C.; Kao, C.H.; Chen, C.Y.; Chang, M.Y.; Hsu, Y.C. Air pollution exposure increases the risk of rheumatoid arthritis: A longitudinal and nationwide study. Environ. Int. 2016, 94, 495–499. [Google Scholar] [CrossRef]
- Lewis, M.G.; Loughridge, L.W.; Phillips, T.M. Immunological studies in nephrotic syndrome associated with extrarenal malignant disease. Lancet 1971, 2, 134–135. [Google Scholar] [CrossRef]
- Mastroianni-Kirsztajn, G.; Hornig, N.; Schlumberger, W. Autoantibodies in renal diseases—Clinical significance and recent developments in serological detection. Front. Immunol. 2015, 6, 221. [Google Scholar] [CrossRef] [PubMed]
- Harvey, S.J.; Jarad, G.; Cunningham, J.; Rops, A.L.; van der Vlag, J.; Berden, J.H.; Moeller, M.J.; Holzman, L.B.; Burgess, R.W.; Miner, J.H. Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. Am. J. Pathol. 2007, 171, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.D.; Chang, H.H.; Bell, M.L.; McDermott, A.; Zeger, S.L.; Samet, J.M.; Dominici, F. Coarse particulate matter air pollution and hospital admissions for cardiovascular and respiratory diseases among Medicare patients. JAMA 2008, 299, 2172–2179. [Google Scholar] [CrossRef] [PubMed]
- Farhat, S.C.; Silva, C.A.; Orione, M.A.; Campos, L.M.; Sallum, A.M.; Braga, A.L. Air pollution in autoimmune rheumatic diseases: A review. Autoimmun. Rev. 2011, 11, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Beamish, L.A.; Osornio-Vargas, A.R.; Wine, E. Air pollution: An environmental factor contributing to intestinal disease. J. Crohn’s Colitis 2011, 5, 279–286. [Google Scholar] [CrossRef]
- Eze, I.C.; Hemkens, L.G.; Bucher, H.C.; Hoffmann, B.; Schindler, C.; Künzli, N.; Schikowski, T.; Probst-Hensch, N.M. Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis. Environ. Health Perspect. 2015, 123, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Risom, L.; Møller, P.; Loft, S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat. Res. 2005, 592, 119–137. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Yin, H.; Gao, F.; Wu, X.; Luo, Y.; Zhao, S.; Zhang, X.; Su, Y.; Hu, N.; et al. Overexpression of the growth arrest and DNA damage-induced 45alpha gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells. Arthritis Rheumatol. 2010, 62, 1438–1447. [Google Scholar] [CrossRef]
- van Eeden, S.F.; Tan, W.C.; Suwa, T.; Mukae, H.; Terashima, T.; Fujii, T.; Qui, D.; Vincent, R.; Hogg, J.C. Cytokines involved in the systemic inflammatory response induced by exposure to particulate matter air pollutants (PM(10)). Am. J. Respir. Crit. Care Med. 2001, 164, 826–830. [Google Scholar] [CrossRef]
- Horii, Y.; Muraguchi, A.; Iwano, M.; Matsuda, T.; Hirayama, T.; Yamada, H.; Fujii, Y.; Dohi, K.; Ishikawa, H.; Ohmoto, Y.; et al. Involvement of IL-6 in mesangial proliferative glomerulonephritis. J. Immunol. 1989, 143, 3949–3955. [Google Scholar] [PubMed]
- Kim, S.D.; Park, J.M.; Kim, I.S.; Choi, K.D.; Lee, B.C.; Lee, S.H.; Hong, S.J.; Jin, S.Y.; Lee, H.J.; Hong, M.S.; et al. Association of IL-1beta, IL-1ra, and TNF-alpha gene polymorphisms in childhood nephrotic syndrome. Pediatr. Nephrol. 2004, 19, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, C.M.; Minto, A.W.; Dorf, M.E.; Proudfoot, A.; Wells, T.N.; Salant, D.J.; Gutierrez-Ramos, J.C. RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J. Exp. Med. 1997, 185, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
- Bernatsky, S.; Smargiassi, A.; Joseph, L.; Awadalla, P.; Colmegna, I.; Hudson, M.; Fritzler, M.J. Industrial air emissions, and proximity to major industrial emitters, are associated with anti-citrullinated protein antibodies. Environ. Res. 2017, 157, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Franze, T.; Weller, M.G.; Niessner, R.; Pöschl, U. Protein nitration by polluted air. Environ. Sci. Technol. 2005, 39, 1673–1678. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, H.; Kanayama, N. Immunogenicity of an inflammation-associated product, tyrosine nitrated self-proteins. Autoimmun. Rev. 2005, 4, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Gauba, V.; Grünewald, J.; Gorney, V.; Deaton, L.M.; Kang, M.; Bursulaya, B.; Ou, W.; Lerner, R.A.; Schmedt, C.; Geierstanger, B.H.; et al. Loss of CD4 T-cell-dependent tolerance to proteins with modified amino acids. Proc. Natl. Acad. Sci. USA 2011, 108, 12821–12826. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, H. 3-Nitrotyrosine: A biomarker of nitrogen free radical species modified proteins in systemic autoimmunogenic conditions. Hum. Immunol. 2013, 74, 1392–1399. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Ali, R. Antibodies against nitric oxide damaged poly L-tyrosine and 3-nitrotyrosine levels in systemic lupus erythematosus. J. Biochem. Mol. Biol. 2006, 39, 189–196. [Google Scholar] [CrossRef]
- Tsai, S.-Y.; Tseng, H.-F.; Tan, H.-F.; Chien, Y.-S.; Chang, C.-C. End-stage renal disease in Taiwan: a case-control study. J. Epidemiol. 2009, 19, 169–176. [Google Scholar] [CrossRef]
- Lahdenkari, A.T.; Kestilä, M.; Holmberg, C.; Koskimies, O.; Jalanko, H. Nephrin gene (NPHS1) in patients with minimal change nephrotic syndrome (MCNS). Kidney Int. 2004, 65, 1856–1863. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Tokunaga, K.; Doi, K.; Fujita, T.; Suzuki, H.; Katoh, T.; Watanabe, T.; Nishida, N.; Mabuchi, A.; Takahashi, A.; et al. Common variation in GPC5 is associated with acquired nephrotic syndrome. Nat. Genet. 2011, 43, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Hinkes, B.; Wiggins, R.C.; Gbadegesin, R.; Vlangos, C.N.; Seelow, D.; Nürnberg, G.; Garg, P.; Verma, R.; Chaib, H.; Hoskins, B.E.; et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat. Genet. 2006, 38, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Hou, W.; Zhou, X.; Liu, G.; Zhou, F.; Zhao, N.; Hou, P.; Zhao, M.; Zhang, H. Interaction between PLA2R1 and HLA-DQA1 variants associates with anti-PLA2R antibodies and membranous nephropathy. J. Am. Soc. Nephrol. 2013, 24, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
N = 161,970 | n | % | |
---|---|---|---|
Gender | Men | 70,948 | 43.8 |
Women | 91,022 | 56.2 | |
Age, years | mean, SD | 40.5 | 14.6 |
Urbanization level | 1 (highest) | 55,898 | 34.5 |
2 | 52,644 | 32.5 | |
3 | 27,407 | 16.9 | |
4 (lowest) | 26,020 | 16.1 | |
Exposure of air pollutants | |||
SO2 level (daily average, ppb) | mean, SD | 4.98 | 2.41 |
Min | 0.44 | ||
Lower quartile | 3.38 | ||
Median | 4.32 | ||
Upper quartile | 6.03 | ||
90th percentile | 8.68 | ||
Maximum | 14.1 | ||
NOx level (daily average, ppb) | mean, SD | 36.3 | 35.1 |
Min | 1.65 | ||
Lower quartile | 23.4 | ||
Median | 32.0 | ||
Upper quartile | 38.6 | ||
90th percentile | 54.8 | ||
Maximum | 426.7 | ||
NO level (daily average, ppb) | mean, SD | 11.0 | 10.2 |
Min | 0.32 | ||
Lower quartile | 5.16 | ||
Median | 8.58 | ||
Upper quartile | 11.5 | ||
90th percentile | 24.1 | ||
Maximum | 60.4 | ||
NO2 level (daily average, ppb) | mean, SD | 22.6 | 6.57 |
Min | 0.85 | ||
Lower quartile | 18.2 | ||
Median | 23.7 | ||
Upper quartile | 24.5 | ||
90th percentile | 30.6 | ||
Maximum | 38.6 | ||
PM2.5 level (daily average, μg/m3) | mean, SD | 34.8 | 8.76 |
Min | 1.00 | ||
Lower quartile | 29.5 | ||
Median | 33.3 | ||
Upper quartile | 41.2 | ||
90th percentile | 47.7 | ||
Maximum | 113.2 | ||
Outcome | |||
Nephrotic syndrome | Yes | 776 | 0.48 |
Follow-up time, years | mean, SD | 11.7 | 0.99 |
Air Pollutant Concentration | Quartile 1 (Q1) (lowest) | Quartile 2 (Q2) | Quartile 3 (Q3) | Quartile 4 (Q4) (highest) | * p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
N = 161,970 | n | (%) | n | (%) | n | (%) | n | (%) | |
Sulfur dioxide (SO2) | <0.001 | ||||||||
Urbanization level | |||||||||
1 (highest) | 12,662 | (29.9) | 13,928 | (36.4) | 19,315 | (41.6) | 9993 | (28.6) | |
2 | 13,428 | (31.7) | 11,114 | (29.1) | 13,820 | (29.8) | 14,282 | (40.8) | |
3 | 4829 | (11.4) | 5479 | (14.3) | 8887 | (19.2) | 8212 | (23.5) | |
4 (lowest) | 11,411 | (27.0) | 7721 | (20.2) | 4389 | (9.46) | 2499 | (7.14) | |
Nitrogen oxides (NOx) | <0.001 | ||||||||
Urbanization level | |||||||||
1 (highest) | 8667 | (22.4) | 10,836 | (25.2) | 10,950 | (32.5) | 25,445 | (54.6) | |
2 | 13,095 | (33.9) | 15,717 | (36.5) | 12,480 | (37.0) | 11,352 | (24.4) | |
3 | 4777 | (12.4) | 8540 | (19.9) | 7358 | (21.8) | 6732 | (14.5) | |
4 (lowest) | 12,101 | (31.3) | 7932 | (18.4) | 2934 | (8.70) | 3053 | (6.55) | |
Nitrogen monoxide (NO) | <0.001 | ||||||||
Urbanization level | |||||||||
1 (highest) | 8329 | (21.0) | 9967 | (24.3) | 16,250 | (45.0) | 21,352 | (47.4) | |
2 | 13,887 | (35.0) | 13,634 | (33.2) | 11,368 | (31.5) | 13,755 | (30.5) | |
3 | 4255 | (10.7) | 10,186 | (24.8) | 5471 | (15.2) | 7495 | (16.6) | |
4 (lowest) | 13,244 | (33.4) | 7261 | (17.7) | 3035 | (8.40) | 2480 | (5.50) | |
Nitrogen dioxide (NO2) | <0.001 | ||||||||
Urbanization level | |||||||||
1 (highest) | 8313 | (23.1) | 11,056 | (23.4) | 21,609 | (45.0) | 14,920 | (48.7) | |
2 | 10,953 | (30.4) | 18,620 | (39.4) | 14,202 | (29.6) | 8869 | (29.0) | |
3 | 5454 | (15.1) | 7740 | (16.4) | 9075 | (18.9) | 5138 | (16.8) | |
4 (lowest) | 11,308 | (31.4) | 9850 | (20.8) | 3152 | (6.56) | 1710 | (5.58) | |
Particulate matter (PM2.5) | <0.001 | ||||||||
Urbanization level | |||||||||
1 (highest) | 22,062 | (47.4) | 14,301 | (40.2) | 10,754 | (27.5) | 8781 | (21.6) | |
2 | 13,032 | (28.0) | 10,350 | (29.1) | 13,593 | (34.7) | 15,669 | (38.5) | |
3 | 5443 | (11.7) | 6153 | (17.3) | 5749 | (14.7) | 10,062 | (24.7) | |
4 (lowest) | 6054 | (13.0) | 4733 | (13.3) | 9063 | (23.1) | 6170 | (15.2) |
Pollutant Levels | N | Event | PY | IR | cHR | 95%CI | aHR | 95%CI |
---|---|---|---|---|---|---|---|---|
SO2 1 | ||||||||
Q1 | 42,331 | 184 | 493,552 | 3.73 | Ref. | Ref. | ||
Q2 | 38,242 | 129 | 448,116 | 2.88 | 0.77 | (0.62, 0.97) | 0.80 | (0.64, 1.00) |
Q3 | 46,411 | 179 | 543,975 | 3.29 | 0.88 | (0.72, 1.08) | 0.97 | (0.79, 1.20) |
Q4 | 34,986 | 284 | 407,059 | 6.98 | 1.87 | (1.56,2.25) *** | 2.00 | (1.66, 2.41) *** |
NOx 2 | ||||||||
Q1 | 38,640 | 126 | 451,937 | 2.79 | Ref. | Ref. | ||
Q2 | 43,026 | 207 | 503,906 | 4.11 | 1.47 | (1.18, 1.84) *** | 1.32 | (1.00, 1.73) * |
Q3 | 33,722 | 154 | 395,166 | 3.90 | 1.40 | (1.10, 1.77) ** | 1.15 | (0.79, 1.68) |
Q4 | 46,582 | 289 | 541,693 | 5.34 | 1.91 | (1.55, 2.36) *** | 1.41 | (0.89, 2.22) |
NO 3 | ||||||||
Q1 | 39,715 | 127 | 465,107 | 2.73 | Ref. | Ref. | ||
Q2 | 41,048 | 201 | 480,251 | 4.19 | 1.66 | (1.33, 2.07) *** | 1.34 | (1.02, 1.77) * |
Q3 | 36,125 | 151 | 423,750 | 3.56 | 1.64 | (1.28, 2.09) *** | 1.12 | (0.76, 1.64) |
Q4 | 45,082 | 297 | 523,594 | 5.67 | 2.49 | (2.01, 3.09) *** | 1.47 | (0.92, 2.35) |
NO2 4 | ||||||||
Q1 | 36,028 | 127 | 421,548 | 3.01 | Ref. | Ref. | ||
Q2 | 47,267 | 228 | 553,336 | 4.12 | 1.37 | (1.10, 1.70) ** | 1.23 | (0.94, 1.61) |
Q3 | 48,038 | 208 | 563,416 | 3.69 | 1.23 | (0.98, 1.53) | 1.02 | (0.69, 1.51) |
Q4 | 30,637 | 213 | 354,402 | 6.01 | 2.00 | (1.61, 2.49) *** | 1.35 | (0.78, 2.33) |
PM2.5 5 | ||||||||
Q1 | 46,591 | 129 | 545,526 | 2.36 | Ref. | Ref. | ||
Q2 | 35,537 | 126 | 416,539 | 3.02 | 1.28 | (1.00, 1.64) * | 1.33 | (0.91, 1.93) |
Q3 | 39,160 | 212 | 457,761 | 4.63 | 1.96 | (1.57, 2.44) *** | 1.96 | (1.08, 3.55) * |
Q4 | 40,682 | 309 | 472,877 | 6.53 | 2.77 | (2.26, 3.40) *** | 2.53 | (1.08, 5.94) * |
cHR | 95%CI | aHR | 95%CI | |
---|---|---|---|---|
PM2.5 | ||||
Follow-up period ≤ 6 | ||||
Q1 | Ref. | Ref. | ||
Q2 | 0.63 | (0.38, 1.03) | 0.73 | (0.36, 1.44) |
Q3 | 1.19 | (0.80, 1.78) | 1.53 | (0.55, 4.22) |
Q4 | 3.31 | (2.38, 4.59) *** | 4.23 | (1.02, 17.6) * |
Follow-up period > 6 | ||||
Q1 | Ref. | Ref. | ||
Q2 | 1.67 | (1.25, 2.23) *** | 1.65 | (1.04, 2.61) * |
Q3 | 2.42 | (1.85, 3.15) *** | 2.16 | (1.02, 4.55) * |
Q4 | 2.45 | (1.88, 3.19) *** | 1.93 | (0.66, 5.68) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.-Y.; Hsu, W.-H.; Lin, C.-L.; Lin, C.-C.; Lin, C.-H.; Wang, I.-K.; Hsu, C.-Y.; Kao, C.-H. Association of Exposure to Fine-Particulate Air Pollution and Acidic Gases with Incidence of Nephrotic Syndrome. Int. J. Environ. Res. Public Health 2018, 15, 2860. https://doi.org/10.3390/ijerph15122860
Lin S-Y, Hsu W-H, Lin C-L, Lin C-C, Lin C-H, Wang I-K, Hsu C-Y, Kao C-H. Association of Exposure to Fine-Particulate Air Pollution and Acidic Gases with Incidence of Nephrotic Syndrome. International Journal of Environmental Research and Public Health. 2018; 15(12):2860. https://doi.org/10.3390/ijerph15122860
Chicago/Turabian StyleLin, Shih-Yi, Wu-Huei Hsu, Cheng-Li Lin, Cheng-Chieh Lin, Chih-Hsueh Lin, I-Kuan Wang, Chung-Y. Hsu, and Chia-Hung Kao. 2018. "Association of Exposure to Fine-Particulate Air Pollution and Acidic Gases with Incidence of Nephrotic Syndrome" International Journal of Environmental Research and Public Health 15, no. 12: 2860. https://doi.org/10.3390/ijerph15122860
APA StyleLin, S.-Y., Hsu, W.-H., Lin, C.-L., Lin, C.-C., Lin, C.-H., Wang, I.-K., Hsu, C.-Y., & Kao, C.-H. (2018). Association of Exposure to Fine-Particulate Air Pollution and Acidic Gases with Incidence of Nephrotic Syndrome. International Journal of Environmental Research and Public Health, 15(12), 2860. https://doi.org/10.3390/ijerph15122860