Treatment of Wastewater Using Seaweed: A Review
Abstract
:1. Introduction
2. Seaweed Application in Wastewater Treatment
2.1. Removal of Nitrogen and Phosphorus
2.2. Removal of Phenolic Compounds
2.3. Removal of Dyes
2.4. Removal of Heavy Metals
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bharathiraja, B.; Chakravarthy, M.; Kumar, R.R.; Yogendran, D.; Yuvaraj, D.; Jayamuthunagai, J.; Kumar, R.P.; Palani, S. Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products. Renew. Sustain. Energy Rev. 2015, 47, 634–653. [Google Scholar] [CrossRef]
- McHugh, D.J. A Guide to the Seaweed Industry; FAO Fisheries Technical Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003; p. 441. [Google Scholar]
- Holdt, S.L.; Edwards, M.D. Cost-effective IMTA: A comparison of the production efficiencies of mussels and seaweed. J. Appl. Phycol. 2014, 26, 933–945. [Google Scholar] [CrossRef]
- Kim, J.K.; Yarish, C.; Hwang, E.K.; Park, M.; Kim, Y. Seaweed aquaculture: Cultivation technologies, challenges and its ecosystem services. Algae 2017, 32, 1–13. [Google Scholar] [CrossRef]
- Safinaz, A.F.; Ragaa, A.H. Effect of some red marine algae as biofertilizers on growth of maize (Zea mayz L.) plants. Int. Food Res. J. 2013, 20, 1629–1632. [Google Scholar]
- Selvam, G.G.; Sivakumar, K. Influence of seaweed extract as an organic fertilizer on the growth and yield of Arachis hypogea L. and their elemental composition using SEM-Energy Dispersive Spectroscopic analysis. Asian Pac. J. Reprod. 2014, 3, 18–22. [Google Scholar] [CrossRef]
- Nkemka, V.N.; Murto, M. Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals. J. Environ. Manag. 2010, 91, 1573–1579. [Google Scholar] [CrossRef]
- Hinks, J.; Edwards, S.; Sallis, P.J.; Caldwell, G.S. The steady state anaerobic digestion of Laminaria hyperborea—Effect of hydraulic residence on biogas production and bacterial community composition. Bioresour. Technol. 2013, 143, 221–230. [Google Scholar] [CrossRef]
- Lee, W.-K.; Lim, Y.-Y.; Leow, A.T.-C.; Namasivayam, P.; Abdullah, J.O.; Ho, C.-L. Factors affecting yield and gelling properties of agar. J. Appl. Phycol. 2017, 29, 1527–1540. [Google Scholar] [CrossRef]
- Chan, P.T.; Matanjun, P. Chemical composition and physicochemical properties of tropical red seaweed, Gracilaria changii. Food Chem. 2017, 221, 302–310. [Google Scholar] [CrossRef]
- Freile-Pelegrín, Y.; Madera-Santana, T.; Robledo, D.; Veleva, L.; Quintana, P.; Azamar, J.A. Degradation of agar films in a humid tropical climate: Thermal, mechanical, morphological and structural changes. Polym. Degrad. Stab. 2007, 92, 244–252. [Google Scholar] [CrossRef]
- Zeb, H.; Park, J.; Riaz, A.; Ryu, C.; Kim, J. High-yield bio-oil production from macroalgae (Saccharina japonica) in supercritical ethanol and its combustion behavior. Chem. Eng. J. 2017, 327, 79–90. [Google Scholar] [CrossRef]
- Hii, S.-L.; Lim, J.-Y.; Ong, W.-T.; Wong, C.-L. Agar from Malaysian red seaweed as potential material for synthesis of bioplastic film. J. Eng. Sci. Technol. 2016, 1–15. [Google Scholar]
- Seghetta, M.; Torring, D.; Bruhn, A.; Thomsen, M. Bioextraction potential of seaweed in Denmark—An instrument for circular nutrient management. Sci. Total Environ. 2016, 563, 513–529. [Google Scholar] [CrossRef]
- Tabassum, M.R.; Wall, D.M.; Murphy, J.D. Biogas production generated through continuous digestion of natural and cultivated seaweeds with dairy slurry. Bioresour. Technol. 2016, 219, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.A.; de Nys, R. The effects of feedstock pre-treatment and pyrolysis temperature on the production of biochar from the green seaweed Ulva. J. Environ. Manag. 2016, 169, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Nkemka, V.N.; Murto, M. Exploring strategies for seaweed hydrolysis: Effect on methane potential and heavy metal mobilisation. Process Biochem. 2012, 47, 2523–2526. [Google Scholar] [CrossRef]
- Wei, N.; Quarterman, J.; Jin, Y.-S. Marine macroalgae: An untapped resource for producing fuels and chemicals. Trends Biotechnol. 2013, 31, 70–77. [Google Scholar] [CrossRef]
- Jiang, R.; Ingle, K.N.; Golberg, A. Macroalgae (seaweed) for liquid transportation biofuel production: What is next? Algal Res. 2016, 14, 48–57. [Google Scholar] [CrossRef]
- Francavilla, M.; Franchi, M.; Monteleone, M.; Caroppo, C. The red seaweed Gracilaria gracilis as a multi products source. Mar. Drugs. 2013, 11, 3754–3776. [Google Scholar] [CrossRef] [PubMed]
- Necas, J.; Bartosikova, L. Carrageenan: A review. Vet. Med. 2013, 58, 187–205. [Google Scholar] [CrossRef]
- Kilinc, B.; Cirik, S.; Turan, G.; Tekogul, H.; Koru, E. Seaweeds for food and industrial applications. In Food Industry; InTech: London, UK, 2013; pp. 735–748. [Google Scholar]
- Kumar, K.S.; Ganesan, K.; Selvaraj, K.; Subba Rao, P.V. Studies on the functional properties of protein concentrate of Kappaphycus alvarezii (Doty) Doty—An edible seaweed. Food Chem. 2014, 153, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Laohakunjit, N.; Selamassakul, O.; Kerdchoechuen, O. Seafood-like flavour obtained from the enzymatic hydrolysis of the protein by-products of seaweed (Gracilaria sp.). Food Chem. 2014, 158, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Himaya, S.W.A.; Kim, S.-K. Marine Nutraceuticals. In Springer Handbook of Marine Biotechnology; Springer: Berlin, Germany, 2015; pp. 995–1014. [Google Scholar]
- Casas-Valdez, M.; Maina, E.A. Sargassum (Sargassaceae): Una alternativa tropical para la alimentation de grando caprino. Rev. Biol. Trop. 2006, 54, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, M.T.S.D.; Leal, M.F.C. Seasonal variability in the kinetics of Cu, Pb, Cd and Hg accumulation by macroalgae. Mar. Chem. 2001, 74, 65–85. [Google Scholar] [CrossRef]
- Kamyab, H.; Fadhil, M.; Lee, C.; Ponraj, M.; Soltani, M.; Eva, S. Micro-macro algal mixture as a promising agent for treating POME discharge and its potential use as animal feed stock enhancer. J. Teknol. 2014, 68, 1–4. [Google Scholar] [CrossRef]
- Priac, A.; Morin-Crini, N.; Druart, C.; Gavoille, S.; Bradu, C.; Lagarrigue, C.; Crini, G. Alkylphenol and alkylphenolpolyethoxylates in water and wastewater: A review of options for their elimination. Arab. J. Chem. 2017, 10, 3749–3773. [Google Scholar] [CrossRef]
- Ali, I.; Asim, M.; Khan, T.A. Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 2012, 113, 170–183. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Brillas, E. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol. 2017, 31, 1–35. [Google Scholar] [CrossRef]
- Wojtyła, S.; Baran, T. Insight on doped ZnS and Its activity towards photocatalytic removing of Cr(VI) from wastewater in the presence of organic pollutants. Mater. Chem. Phys. 2018, 212, 103–112. [Google Scholar] [CrossRef]
- Ali, I. The quest for active carbon adsorbent substitutes: Inexpensive adsorbents for toxic metal ions removal from wastewater. Sep. Purif. Rev. 2010, 39, 95–171. [Google Scholar] [CrossRef]
- Cao, Y.; Li, X. Adsorption of graphene for the removal of inorganic pollutants in water purification: A review. Adsorption 2014, 20, 713–727. [Google Scholar] [CrossRef]
- Rule, K.L.; Comber, S.D.W.; Ross, D.; Thornton, A.; Makropoulos, C.K.; Rautiu, R. Diffuse sources of heavy metals entering an urban wastewater catchment. Chemosphere 2006, 63, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Kamyab, H.; Din, M.F.M.; Keyvanfar, A.; Majid, M.Z.A.; Talaiekhozani, A.; Shafaghat, A.; Ismail, H.H. Efficiency of microalgae Chlamydomonas on the removal of pollutants from palm oil mill effluent (POME). Energy Procedia 2015, 75, 2400–2408. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, Y.; Huang, S.; Qiu, D.; Schideman, L.; Chai, X.; Zhao, Y. Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production. Bioresour. Technol. 2014, 156, 322–328. [Google Scholar] [CrossRef]
- Reis, C.E.R.; Loures, C.C.A.; de Castro, H.F.; Da Ros, P.C.M.; Santos, J.C.; Filho, H.J.I.; Silva, M.B. Microalgae assisted bioremediation of landfill leachate using a biocoil reactor: Evaluation of operational conditions using taguchi experimental design. Br. J. Environ. Clim. Chang. 2016, 6, 299–308. [Google Scholar] [CrossRef]
- Camargo, J.A.; Alonso, Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 2006, 32, 831–849. [Google Scholar] [CrossRef]
- Liu, D.; Keesing, J.K.; He, P.; Wang, Z.; Shi, Y.; Wang, Y. The world’s largest macroalgal bloom in the Yellow Sea, China: Formation and implications. Estuar. Coast. Shelf Sci. 2013, 129, 2–10. [Google Scholar] [CrossRef]
- Zhu, Z.-Y.; Zhang, J.; Wu, Y.; Zhang, Y.-Y.; Lin, J.; Liu, S.-M. Hypoxia off the Changjiang (Yangtze River) Estuary: Oxygen depletion and organic matter decomposition. Mar. Chem. 2011, 125, 108–116. [Google Scholar] [CrossRef]
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Park, H.; Na, D.; Lee, S.Y. Metabolic engineering of Escherichia coli for the production of phenol from glucose. Biotechnol. J. 2014, 9, 621–629. [Google Scholar] [CrossRef] [PubMed]
- McVey, J.P.; Stickney, R.R.; Yarish, C.; Chopin, T. Aquatic Polyculture Balanced Ecosystem Management: New Paradigms for Seafood Production. In Responsible Marine Aquaculture; Stickney, R.R., McVey, J.P., Eds.; CAB International: Oxon, UK, 2002; pp. 91–104. [Google Scholar]
- He, P.; Xu, S.; Zhang, H.; Wen, S.; Dai, Y.; Lin, S.; Yarish, C. Bioremediation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, Porphyra yezoensis, cultivated in the open sea. Water Res. 2008, 42, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; You, J.; Wu, H.; Yang, F.; Long, L.; Liu, Q.; Huo, Y.; He, P. Bioremediation using Gracilaria lemaneiformis to manage the nitrogen and phosphorous balance in an integrated multi-trophic aquaculture system in Yantian Bay, China. Mar. Pollut. Bull. 2017, 121, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Samocha, T.M.; Fricker, J.; Ali, A.M.; Shpigel, M.; Neori, A. Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an Integrated Multi-Trophic Aquaculture (IMTA) system. Aquaculture 2015, 446, 263–271. [Google Scholar] [CrossRef]
- Wu, H.; Huo, Y.; Han, F.; Liu, Y.; He, P. Bioremediation using Gracilaria chouae co-cultured with Sparus macrocephalus to manage the nitrogen and phosphorous balance in an IMTA system in Xiangshan Bay, China. Mar. Pollut. Bull. 2015, 91, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Sode, S.; Bruhn, A.; Balsby, T.J.S.; Larsen, M.M.; Gotfredsen, A.; Rasmussen, M.B. Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta). Bioresour. Technol. 2013, 146, 426–435. [Google Scholar] [CrossRef]
- Kim, J.K.; Duston, J.; Corey, P.; Garbary, D.J. Marine finfish effluent bioremediation: Effects of stocking density and temperature on nitrogen removal capacity of Chondrus crispus and Palmaria palmata (Rhodophyta). Aquaculture 2013, 210–216. [Google Scholar] [CrossRef]
- Abreu, M.H.; Pereira, R.; Yarish, C.; Buschmann, A.H.; Sousa-Pinto, I. IMTA with Gracilaria vermiculophylla: Productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 2011, 312, 77–87. [Google Scholar] [CrossRef]
- Marinho-Soriano, E.; Azevedo, C.A.A.; Trigueiro, T.G.; Pereira, D.C.; Carneiro, M.A.A.; Camara, M.R. Bioremediation of aquaculture wastewater using macroalgae and Artemia. Int. Biodeterior. Biodegrad. 2011, 65, 253–257. [Google Scholar] [CrossRef]
- Marinho-Soriano, E.; Nunes, S.O.; Carneiro, M.A.A.; Pereira, D.C. Nutrients’ removal from aquaculture wastewater using the macroalgae Gracilaria birdiae. Biomass Bioenergy 2009, 33, 327–331. [Google Scholar] [CrossRef]
- Marinho-Soriano, E.; Panucci, R.A.; Carneiro, M.A.A.; Pereira, D.C. Evaluation of Gracilaria caudata J. Agardh for bioremediation of nutrients from shrimp farming wastewater. Bioresour. Technol. 2009, 100, 6192–6198. [Google Scholar] [CrossRef]
- Rathod, M.; Mody, K.; Basha, S. Efficient removal of phosphate from aqueous solutions by red seaweed, Kappaphycus alverezii. J. Clean. Prod. 2014, 84, 484–493. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J. Removal of Pb2+, Ag+, Cs+ and Sr2+ from aqueous solution by brewery’s waste biomass. J. Hazard. Mater. 2008, 151, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Ugurlu, M.; Karaoglu, M.H. Adsorption of ammonium from an aqueous solution by fly ash and sepiolite: Isotherm, kinetic and thermodynamic analysis. Microporous Mesoporous Mater. 2011, 139, 173–178. [Google Scholar] [CrossRef]
- Kleinert, M.; Barth, T. Phenols from lignin. Chem. Eng. Technol. 2008, 31, 736–745. [Google Scholar] [CrossRef]
- Kim, J.K.; Kraemer, G.P.; Yarish, C. Field scale evaluation of seaweed aquaculture as a nutrient bioextraction strategy in Long Island Sound and The Bronx River Estuary. Aquaculture 2014, 433, 148–156. [Google Scholar] [CrossRef]
- Pilato, L. Phenolic Resins: A Century of Progress; Springer: New York, NY, USA, 2010; p. 413. [Google Scholar]
- Zhang, F.; Li, M.; Li, W.; Feng, C.; Jin, Y.; Guo, X.; Cui, J. Degradation of phenol by a combined independent photocatalytic and electrochemical process. Chem. Eng. J. 2011, 175, 349–355. [Google Scholar] [CrossRef]
- Zee, F.P.V.D.; Villaverde, S. Combined anaerobic-aerobic treatment of azo dyes—A short review of bioreactor studies. Water Res. 2005, 39, 1425–1440. [Google Scholar]
- Mahdizadeh, F.; Aber, S.; Dehghan, G. Removal of phenol from aqueous solution using the green macroalga Chara sp. Clean: Soil Air Water 2018, 46, 1800181. [Google Scholar] [CrossRef]
- Rubin, E.; Rodriguez, P.; Herrero, R.; de Vicente, M.E.S. Biosorption of phenolic compounds by the brown alga Sargassum muticum. J. Chem. Technol. Biotechnol. 2006, 81, 1093–1099. [Google Scholar] [CrossRef]
- Calace, N.; Nardi, E.; Petronio, B.M.; Pietroletti, M. Adsorption of phenols by papermill sludges. Env. Pollut. 2002, 118, 315–319. [Google Scholar] [CrossRef]
- Aksu, Z.; Yener, J. A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents. Waste Manag. 2001, 21, 695–702. [Google Scholar] [CrossRef]
- Antizar-Ladislao, B.; Galil, N.I. Biosorption of phenol and chlorophenols by acclimated residential biomass under bioremediation conditions in a sandy aquifer. Water Res. 2004, 38, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Berrios, M.; Martín, M.A.; Martín, A. Treatment of pollutants in wastewater: Adsorption of methylene blue onto olive-based activated carbon. J. Ind. Eng. Chem. 2012, 18, 780–784. [Google Scholar] [CrossRef]
- Islam, M.A.; Sabar, S.; Benhouria, A.; Khanday, W.A.; Asif, M.; Hameed, B.H. Nanoporous activated carbon prepared from karanj (Pongamia pinnata) fruit hulls for methylene blue adsorption. J. Taiwan Inst. Chem. Eng. 2017, 74, 96–104. [Google Scholar] [CrossRef]
- Spagnoli, A.A.; Giannakoudakis, D.A.; Bashkova, S. Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: The role of surface and structural parameters. J. Mol. Liq. 2017, 229, 465–471. [Google Scholar] [CrossRef]
- Pathania, D.; Sharma, S.; Singh, P. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab. J. Chem. 2017, 1445–1451. [Google Scholar] [CrossRef]
- Kushwaha, A.K.; Gupta, N.; Chattopadhyaya, M.C. Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of Daucus carota. J. Saudi Chem. Soc. 2014, 18, 200–207. [Google Scholar] [CrossRef]
- Bao, Y.; Zhang, G. Study of Adsorption characteristics of methylene blue onto activated carbon made by Salix psammophila. Energy Procedia 2012, 1141–1146. [Google Scholar] [CrossRef]
- Sartape, A.S.; Mandhare, A.M.; Jadhav, V.V.; Raut, P.D.; Anuse, M.A.; Kolekar, S.S. Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab. J. Chem. 2017, 3229–3238. [Google Scholar] [CrossRef]
- Guechi, E.-K.; Hamdaoui, O. Sorption of malachite green from aqueous solution by potato peel: Kinetics and equilibrium modeling using non-linear analysis method. Arab. J. Chem. 2016, 9, 416–424. [Google Scholar] [CrossRef]
- Mokhtar, N.; Aziz, E.A.; Aris, A.; Ishak, W.F.W.; Ali, N.S.M. Biosorption of azo-dye using marine macro-alga of Euchema spinosum. J. Environ. Chem. Eng. 2017, 5, 5721–5731. [Google Scholar] [CrossRef]
- Omar, H.; El-Gendy, A.; Al-Ahmary, K. Bioremoval of toxic dye by using different marine macroalgae. Turk. J. Bot. 2018, 42, 15–27. [Google Scholar] [CrossRef]
- Daneshvar, E.; Vazirzadeh, A.; Niazi, A.; Sillanpaa, M.; Bhatnagar, A. A comparative study of methylene blue biosorption using different modified brown, red and green macroalgae—Effect of pretreatment. Chem. Eng. J. 2017, 307, 435–446. [Google Scholar] [CrossRef]
- Esmaeli, A.; Jokar, M.; Kousha, M.; Daneshvar, E.; Zilouei, H.; Karimi, K. Acidic dye wastewater treatment onto a marine macroalga, Nizamuddina zanardini (Phylum: Ochrophyta). Chem. Eng. J. 2013, 217, 329–336. [Google Scholar] [CrossRef]
- Kousha, M.; Daneshvar, E.; Dopeikar, H.; Taghavi, D.; Bhatnagar, A. Box-Behnken design optimization of Acid Black 1 dye biosorption by different brown macroalgae. Chem. Eng. J. 2012, 179, 158–168. [Google Scholar] [CrossRef]
- Cengiz, S.; Cavas, L. Removal of methylene blue by invasive marine seaweed: Caulerpa racemosa var. cylindracea. Bioresour. Technol. 2008, 99, 2357–2363. [Google Scholar] [CrossRef]
- Marungrueng, K.; Pavasant, P. High performance biosorbent (Caulerpa lentillifera) for basic dye removal. Bioresour. Technol. 2007, 98, 1567–1572. [Google Scholar] [CrossRef]
- Rubin, E.; Rodriguez, P.; Herrero, R.; Cremades, J.; Barbara, I.; de Vicente, M.E.S. Removal of methylene blue from aqueous solutions using as biosorbent Sargassum muticum: An invasive macroalga in Europe. J. Chem. Technol. Biotechnol. 2005, 80, 291–298. [Google Scholar] [CrossRef]
- He, J.; Chen, J.P. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresour. Technol. 2014, 160, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Adamu, C.I.; Nganje, T.N.; Edet, A. Heavy metal contamination and health risk assessment associated with abandoned barite mines in Cross River State, southeastern Nigeria. Environmental Nanotechnology. Environ. Nanotechnol. Monit. Manag. 2015, 3, 10–21. [Google Scholar]
- Badruddoza, A.Z.M.; Shawon, Z.B.Z.; Daniel, T.W.J.; Hidajat, K.; Uddin, M.S. Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr. Polym. 2013, 91, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Al Raisi, S.A.H.; Sulaiman, H.; Suliman, F.E.; Abdallah, O. Assessment of heavy metals in leachate of an unlined landfill in the Sultanate of Oman. Int. J. Environ. Sci. Dev. 2014, 5, 60–63. [Google Scholar]
- Ozay, O.; Ekici, S.; Baran, Y.; Aktas, N.; Sahiner, N. Removal of toxic metal ions with magnetic hydrogels. Water Res. 2009, 43, 4403–4411. [Google Scholar] [CrossRef]
- Alloway, B.J. Sources of heavy metals and metalloids in soils. In Heavy Metals Soils; Springer: Dordrecht, The Netherlands, 2013; pp. 11–50. [Google Scholar]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Al-Mamun, M.H.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Gautam, R.K.; Sharma, S.K.; Mahiya, S.; Chattopadhyaya, M.C. Contamination of heavy metals in aquatic media: Transport, toxicity and technologies for remediation. In Heavy Metals in Water: Presence, Removal and Safety; Royal Society of Chemistry: London, UK, 2014. [Google Scholar]
- Bagchi, D.; Bagchi, M.; Stohs, S.J.; Das, D.K.; Ray, S.D.; Kuszynski, C.A.; Pruess, H.G. Free radicals and grape seed proanthocyanidin extract: Importance in human health and disease prevention. Toxicology 2000, 148, 187–197. [Google Scholar] [CrossRef]
- Cohen, S.M.; Arnold, L.L.; Beck, B.D.; Lewis, A.S.; Eldan, M. Evaluation of the carcinogenicity of inorganic arsenic. Crit. Rev. Toxicol. 2013, 43, 711–752. [Google Scholar] [CrossRef]
- Tsuji, J.S.; Perez, V.; Garry, M.R.; Alexander, D.D. Association of low-level arsenic exposure in drinking water with cardiovascular disease: A systematic review and risk assessment. Toxicology 2014, 323, 78–94. [Google Scholar] [CrossRef]
- Carotenuto, M.; Lofrano, G.; Sharma, S.K. Chapter 5: Arsenic contamination: An overview. In Heavy Metals in Water: Presence, Removal and Safety; Royal Society of Chemistry: London, UK, 2015; pp. 86–121. [Google Scholar]
- Gutterres, M.; Mella, B. Chapter 16: Chromium in tannery wastewater. In Heavy Metals in Water: Presence, Removal and Safety; Royal Society of Chemistry: London, UK, 2015; pp. 315–344. [Google Scholar]
- Sreekanth, T.V.M.; Nagajyothi, P.C.; Lee, K.D.; Prasad, T.N.V.K.V. Occurrence, physiological responses and toxicity of nickel in plants. Int. J. Environ. Sci. Technol. 2013, 10, 1129–1140. [Google Scholar] [CrossRef][Green Version]
- Magaye, R.R.; Yue, X.; Zou, B.; Shi, H.; Yu, H.; Liu, K.; Lin, X.; Xu, J.; Yang, C.; Wu, A.; et al. Acute toxicity of nickel nanoparticles in rats after intravenous injection. Int. J. Nanomed. 2014, 9, 1393–1402. [Google Scholar]
- Wang, J.; Pan, K.; Giannelis, E.P.; Cao, B. Polyacrylonitrile/polyaniline core/shell nanofiber mat for removal of hexavalent chromium from aqueous solution: Mechanism and applications. RSC Adv. 2013, 3, 8978–8987. [Google Scholar] [CrossRef]
- O’Brien, T.; Xu, J.; Patierno, S.R. Effects of glutathione on chromium-induced DNA crosslinking and DNA polymerase arrest. Mol. Cell. Biochem. 2001, 222, 173–182. [Google Scholar] [CrossRef]
- Patil, V.K.; David, M. Oxidative stress in freshwater fish, Labeo rohita as a biomarker of malathion exposure. Environ. Monit. Assess. 2013, 185, 10191–10199. [Google Scholar] [CrossRef] [PubMed]
- Rezania, S.; Taib, S.M.; Din, M.F.M.; Dahalan, F.A.; Kamyab, H. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. J. Hazard. Mater. 2016, 318, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Turan, N.G.; Mesci, B. Use of pistachio shells as an adsorbent for the removal of Zinc (II) ion. Clean Soil Air Water. 2011, 39, 475–481. [Google Scholar] [CrossRef]
- Jiménez-Cedillo, M.J.; Olguin, M.T.; Fall, C.; Colin-Cruz, A. As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley). J. Environ. Manag. 2013, 117, 242–252. [Google Scholar]
- Manzoor, Q.; Nadeem, R.; Iqbal, M.; Saeed, R.; Ansari, T.M. Organic Acids pretreatment effect on Rosa bourbonia phyto-biomass for removal of Pb(II) and Cu(II) from aqueous media. Bioresour. Technol. 2013, 132, 446–452. [Google Scholar] [CrossRef]
- Mahmood, Z.; Zahra, S.; Iqbal, M.; Raza, M.A.; Nasir, S. Comparative study of natural and modified biomass of Sargassum sp. for removal of Cd2+ and Zn2+ from wastewater. Appl. Water Sci. 2017, 7, 3469–3481. [Google Scholar] [CrossRef]
- Barquilha, C.E.R.; Cossich, E.S.; Tavares, C.R.G.; Silva, E.A. Biosorption of nickel (II) and copper (II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. J. Clean. Prod. 2017, 150, 58–64. [Google Scholar] [CrossRef]
- Filote, C.; Ungureanu, G.; Boaventura, R.; Santos, S.; Volf, I.; Botelho, C. Green macroalgae from the Romanian coast of Black Sea: Physico-chemical characterization and future perspectives on their use as metal anions biosorbents. Process Saf. Environ. Prot. 2017, 108, 34–43. [Google Scholar] [CrossRef]
- Cardoso, S.L.; Costa, C.S.D.; Nishikawa, E.; da Silva, M.G.C.; Vieira, M.G.A. Biosorption of toxic metals using the alginate extraction residue from the brown algae Sargassum filipendula as a natural ion-exchanger. J. Clean. Prod. 2017, 165, 491–499. [Google Scholar] [CrossRef]
- Selvam, S.B.; Chelliapan, S.; Din, M.F.M.; Shahperi, R.; Aris, M.A.M. Adsorption of heavy metals from matured leachate by Gracilaria sp. extract. Res. J. Pharm., Biol. Chem. Sci. 2016, 7, 15–20. [Google Scholar]
- Ghasemi, F.F.; Dobaradaran, S.; Keshtkar, M.; Mohammadi, M.J.; Ghaedi, H.; Soleimani, F. Biosorption of Mn (II) from aqueous solution by Sargassum hystrix Algae obtained from the Persian Gulf: Biosorption isotherm and kinetic. Int. J. Pharm. Technol. 2016, 8, 18227–18238. [Google Scholar]
- Verma, A.; Kumar, S.; Kumar, S. Biosorption of lead ions from the aqueous solution by Sargassum filipendula: Equilibrium and kinetic studies. J. Environ. Chem. Eng. 2016, 4, 4587–4599. [Google Scholar] [CrossRef]
- Ungureanu, G.; Santos, S.; Boaventura, R.; Botelho, C. Biosorption of antimony by brown algae S. muticum and A. nodosum. Environ. Eng. Manag. J. 2015, 14, 455–463. [Google Scholar]
- El Hassouni, H.; Abdellaoui, D.; El Hani, S.; Bengueddour, R. Biosorption of cadmium (II) and copper (II) from aqueous solution using red alga (Osmundea pinnatifida) biomass. J. Mater. Environ. Sci. 2014, 5, 967–974. [Google Scholar]
- Tabaraki, R.; Nateghi, A.; Ahmady-Asbchin, S. Biosorption of lead (II) ions on Sargassum ilicifolium: Application of response surface methodology. Int. Biodeterior. Biodegrad. 2014, 93, 145–152. [Google Scholar] [CrossRef]
- Yipmantin, A.; Maldonado, H.J.; Ly, M.; Taulemesse, J.M.; Guibal, E. Pb(II) and Cd(II) biosorption on Chondracanthus chamissoi (A red alga). J. Hazard. Mater. 2011, 185, 922–929. [Google Scholar] [CrossRef]
- Sari, A.; Tuzen, M. Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 2008, 157, 448–454. [Google Scholar] [CrossRef]
- Mazur, L.P.; Cechinel, M.A.P.; de Souza, S.M.A.G.U.; Boaventura, R.A.R.; Vilar, V.J.P. Brown marine macroalgae as natural cation exchangers for toxic metal removal from industrial wastewaters: A review. J. Environ. Manag. 2018, 223, 215–253. [Google Scholar] [CrossRef] [PubMed]
- Pozdniakova, T.A.; Mazur, L.P.; Boaventura, R.A.R.; Vilar, V.J.P. Brown macro-algae as natural cation exchangers for the treatment of zinc containing wastewaters generated in the galvanizing process. J. Clean. Prod. 2016, 119, 38–49. [Google Scholar] [CrossRef]
- Davis, T.A.; Volesky, B.; Mucci, A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003, 37, 4311–4330. [Google Scholar] [CrossRef]
- Cechinel, M.A.P.; Mayer, D.A.; Pozdniakova, T.A.; Mazur, L.P.; Boaventura, R.A.R.; de Souza, A.A.U.; de Souza, S.M.A.G.; Vilar, V.J.P. Removal of metal ions from a petrochemical wastewater using brown macro-algae as natural cation-exchangers. Chem. Eng. J. 2016, 286, 1–15. [Google Scholar] [CrossRef]
- Neveux, N.; Bolton, J.J.; Bruhn, A.; Roberts, D.A.; Ras, M. The bioremediation potential of seaweeds: Recycling nitrogen, phosphorus, and other waste products. In Blue Biotechnology: Production and Use of Marine Molecules; Barre, S.L., Bates, S.S., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 217–241. [Google Scholar]
Industrial Applications | Seaweed | Type | References |
---|---|---|---|
| Saccharina japonica | Brown seaweed | [12] |
| Gracilaria salicornia | Red seaweed | [13] |
| Saccharina latissima | Brown seaweed | [14] |
| L. digitata and S. latissima | Brown seaweed | [15] |
| Ulva ohnoi | Green seaweed | [16,17] |
| -Not provided- | -Not provided- | [18,19] |
| Laminaria hyperborea | Brown seaweed | [8] |
| Gracilaria gracilis | Red seaweed | [20] |
| -Not provided- | -Not provided- | [21] |
| -Not provided- | Red seaweed | [21] |
| Gracilaria spp. | Red seaweed | [22] |
| -Not provided- | -Not provided- | [17] |
| Gelidium robustum | Red seaweed | [11] |
Domestic Applications | Seaweed | Type | References |
---|---|---|---|
| Kappaphycus alvarezii | Red seaweed | [23] |
| Gracilaria fisheri | Red seaweed | [24] |
| -Not provided- | Red seaweed | [25] |
| C. crispus and Mastocarpus stellatus | Red seaweed | [25] |
| [25] | ||
| [25] | ||
| Eisenia bicyclis | Brown seaweed | [26] |
| Sargassum sp. | Brown seaweed | [27] |
Seaweed | Type | Type of Wastewater | Studied Parameters | Treatment Conditions | Pollutants | Treatment Performance | References |
---|---|---|---|---|---|---|---|
Gracilaria lemaneiformis | Red seaweed | Aquaculture water (Bay water) | t = 1–35 d | Co-culture with the fish Pseudosciaena crocea Cage aquaculture Seawater with salinity of 26–29 (24–27 during low tide) Surface water T = 18.4–26.0 °C Surface water pH = 7.43–7.83 t = 20 d | Nitrogen and Phosphate | N = 21.0% P = 28.6% | [47] |
Gracilaria tikvahiae | Red seaweed | Shrimp wastewater | t = 7–18 d | Co-cultured with Pacific white shrimp Litopenaues vannamei Salinity 30.4–34.8g/kg T = 18–33 °C pH = 7.4–7.9 t = 18 d | Nitrogen | N = 35% (Recovery in seaweed) | [48] |
Gracilaria chouae | Red seaweed | Aquaculture water (Bay water) | t = 1–47 d | Co-cultured with the black sea bream Sparus macrocephalus Salinity of 28.33–31.07 T = 16.61–22.68 °C pH = 8.16–8.2 t = 28 d | Nitrogen and Phosphate | N = 41.2% (NO3–N = 37.76%, NO2–N = 36.99%, NH4–N = 29.27%) P = 46.2% (PO4–P = 40.64%) | [49] |
Ulva lactuca | Green seaweed | Reject water from anaerobically digested sewage sludge | t = 1–18 d | Salinity of 20% from artificial seawater T = 15 °C pH = 7.9–8.9 t = 18 d | Nitrogen and Phosphorus | N = 22.7 mg N g DW−1 d−1 P = 2.7 mg P g DW−1 d−1 | [50] |
Chondrus crispus | Red seaweed | Finfish culture effluent | T = 6 and 13 °C | Land-based Atlantic halibut farm t = 28 d each trial | Nitrogen | Net N = 2.0 kgm−2 (at T = 6 and 13 °C) | [51] |
Palmaria palmata | T = 6 and 16 °C | Net N = 2.0 kgm−2 (at T = 6 °C) Net N = 4.0 kgm−2 (at T = 16 °C) | |||||
Gracilaria vermiculophylla | Red seaweed | Aquaculture effluents | t = 1 month each trial | Land-based pilot scale system Salinity of 30 ppm Mean T oscillates between 10.96 ± 0.19 °C and 20.17 ± 0.03 °C pH = 7.2–8.9 t = 1 month | Nitrogen | N = 40.54 ± 2.02 gm−2 month−1 | [52] |
Gracilaria caudata | Red seaweed | Aquaculture effluents | t = 72 h | Co-cultured with microcrustacean Artemia franciscana T = 28 °C Salinity = 35 PSU t = 72 h | Nitrogen and Phosphorus | NO2 = 100% NO3 = 72.4% DIN = 44.5% PO4 shows significant increase | [53] |
Gracilaria birdiae | Red seaweed | Shrimp wastewater | t = 4 weeks | Salinity of 30.1–30.7 PSU T = 27.2–29.4 °C pH = 7.9–8.1 t = 4 weeks | Phosphate (PO43−) and Nitrate (NO3−) | PO43− = 93.5% NO3− = 100% | [54] |
Gracilaria caudata J. Agardh | Red seaweed | Shrimp wastewater | t = 75 d | Co-cultured with in-situ shrimp pond Salinity of 33 PSU Mean T = 29 °C pH = 8.07–8.26 t = 4 h | Nitrogen and Phosphorus | NO3–N = 49.6% PO4–P = 12.3% | [55] |
Seaweed | Type | Type of Wastewater | Studied Parameters | Treatment Conditions | Type of Dyes | Treatment Performance | References |
---|---|---|---|---|---|---|---|
Ulva lactuca | Green seaweed | Aqueous solution | T, pH, and t | T = 25 °C pH = 8.0 t = 150 min Biomass = 2.0 g Biomass size = 1.0 mm | Malachite Green | 94.5% (T = 25 °C) 93.8% (pH = 8.0) 97% (t = 150 min) | [78] |
Sargassum crassifolium | Brown seaweed | 95.7 (T = 25 °C) 95.6% (pH = 8.0) 98% (t = 150 min) | |||||
Gracilaria corticata | Red seaweed | 93.3% (T = 25 °C) 92.5% (pH = 8.0) 96% (t = 150 min) | |||||
Nizamuddinia zanardinii | Brown seaweed | Pure textile methylene blue solution | Dye concentration (10–240 mg/L) | pH = 6.5 dye concentration = 160 mg/L) | Methylene blue | 565.96 mg/g (Nizamuddinia zanardinii) 77.18 mg/g (Gracilaria parvispora) | [79] |
Gracilaria parvispora | Red seaweed | ||||||
Nizamuddina zanardini | Brown seaweed | Aqueous solution | pH, biomass (1–9 g/L), salinity (0.1–40 g/L NaCl), dye concentration (10–50 mg/L) | pH = 2.0 Biomass = 1 g/L Salinity = 40 g//L NaCl t = 90 min | Acid Black 1 (AB1) | 58.05% (pH = 2.0) 92.1% (Biomass = 4 g/L) 72.24% (Salinity 40g/L NaCl) 23.37 mg/g maximum biosorption capacity (Dye = 50 mg/L, Biomass = 1 g/L, pH = 2) | [80] |
Nizamuddin zanardini | Brown seaweed | Aqueous solution | Dye concentration (10, 30, and 50 mg/L), biomass (1, 3, and 5 g/L), pH (2, 4, and 6) | t = 90 min rpm = 130 T = 27 °C pH = 2.0 Biomass size = 160–250 µm | Acid Black 1 (AB1) dye (Amino acid staining diazo dye) | 35.59% (Biomass = 5 g/L, dye = 10 mg/L) 99.27% (Biomass = 5 g/L, pH = 2) | [81] |
Sargassum glaucescens | 98.12% (Biomass = 5 g/L, pH = 2) | ||||||
Caulerpa racemosa var. cylindracea | Green seaweed | Aqueous solution | Dye concentration (5–100 mg/L), pH (3 and 11), biomass (0.1 and 2 g) | t = 90 min (Equilibrium) T = 18 °C pH = 7 | Methylene blue | 98% (Dye = 50 mg/L, Biomass = 2 g) 95% (Dye = 50 mg/L, T = 27 °C, pH = 11) | [82] |
Caulerpa lentillifera | Green seaweed | Aqueous solution | Biomass (0.5–2 g) | Particle size ≤ 20 µm T = 25 °C t = 1 h rpm = 130 pH = 7 ± 0.5 | Astrazon® Blue FGRL (AB), Astrazon® Red GTLN (AR), and Methylene blue | Methylene Blue = 417 mg/g (Biomass = 0.5 g) | [83] |
Sargassum muticum | Brown seaweed | Aqueous solution | pH (1–10), dye concentration (50–500 mg/dm3), t | Adsorbent size = 0.5–1 mm Biomass = 0.125 g rpm = 175 T = 25 °C t = 4 h pH = 4 Dye concentration = 50 mg/dm3 | Methylene blue | 97.4% (Treated with CaCl2) 98.2% (Treated with HCl) 98.0% (Treated with H2CO) | [84] |
Seaweed | Type | Type of Wastewater | Studied Parameters | Treatment Conditions | Heavy Metals | Treatment Performance | References |
---|---|---|---|---|---|---|---|
Sargassum sp. | Brown seaweed | Synthetic wastewater | Biomass t pH rpm Ions concentration | t = 60 min T = 25 °C Biomass size = 200 mesh Cd2+ Biomass = 0.5 g pH = 4 rpm = 150 Ions concentration = 5 mg/L Zn2+ Biomass = 1 g pH = 3 rpm = 200 Ions concentration = 5 mg/L | Cd2+ and Zn2+ | Cd2+ = 95.3% (acid treated) Zn2+ = 90.3% (acid treated) | [107] |
Sargassum sp. | Brown seaweed | Simulated wastewater | Ions concentration = 0–7 mmol/L) | Adsorbent size = 2.2 mm Adsorbent = 0.1 g T = 30 °C rpm = 150 pH = 5 t = 4 h (Ni2+) and 6 h (Cu2+) | Ni2+ and Cu2+ | Cu2+ = 2.06 mmol/g Ni2+ = 1.69 mmol/g | [108] |
Ulva rigida | Green seaweed | Simulated wastewater | With raw and chemically treated seaweeds pH = 2–7 | T = 20 °C Ion concentration = 25 mg/L Adsorbent = 0.5 g Adsorbent size = 0.5 cm t = 5 h rpm = 180 | As3+, As5+, Sb3+, Se4+ and Se6+ | Se4+ = 0.5 mg/g (pH = 2–4) Se6+ = 0.2 mg/g (pH = 2–3) In raw forms, showed limited perspectives for arsenic removal but can be promising for selenium and especially antimony | [109] |
Sargassum filipendula | Brown seaweed | Simulated wastewater | t = 720 min | Adsorbent size = 0.737 mm Adsorbent = 2 mg/L T = 25 °C rpm = 180 t = 24 h Ion concentration = 1 mmol/L pH = 3.5 | Ag+, Cd2+, Cr3+, Cu2+, Ni2+, Pb2+ and Zn2+ | Ag+ = 33.62% Cd2+ = 78.03% Cr3+ = 72.8% Cu2+ = 69.05% Ni2+ = 32.74% Pb2+ = 56.19% Zn2+ = 44.21% | [110] |
Gracilaria sp. | Red seaweed | Landfill leachate | Gel/Adsorbent concentration = 10, 20, 50, and 100 mg/L t = 10 d | pH = 8 | As, Fe, Ni, and Cd | Fe = 100% (t = 1, Ion = 10 mg/L) Cd = 100% (t = 5 d, Ion = 100 mg/L) As = 100% (t = 5 d, Ion = 50 mg/L) Ni = 98% (t = 10 d, Ion = 50 mg/L) | [111] |
Sargassum hystrix | Brown seaweed | Simulated wastewater | Adsorbent = 0.5–10 g/L t = 3–120 min Ion concentration = 0.5–100 mg/L | Ion concentration = 10 mg/L Adsorbent = 10 g/L t = 120 min | Mn2+ | 85.6% | [112] |
Sargassum filipendula | Brown seaweed | Simulated wastewater | T pH Adsorbent Ion Concentration | T = 34.8 °C pH = 4.99 Ion concentration = 152.10 mg/L Adsorbent = 0.49 g/L | Pb2+ | 96% | [113] |
Sargassum muticum | Brown seaweed | Simulated wastewater | pH = 2, 3, 4, and 5 With raw and protonated seaweed | Adsorbent size = 5 mm Ion concentration = 10 mg/L Adsorbent = 100 mg rpm = 200 T = 23 °C t = 6 h | Sb3+ | 3.5 mg/g (pH = 5, protonated Sargassum muticum) 3.4 mg/g (pH = 4, raw Sargassum muticum) Sargassum muticum shows significant removal efficiency than Aschophyllum nodosum. | [114] |
Aschophyllum nodosum | Brown seaweed | Simulated wastewater | |||||
Osmundea pinnatifida | Red seaweed | Simulated wastewater | pH = 2–9 t = 0–3 h Biomass = 5–80 g/L Ion concentration = 50–400 mg/L | pH = 5 t = 60 min Biomass = 1 g Biomass size = 0.5 mm Ion concentration T = 25 °C rpm = 500 | Cu2+ and Cd2+ | Cd2+ = 57.29% (pH = 5, biomass = 20 g/L, ion concentration = 100 mg/L, t = 180 min) Cu2+ = 50.89% (pH = 5, biomass = 20 g/L, ion concentration = 100 mg/L, t = 180 min) Cd2+ = 62.9% (pH = 5, biomass = 20 g/L, ion concentration = 100 mg/L, t = 60 min) Cu2+ = 69.15% (pH = 5, biomass = 20 g/L, ion concentration = 100 mg/L, t = 60 min) Cd2+ = 75.36% (pH = 5, biomass = 20 g/L, ion concentration = 100 mg/L, t = 60 min) Cu2+ = 70.22% (pH = 5, biomass = 20 g/L, ion concentration = 100 mg/L, t = 60 min) Cd2+ = 75.84% (pH = 5, biomass = 20 g/L, ion concentration = 50 mg/L, t = 60 min) Cu2+ = 71.64% (pH = 5, biomass = 20 g/L, ion concentration = 50 mg/L, t = 60 min) | [115] |
Sargassum ilicifolium | Brown seaweed | Simulated wastewater | pH = 3–5 Ion concentration = 20–200 mg/L Adsorbent = 0.2–0.8 g/L T = 20, 25, and 30 °C | pH = 3.7 Adsorbent = 0.2 g/L Ion concentration = 200 mg/L T = 25 °C t = 2 h | Pb2+ | 195 ± 3.3 mg/g | [116] |
Chondracanthus chamissoi | Red seaweed | Aqueous solution | pH = 2–5.5 for Pb(II), 2–7 for Cd(II) | pH = 4 Adsorbent = 20 mg Ion concentration = 70 mg/L t = 48 h | Pb(II) and Cd(II) | Pb(II) = 1.37 mmol/g Cd(II) = 0.76 mmol/g | [117] |
Ceramium virgatum | Red seaweed | Simulated wastewater | pH = 2–8 t = 0–120 min Biomass = 1–40 g/L T = 20, 30, 40, and 50 °C | Biomass size = 0.5 mm Biomass = 10 g/L rpm = 100 pH = 5 t = 60 min T = 20 °C | Cd2+ | 96% (pH = 5, Ion concentration = 10 mg/L, T = 20 °C) 97% (pH = 5, Ion concentration = 10 mg/L, T = 20 °C, biomass = 10 g/L, t = 60 min) | [118] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arumugam, N.; Chelliapan, S.; Kamyab, H.; Thirugnana, S.; Othman, N.; Nasri, N.S. Treatment of Wastewater Using Seaweed: A Review. Int. J. Environ. Res. Public Health 2018, 15, 2851. https://doi.org/10.3390/ijerph15122851
Arumugam N, Chelliapan S, Kamyab H, Thirugnana S, Othman N, Nasri NS. Treatment of Wastewater Using Seaweed: A Review. International Journal of Environmental Research and Public Health. 2018; 15(12):2851. https://doi.org/10.3390/ijerph15122851
Chicago/Turabian StyleArumugam, Nithiya, Shreeshivadasan Chelliapan, Hesam Kamyab, Sathiabama Thirugnana, Norazli Othman, and Noor Shawal Nasri. 2018. "Treatment of Wastewater Using Seaweed: A Review" International Journal of Environmental Research and Public Health 15, no. 12: 2851. https://doi.org/10.3390/ijerph15122851