Effects of a Dynamic Chair on Chair Seat Motion and Trunk Muscle Activity during Office Tasks and Task Transitions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Setup and Study Design
2.3. Tasks and Task Transitions
2.4. Kinematics
2.5. Electromyography
2.6. Statistics
3. Results
3.1. Chair and Trunk Motion
3.2. Muscle Activation
3.2.1. Tasks
3.2.2. Task transitions
4. Discussion
4.1. Chair Center
4.2. Muscle Activation
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blair, S.N. Physical inactivity: The biggest public health problem of the 21st century. Br. J. Sports Med. 2009, 43, 1–2. [Google Scholar] [PubMed]
- Ng, S.W.; Popkin, B.M. Time use and physical activity: A shift away from movement across the globe. Obes. Rev. 2012, 13, 659–680. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.T.; Hamilton, D.G.; Zderic, T.W. Role of Low Energy Expenditure and Sitting in Obesity, Metabolic Syndrome, Type 2 Diabetes, and Cardiovascular Disease. Diabetes 2007, 56, 2655–2667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faude, O.; Donath, L.; Bopp, M.; Hofmann, S.; Erlacher, D.; Zahner, L. Neuromuscular training in construction workers: A longitudinal controlled pilot study. Int. Arch. Occup. Environ. Health 2015, 88, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Joubert, L.; Kilgas, M.; Riley, A.; Gautam, Y.; Donath, L.; Drum, S. In-Class Cycling to Augment College Student Academic Performance and Reduce Physical Inactivity: Results from an RCT. Int. J. Environ. Res. Public Health 2017, 14, 1343. [Google Scholar] [CrossRef] [PubMed]
- Wick, K.; Faude, O.; Manes, S.; Zahner, L.; Donath, L. I Can Stand Learning: A Controlled Pilot Intervention Study on the Effects of Increased Standing Time on Cognitive Function in Primary School Children. Int. J. Environ. Res. Public Health 2018, 15, 356. [Google Scholar] [CrossRef] [PubMed]
- Van Dieen, J.; De Looze, M.; Hermans, V. Effects of dynamic office chairs on trunk kinematics, trunk extensor EMG and spinal shrinkage. Ergonomics 2001, 44, 739–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, D.E.; Dunk, N.M.; Callaghan, J.P. Stability ball versus office chair: Comparison of muscle activation and lumbar spine posture during prolonged sitting. Hum. Factors 2006, 48, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Ellegast, R.P.; Kraft, K.; Groenesteijn, L.; Krause, F.; Berger, H.; Vink, P. Comparison of four specific dynamic office chairs with a conventional office chair: Impact upon muscle activation, physical activity and posture. Appl. Ergon. 2012, 43, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Van Eerd, D.; Hogg-Johnson, S.; Mazumder, A.; Cole, D.; Wells, R.; Moore, A. Task exposures in an office environment: A comparison of methods. Ergonomics 2009, 52, 1248–1258. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- O’Sullivan, K.; McCarthy, R.; White, A.; O’Sullivan, L.; Dankaerts, W. Lumbar posture and trunk muscle activation during a typing task when sitting on a novel dynamic ergonomic chair. Ergonomics 2012, 55, 1586–1595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willigenburg, N.W.; Daffertshofer, A.; Kingma, I.; van Dieën, J.H. Removing ECG contamination from EMG recordings: A comparison of ICA-based and other filtering procedures. J. Electromyogr. Kinesiol. 2012, 22, 485–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155. [Google Scholar] [CrossRef] [PubMed]
- Batterham, A.M.; Hopkins, W.G. Making meaningful inferences about magnitudes. Int. J. Sports Physiol. Perform. 2006, 1, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sport. Exerc. 2009, 41, 3. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. A Spreadsheet for Deriving a Confidence Interval, Mechanistic Inference and Clinical Inference from a p Value. Sportscience 2007, 11, 16–20. [Google Scholar]
- Grooten, W.J.A.; Äng, B.O.; Hagströmer, M.; Conradsson, D.; Nero, H.; Franzén, E. Does a dynamic chair increase office workers’ movements?—Results from a combined laboratory and field study. Appl. Ergon. 2017, 60, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, H.M.; Spoor, C.W.; de Jong, A.M.; Goossens, R.H.M. Stability of sitting postures: The influence of degrees of freedom. Ergonomics 2006, 49, 1611–1626. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, K.; O’Sullivan, P.; O’Keeffe, M.; O’Sullivan, L.; Dankaerts, W. The effect of dynamic sitting on trunk muscle activation: A systematic review. Appl. Ergon. 2013, 44, 628–635. [Google Scholar] [CrossRef] [PubMed]
Length of Path of Chair Center (cm) | Dynamic Chair Mean (SD) | Static Chair Mean (SD) | p-Value | Effect Size | MBI |
---|---|---|---|---|---|
Tasks | |||||
Reading | 1.2 (1.7) | 0.6 (0.8) | 0.111 | 0.444 | likely |
Calling | 6.0 (5.6) | 3.8 (4.4) | 0.003 | 0.446 | most likely |
Typing | 1.2 (1.4) | 0.7 (0.7) | 0.111 | 0.401 | likely |
Hand writing | 0.9 (1.0) | 0.6 (0.6) | 0.096 | 0.349 | likely |
Task transitions | |||||
Reading-calling | 6.9 (5.4) | 3.6 (2.6) | 0.025 | 0.767 | most likely |
Reading-typing | 4.5 (5.1) | 1.7 (1.4) | 0.016 | 0.745 | most likely |
Reading-hand writing | 9.4 (5.8) | 4.1 (3.1) | <0.001 | 1.150 | most likely |
Calling-typing | 8.6 (6.0) | 4.3 (3.6) | 0.004 | 0.875 | most likely |
Calling-hand writing | 4.5 (4.2) | 2.0 (1.4) | 0.012 | 0.800 | likely |
Typing-hand writing | 7.2 (5.6) | 3.8 (2.8) | 0.047 | 0.766 | most likely |
Mean Intensity of Muscle (mV) | Dynamic Chair Mean (SD) | Static Chair Mean (SD) | p-Value | Effect Size | MBI |
---|---|---|---|---|---|
Reading | |||||
Rectus abdominis right | 14.4 (4.4) | 14.2 (5.0) | 0.824 | 0.044 | trivial |
Obliquus internus right | 14.1 (4.6) | 13.9 (4.8) | 0.598 | 0.052 | trivial |
Erector spinae right | 14.2 (5.0) | 14.1 (5.6) | 0.951 | 0.005 | trivial |
Rectus abdominis left | 13.8 (4.1) | 13.7 (4.5) | 0.919 | 0.010 | trivial |
Obliquus internus left | 14.1 (4.4) | 14.4 (4.6) | 0.613 | −0.058 | trivial |
Erector spinae left | 13.9 (5.0) | 14.2 (5.7) | 0.501 | −0.054 | trivial |
Calling | |||||
Rectus abdominis right | 14.6 (5.0) | 14.1 (4.8) | 0.677 | 0.101 | trivial |
Obliquus internus right | 14.6 (4.6) | 14.7 (5.0) | 0.858 | −0.014 | trivial |
Erector spinae right | 13.8 (4.7) | 14.3 (5.3) | 0.292 | −0.105 | trivial |
Rectus abdominis left | 13.5 (4.7) | 14.0 (5.1) | 0.243 | −0.101 | trivial |
Obliquus internus left | 15.5 (4.6) | 15.2 (4.6) | 0.483 | 0.073 | trivial |
Erector spinae left | 14.3 (6.2) | 15.1 (7.2) | 0.380 | −0.124 | trivial |
Typing | |||||
Rectus abdominis right | 14.1 (4.0) | 14.0 (4.9) | 0.863 | 0.021 | trivial |
Obliquus internus right | 14.3 (4.5) | 14.5 (4.8) | 0.648 | −0.036 | trivial |
Erector spinae right | 15.3 (6.3) | 15.7 (6.2) | 0.699 | −0.058 | trivial |
Rectus abdominis left | 14.0 (4.6) | 13.8 (4.8) | 0.716 | 0.042 | trivial |
Obliquus internus left | 14.4 (4.4) | 14.6 (4.4) | 0.655 | −0.041 | trivial |
Erector spinae left | 15.3 (7.0) | 15.0 (6.7) | 0.689 | 0.042 | trivial |
Hand writing | |||||
Rectus abdominis right | 13.9 (4.1) | 14.2 (4.9) | 0.421 | −0.078 | trivial |
Obliquus internus right | 14.3 (4.3) | 14.8 (4.7) | 0.131 | −0.111 | trivial |
Erector spinae right | 14.3 (5.0) | 14.8 (5.5) | 0.193 | −0.105 | trivial |
Rectus abdominis left | 15.3 (8.7) | 14.6 (4.8) | 0.567 | 0.097 | trivial |
Obliquus internus left | 14.7 (4.2) | 15.4 (4.1) | 0.066 | −0.188 | possibly |
Erector spinae left | 15.7 (7.4) | 16.0 (7.5) | 0.603 | −0.042 | trivial |
Mean Intensity of Muscle (mV) | Dynamic Chair Mean (SD) | Static Chair Mean (SD) | p-Value | Effect Size | MBI |
---|---|---|---|---|---|
Reading to calling | |||||
Rectus abdominis right | 13.7 (4.5) | 13.0 (5.3) | 0.530 | 0.136 | trivial |
Obliquus internus right | 13.7 (4.9) | 13.6 (5.4) | 0.844 | 0.020 | trivial |
Erector spinae right | 16.3 (5.5) | 15.5 (5.9) | 0.336 | 0.132 | trivial |
Rectus abdominis left | 13.5 (5.0) | 13.8 (6.0) | 0.609 | −0.055 | trivial |
Obliquus internus left | 14.7 (4.6) | 13.8 (5.3) | 0.224 | 0.179 | trivial |
Erector spinae left | 17.0 (6.5) | 15.0 (5.8) | 0.067 | 0.332 | likely |
Reading to typing | |||||
Rectus abdominis right | 13.5 (4.7) | 14.0 (5.0) | 0.374 | −0.095 | trivial |
Obliquus internus right | 14.1 (4.8) | 14.5 (5.1) | 0.383 | −0.078 | trivial |
Erector spinae right | 14.6 (5.4) | 15.3 (5.9) | 0.251 | −0.117 | unclear |
Rectus abdominis left | 13.0 (4.5) | 14.0 (4.9) | 0.130 | −0.199 | possibly |
Obliquus internus left | 14.5 (4.1) | 14.7 (5.0) | 0.658 | −0.054 | trivial |
Erector spinae left | 14.4 (6.2) | 15.1 (5.5) | 0.317 | −0.111 | trivial |
Reading to hand writing | |||||
Rectus abdominis right | 15.4 (1.9) | 15.9 (4.5) | 0.591 | −0.143 | trivial |
Obliquus internus right | 15.7 (3.0) | 16.1 (3.7) | 0.417 | −0.120 | trivial |
Erector spinae right | 17.9 (5.0) | 18.9 (4.4) | 0.139 | −0.220 | possibly |
Rectus abdominis left | 16.0 (6.1) | 15.5 (4.1) | 0.842 | 0.090 | trivial |
Obliquus internus left | 16.3 (2.7) | 16.6 (3.1) | 0.468 | −0.098 | trivial |
Erector spinae left | 17.7 (5.9) | 18.5 (4.9) | 0.361 | −0.162 | trivial |
Calling to typing | |||||
Rectus abdominis right | 16.3 (3.6) | 15.4 (4.0) | 0.554 | 0.247 | trivial |
Obliquus internus right | 15.5 (3.1) | 15.9 (3.8) | 0.461 | −0.106 | trivial |
Erector spinae right | 18.4 (6.3) | 18.0 (4.6) | 0.571 | 0.081 | trivial |
Rectus abdominis left | 15.4 (5.6) | 14.8 (4.1) | 0.677 | 0.132 | trivial |
Obliquus internus left | 15.9 (2.5) | 16.1 (3.4) | 0.810 | −0.041 | trivial |
Erector spinae left | 19.4 (7.8) | 18.9 (5.8) | 0.620 | 0.073 | trivial |
Calling to hand writing | |||||
Rectus abdominis right | 13.6 (4.3) | 15.2 (6.6) | 0.121 | −0.281 | possibly |
Obliquus internus right | 14.5 (4.4) | 14.8 (4.8) | 0.217 | −0.078 | unclear |
Erector spinae right | 14.4 (5.6) | 15.5 (5.8) | 0.036 | −0.192 | likely |
Rectus abdominis left | 13.6 (4.2) | 14.1 (4.4) | 0.227 | −0.120 | unclear |
Obliquus internus left | 15.0 (4.0) | 15.6 (4.6) | 0.150 | −0.124 | possibly |
Erector spinae left | 16.1 (5.7) | 15.8 (6.3) | 0.642 | 0.053 | trivial |
Typing to hand writing | |||||
Rectus abdominis right | 13.4 (4.6) | 13.4 (5.5) | 0.978 | −0.004 | trivial |
Obliquus internus right | 13.7 (5.0) | 14.3 (5.5) | 0.247 | −0.118 | unclear |
Erector spinae right | 16.3 (5.8) | 17.6 (6.3) | 0.116 | −0.207 | possibly |
Rectus abdominis left | 13.1 (5.2) | 14.2 (5.8) | 0.213 | −0.192 | unclear |
Obliquus internus left | 14.3 (4.7) | 14.7 (4.8) | 0.431 | −0.088 | trivial |
Erector spinae left | 16.2 (6.1) | 16.6 (6.1) | 0.550 | −0.073 | trivial |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nüesch, C.; Kreppke, J.-N.; Mündermann, A.; Donath, L. Effects of a Dynamic Chair on Chair Seat Motion and Trunk Muscle Activity during Office Tasks and Task Transitions. Int. J. Environ. Res. Public Health 2018, 15, 2723. https://doi.org/10.3390/ijerph15122723
Nüesch C, Kreppke J-N, Mündermann A, Donath L. Effects of a Dynamic Chair on Chair Seat Motion and Trunk Muscle Activity during Office Tasks and Task Transitions. International Journal of Environmental Research and Public Health. 2018; 15(12):2723. https://doi.org/10.3390/ijerph15122723
Chicago/Turabian StyleNüesch, Corina, Jan-Niklas Kreppke, Annegret Mündermann, and Lars Donath. 2018. "Effects of a Dynamic Chair on Chair Seat Motion and Trunk Muscle Activity during Office Tasks and Task Transitions" International Journal of Environmental Research and Public Health 15, no. 12: 2723. https://doi.org/10.3390/ijerph15122723