Spatio-Temporal Differences in Nitrogen Reduction Rates under Biotic and Abiotic Processes in River Water of the Taihu Basin, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Set-Up and Analyses
2.3. Statistical Analyses
3. Results
3.1. Reduce Processes of Different N Forms
3.2. Spatial and Seasonal Differences in N Reduction Rates
3.3. Microbial and Non-Microbial DIN Reduction Rates
3.4. Factors Controlling Reduction Rates
4. Discussion
4.1. Reduce Processes
4.2. Analysis of Spatio-Temporal Differences
4.3. DIN Reduce Processes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vitousek, P.M.; Aber, J.D.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D.G. Technical report: Human alteration of the global Nitrogen cycle: Sources and consequences. Ecol. Appl. 1997, 7, 737–750. [Google Scholar] [CrossRef]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A. Nitrogen Cycles: Past, Present, and Future; Royal Horticultural Society: London, UK, 2004; pp. 153–226. [Google Scholar]
- Mulholland, P.J.; Helton, A.M.; Poole, G.C.; Hall, R.O.; Hamilton, S.K.; Peterson, B.J.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, C.N. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 2008, 452, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Novotny, V.; Wang, X.; Englande, A.J.; Bedoya, D.; Promakasikorn, L.; Tirado, R. Comparative assessment of pollution by the use of industrial agricultural fertilizers in four rapidly developing Asian countries. Environ. Dev. Sustain. 2010, 12, 491–509. [Google Scholar] [CrossRef]
- Seitzinger, S.P.; Styles, R.V.; Boyer, E.W.; Alexander, R.B.; Billen, G.; Howarth, R.W.; Mayer, B.; Breemen, N.V. Nitrogen retention in rivers: Model development and application to watersheds in the northeastern U.S.A. Biogeochemistry 2002, 57–58, 199–237. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Sinha, S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—A case study. Anal. Chim. Acta 2005, 538, 355–374. [Google Scholar] [CrossRef]
- Yang, S.Q.; Liu, P.W. Strategy of water pollution prevention in Taihu Lake and its effects analysis. J. Great Lakes Res. 2010, 36, 150–158. [Google Scholar] [CrossRef]
- Qin, B.; Xu, P.; Wu, Q.; Luo, L.; Zhang, Y. Environmental issues of Lake Taihu, China. Hydrobiologia 2007, 581, 3–14. [Google Scholar] [CrossRef]
- Yang, L.R.; Chen, L.D. River ecosystems and their self-purification capability: Research status and challenges. Acta Ecol. Sin. 2009, 29, 5066–5075. [Google Scholar]
- Seitzinger, S.P. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnol. Oceanogr. 1988, 33, 702–724. [Google Scholar] [CrossRef]
- Zhang, B.; Du, Y.; Chen, Y.; Zhang, L.; Zhang, B.; Du, Y.; Chen, Y.; Zhang, L.; Zhang, B.; Du, Y. Denitrification in sediments of typical rivers in Taihu Basin. Acta Sci. Circumst. 2012, 32, 1866–1873. [Google Scholar]
- Bellinger, B.J.; Jicha, T.M.; Lehto, L.R.P.; Seifert-Monson, L.R.; Bolgrien, D.W.; Starry, M.A.; Angradi, T.R.; Pearson, M.S.; Elonen, C.; Hill, B.H. Sediment nitrification and denitrification in a Lake Superior estuary. J. Great Lakes Res. 2014, 40, 392–403. [Google Scholar] [CrossRef]
- Wang, J.; Chen, N.; Yan, W.; Wang, B.; Yang, L. Effect of dissolved oxygen and nitrogen on emission of N2O from rivers in China. Atmos. Environ. 2015, 103, 347–356. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, Y.; Ti, C.; Shan, J.; Li, B.; Xia, L.; Yan, X. Nitrogen removal capacity of the river network in a high nitrogen loading region. Environ. Sci. Technol. 2015, 49, 1427–1435. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Zhang, L.; Zhang, Y.; Xu, H.; Jiang, X. Denitrification occurring on suspended sediment in a large, shallow, subtropical lake (Poyang Lake, China). Environ. Pollut. 2016, 219, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.H.; Yang, Z.F.; Huang, G.H.; Zhang, X.Q.; Yu, H.; Rong, X. Nitrification in natural waters with high suspended-solid content—A study for the Yellow River. Chemosphere 2004, 57, 1017–1029. [Google Scholar] [CrossRef] [PubMed]
- Zuo, R.; Jin, S.; Chen, M.; Guan, X.; Wang, J.; Zhai, Y.; Teng, Y.; Guo, X. In-situ study of migration and transformation of nitrogen in groundwater based on continuous observations at a contaminated desert site. J. Contam. Hydrol. 2018, 211, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Kowalchuk, G.A.; Stephen, J.R. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol. 2001, 55, 485–529. [Google Scholar] [CrossRef] [PubMed]
- Zumft, W.G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 1997, 61, 533–616. [Google Scholar] [PubMed]
- Francis, C.A.; Beman, J.M.; Kuypers, M.M.M. New processes and players in the nitrogen cycle: The microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J. 2007, 1, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Bae, H.S.; Reddy, K.R.; Ogram, A. Distributions, abundances and activities of microbes associated with the nitrogen cycle in riparian and stream sediments of a river tributary. Water Res. 2016, 106, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Liu, T.; Yang, Z.; Michalski, G.; Liu, S.; Jia, Z.; Zhang, S. Enhanced nitrogen loss from rivers through coupled nitrification-denitrification caused by suspended sediment. Sci. Total Environ. 2016, 579, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Duan, Y.H.; Ming-Gang, X.U.; Zhai, L.M.; Zhang, X.B.; Wang, B.R.; Zhang, Y.Z.; Gao, S.D.; Sun, N. Nitrogen mobility, ammonia volatilization, and estimated leaching loss from long-term manure incorporation in red soil. J. Integr. Agric. 2017, 16, 2082–2092. [Google Scholar] [CrossRef]
- Guo, C.; Guohua, Y.U. Adsorption properties of sediment to pollutants of contaminated river water. Ecol. Environ. 2006, 15, 1151–1155. [Google Scholar]
- Chen, G.Y. Effects of Different NH_3-N Concentrations on the nitrification process in waters and sediment from Zhushan Bay, Taihu Lake. J. Hydroecol. 2012, 2, 010. [Google Scholar]
- Pauer, J.J.; Auer, M.T. Nitrification in the water column and sediment of a hypereutrophic lake and adjoining river system. Water Res. 2000, 34, 1247–1254. [Google Scholar] [CrossRef]
- Butturini, A.; Battin, T.J.; Sabater, F. Nitrification in stream sediment biofilms: The role of ammonium concentration and DOC quality. Water Res. 2000, 34, 629–639. [Google Scholar] [CrossRef]
- Jinxiu, L.I.; Liao, W. The effect of water flow on the biodegradation of organic pollutant. Res. Environ. Sci. 2002, 15, 45–48. [Google Scholar]
- Xue-Zhong, Y.U.; Zhong, D.Y.; Jin-Xiu, L.I.; Liao, W.G. Review of studies on sediment in water environment. J. Sediment Res. 2004, 6, 75–81. [Google Scholar]
- Jenkins, M.C.; Kemp, W.M. The coupling of nitrification and denitrification in two estuarine sediments 1, 2. Limnol. Oceanogr. 1984, 29, 609–619. [Google Scholar] [CrossRef]
- Codispoti, L.A.; Christensen, J.P. Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific ocean. Mar. Chem. 1985, 16, 277–300. [Google Scholar] [CrossRef]
- Carini, S.A.; Mccarthy, M.J.; Gardner, W.S. An isotope dilution method to measure nitrification rates in the northern Gulf of Mexico and other eutrophic waters. Cont. Shelf Res. 2010, 30, 1795–1801. [Google Scholar] [CrossRef]
- Liu, T.; Xia, X.; Liu, S.; Mou, X.; Qiu, Y. Acceleration of denitrification in turbid rivers due to denitrification occurring on suspended sediment in oxic waters. Environ. Sci. Technol. 2013, 47, 4053–4061. [Google Scholar] [CrossRef] [PubMed]
- Mayo, A.W.; Muraza, M.; Norbert, J. Modelling nitrogen transformation and removal in Mara river basin wetlands upstream of lake Victoria. Phys. Chem. Earth Parts A/B/C 2018, 105, 136–146. [Google Scholar] [CrossRef]
Sites | DO (mg·L−1) | pH | Velocity (m·s−1) | |||||||||
Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | |
DC | 7.53 | 2.60 | 4.00 | 6.30 | 7.70 | 7.95 | 8.34 | 7.54 | 0.01 | 0.01 | 0.04 | 0.18 |
JX | 8.21 | 2.65 | 4.11 | 5.03 | 7.83 | 7.67 | 8.26 | 7.71 | 0.06 | 0.22 | 0.15 | 0.07 |
PW | 10.53 | 4.73 | 3.34 | 5.91 | 7.31 | 7.99 | 8.04 | 7.67 | 0.05 | 0.11 | 0.17 | 0.03 |
NX | 6.70 | 5.72 | 4.53 | 5.71 | 7.66 | 8.23 | 7.77 | 8.25 | 0.35 | 0.08 | 0.13 | 0.05 |
TG | 7.19 | 8.74 | 4.66 | 6.40 | 8.01 | 8.62 | 7.88 | 7.32 | 0.16 | 0.05 | 0.13 | 0.11 |
TP | 10.93 | 5.17 | 3.62 | 6.36 | 7.24 | 8.03 | 7.98 | 7.64 | 0.30 | 0.50 | 0.28 | 0.42 |
Sites | Water Flow (m3·s−1) | SS (mg·L−1) | River Width (m) | River Cross-Sectional Area (m2) | ||||||||
Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | |||||
DC | 0.73 | 1.56 | 3.36 | 15.39 | 198.50 | 52.13 | 89.50 | 19.90 | 45.96 | 109.70 | ||
JX | 5.26 | 31.07 | 22.20 | 6.72 | 40.50 | 35.37 | 150.00 | 5.65 | 69.13 | 141.97 | ||
PW | 15.68 | 45.13 | 58.04 | 9.47 | 19.50 | 348.00 | 65.50 | 12.15 | 95.35 | 393.78 | ||
NX | 5.35 | 11.74 | 15.95 | 5.56 | 25.50 | 5.79 | 85.50 | 7.00 | 64.06 | 145.93 | ||
TG | 3.59 | 3.37 | 7.53 | 5.02 | 23.50 | 9.75 | 54.00 | 5.95 | 29.60 | 67.87 | ||
TP | 239.69 | 464.01 | 250.03 | 331.89 | 25.00 | 22.20 | 52.00 | 6.35 | 159.68 | 921.654 |
Sites | Spring | Summer | Autumn | Winter | |||||
---|---|---|---|---|---|---|---|---|---|
DIN | N | DIN | N | DIN | N | DIN | N | ||
DC | non-microbial | 46.9 | 5.7 | 81.8 | 7.0 | 80.0 | 5.8 | - | 6.2 |
JX | 56.4 | 2.4 | 56.4 | 2.2 | 55.8 | 6.4 | 86.2 | 5.9 | |
PW | 38.8 | - | 87.2 | 7.7 | - | 8.1 | - | 7.7 | |
NX | 83.1 | 4.4 | 76.7 | 9.6 | - | 10.0 | 72.9 | 5.9 | |
TG | 70.8 | 4.0 | 92.1 | 15.7 | 87.6 | 7.1 | 71.5 | 3.6 | |
TP | 67.8 | - | 47.5 | 4.8 | 77.0 | 11.1 | - | 7.5 | |
DC | microbial | 53.1 | 6.4 | 18.2 | 1.6 | 20.0 | 1.5 | - | - |
JX | 43.6 | 1.9 | 43.6 | 1.7 | 44.2 | 5.1 | 13.8 | 0.9 | |
PW | 61.2 | 2.3 | 12.8 | 1.1 | - | - | - | - | |
NX | 16.9 | 0.9 | 23.3 | 2.9 | - | - | 27.1 | 2.2 | |
TG | 29.2 | 1.7 | 7.9 | 1.3 | 12.4 | 1.0 | 28.5 | 1.4 | |
TP | 32.2 | 0.9 | 52.5 | 5.3 | 23.0 | 3.3 | - | 0.0 |
Reduction Rates | NH4+-N | NO3−-N | NO2−-N | DO | Suspended Solids | pH | Velocity | Water Flow | |
---|---|---|---|---|---|---|---|---|---|
TN | control | - | - | 0.557(+) | 0.272(−) | - | 0.304(+) | 0.163(−) | - |
non-microbial | 0.243(+) | - | 0.255(+) | - | - | - | 0.261(−) | 0.242(−) | |
microbial | - | - | 0.291(+) | 0.329(−) | - | - | - | - | |
NH4+-N | control | 0.455(+) | - | 0.237(+) | - | 0.142(+) | 0.249(+) | 0.243(−) | 0.242(−) |
non-microbial | 0.296(+) | - | 0.427(+) | - | - | 0.327(+) | 0.190(−) | 0.138(−) | |
microbial | 0.226(+) | - | - | - | 0.460(+) | - | - | - | |
NO3−-N | control | - | - | - | 0.142(−) | - | - | - | - |
non-microbial | - | - | - | 0.287(−) | - | - | - | - | |
microbial | - | - | - | 0.206(+) | - | - | |||
NO2−-N | control | - | - | 0.502(+) | - | - | 0.249(+) | - | - |
non-microbial | - | - | 0.451(+) | - | - | - | - | - | |
microbial | - | - | 0.218(+) | 0.128(−) | - | - | - | - | |
DIN | non-microbial | - | - | 0.279(+) | 0.170(−) | - | 0.418(+) | 0.198(−) | 0.134(−) |
microbial | - | - | - | - | 0.416(+) | - | - | - |
Parameters | Spring | Summer | Autumn | Winter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | |
DO | −0.766 | 0.033 | −0.425 | −0.219 | 0.834 | 0.487 | 0.281 | 0.330 | −0.794 | −0.242 | 0.813 | 0.301 |
pH | 0.866 | 0.022 | 0.274 | −0.110 | 0.911 | 0.367 | 0.680 | −0.391 | 0.582 | −0.277 | −0.818 | −0.242 |
velocity | −0.403 | 0.452 | 0.756 | −0.734 | −0.541 | 0.356 | −0.790 | 0.347 | 0.473 | −0.738 | 0.597 | −0.247 |
flow | −0.824 | −0.083 | 0.341 | −0.718 | −0.452 | 0.521 | −0.762 | −0.107 | 0.543 | −0.765 | 0.449 | −0.446 |
SS | 0.279 | −0.934 | −0.045 | 0.734 | −0.329 | 0.516 | 0.804 | 0.457 | 0.354 | −0.246 | 0.000 | 0.964 |
TN | 0.923 | 0.165 | −0.166 | 0.896 | −0.337 | −0.263 | 0.831 | −0.548 | 0.001 | 0.969 | 0.181 | 0.055 |
NH4+ | 0.829 | −0.251 | 0.249 | 0.898 | −0.274 | 0.328 | 0.545 | −0.815 | 0.028 | 0.865 | 0.435 | −0.140 |
NO3− | 0.623 | 0.647 | −0.412 | −0.765 | 0.100 | −0.523 | 0.794 | 0.597 | 0.080 | 0.986 | 0.024 | −0.012 |
NO2− | 0.892 | 0.036 | 0.268 | 0.516 | 0.827 | −0.108 | 0.732 | 0.578 | 0.342 | 0.909 | 0.195 | −0.221 |
Eigenvalue | 4.979 | 1.595 | 1.278 | 4.115 | 3.014 | 1.499 | 4.546 | 2.256 | 1.738 | 4.811 | 2.147 | 1.409 |
% of variance | 55.320 | 17.719 | 14.197 | 45.720 | 33.491 | 16.658 | 50.508 | 25.062 | 19.312 | 53.452 | 23.856 | 15.659 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Wang, L.; Guo, X.; Zhao, G.; Deng, J.; Zeng, C. Spatio-Temporal Differences in Nitrogen Reduction Rates under Biotic and Abiotic Processes in River Water of the Taihu Basin, China. Int. J. Environ. Res. Public Health 2018, 15, 2568. https://doi.org/10.3390/ijerph15112568
Guo J, Wang L, Guo X, Zhao G, Deng J, Zeng C. Spatio-Temporal Differences in Nitrogen Reduction Rates under Biotic and Abiotic Processes in River Water of the Taihu Basin, China. International Journal of Environmental Research and Public Health. 2018; 15(11):2568. https://doi.org/10.3390/ijerph15112568
Chicago/Turabian StyleGuo, Jiaxun, Lachun Wang, Xiya Guo, Gengmao Zhao, Jiancai Deng, and Chunfen Zeng. 2018. "Spatio-Temporal Differences in Nitrogen Reduction Rates under Biotic and Abiotic Processes in River Water of the Taihu Basin, China" International Journal of Environmental Research and Public Health 15, no. 11: 2568. https://doi.org/10.3390/ijerph15112568
APA StyleGuo, J., Wang, L., Guo, X., Zhao, G., Deng, J., & Zeng, C. (2018). Spatio-Temporal Differences in Nitrogen Reduction Rates under Biotic and Abiotic Processes in River Water of the Taihu Basin, China. International Journal of Environmental Research and Public Health, 15(11), 2568. https://doi.org/10.3390/ijerph15112568