Associations of Physical Behaviours and Behavioural Reallocations with Markers of Metabolic Health: A Compositional Data Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sleep, Sitting, Standing, and Stepping Measurement
2.3. Demographic, Anthropometric, and Medication Status
2.4. Biomarker Measures
2.5. Data Inclusion
2.6. Statistical Analysis
2.7. Ethics Statement
3. Results
3.1. Linear Regression Models
3.2. Isotemporal Substitutions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Iftikhar, I.H.; Donley, M.A.; Mindel, J.; Pleister, A.; Soriano, S.; Magalang, U.J. Sleep Duration and Metabolic Syndrome. An Updated Dose-Risk Meta Analysis. Ann. Am. Thorac. Soc. 2015, 12, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Cappuccio, F.P.; D’Elia, L.; Strazzullo, P.; Miller, M.A. Sleep Duration and All-Cause Mortality: A Systematic Review and Meta-Analysis of Prospective Studies. Sleep 2010, 33, 585–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedentary Behaviour Research Network. Letter to the editor: Standardized use of the terms “sedentary” and “sedentary behaviours”. Appl. Physiol. Nutr. Metab. 2012, 37, 540–542. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Chinapaw, M.J.M. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Oh, P.I.; Faulkner, G.E.; Bajaj, R.R.; Silver, M.A.; Mitchell, M.S. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: A systematic review and meta-analysis. Ann. Intern. Med. 2015, 162, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Chau, J.Y.; Grunseit, A.C.; Chey, T.; Stamatakis, E.; Brown, W.J.; Matthews, C.E. Daily sitting time and All-cause mortality: A meta-analysis. PLoS ONE 2013, 8, e80000. [Google Scholar] [CrossRef] [PubMed]
- Grøntved, A.; Hu, F.B. Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: A meta-analysis. JAMA 2011, 305, 2448–2455. [Google Scholar] [CrossRef] [PubMed]
- Patterson, R.; McNamara, E.; Tainio, M.; de Sa, T.H.; Smith, A.D.; Sharp, S.J.; Edwards, P.; Woodcock, J.; Brage, S.; Wijndaele, K. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: A systematic review and dose response meta-analysis. Eur. J. Epidemiol. 2018, 33, 811–829. [Google Scholar] [CrossRef] [PubMed]
- Wilmot, E.G.; Edwardson, C.L.; Achana, F.A.; Davies, M.J.; Gorely, T.; Gray, L.J.; Khunti, K.; Yates, T.; Biddle, S.J.H. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: Systematic review and meta-analysis. Diabetologia 2012, 55, 2895–2905. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Norat, T.; Leitzmann, M.; Tonstad, S.; Vatten, L.J. Physical activity and the risk of type 2 diabetes: A systematic review and dose–response meta-analysis. Eur. J. Epidemiol. 2015, 30, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.C.; Lee, I.M.; Weiderpass, E.; Campbell, P.T.; Sampson, J.N.; Kitahara, C.M.; Keadle, S.K.; Arem, H.; de Gonzalez, A.B.; Hartge, P.; et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern. Med. 2016, 176, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Wahid, A.; Manek, N.; Nichols, M.; Kelly, P.; Foster, C.; Webster, P.; Kaur, A.; Smith, C.F.; Wilkins, E.; Rayner, M. Quantifying the Association Between Physical Activity and Cardiovascular Disease and Diabetes: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2016, 5, e002495. [Google Scholar] [CrossRef] [PubMed]
- Buman, M.P.; Winkler, E.A.H.; Kurka, J.M.; Hekler, E.B.; Baldwin, C.M.; Owen, N.; Ainsworth, B.E.; Healy, G.N.; Gardiner, P.A. Reallocating Time to Sleep, Sedentary Behaviors, or Active Behaviors: Associations With Cardiovascular Disease Risk Biomarkers, NHANES 2005–2006. Am. J. Epidemiol. 2014, 179, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Edwardson, C.L.; Henson, J.; Bodicoat, D.H.; Bakrania, K.; Khunti, K.; Davies, M.J.; Yates, T. Associations of reallocating sitting time into standing or stepping with glucose, insulin and insulin sensitivity: A cross-sectional analysis of adults at risk of type 2 diabetes. BMJ Open 2017, 7, e014267. [Google Scholar] [CrossRef] [PubMed]
- Healy, G.N.; Winkler, E.A.H.; Owen, N.; Anuradha, S.; Dunstan, D.W. Replacing sitting time with standing or stepping: Associations with cardio-metabolic risk biomarkers. Eur. Heart J. 2015, 36, 2643–2649. [Google Scholar] [CrossRef] [PubMed]
- Henson, J.; Edwardson, C.L.; Bodicoat, D.H.; Bakrania, K.; Davies, M.J.; Khunti, K.; Talbot, D.C.S.; Yates, T. Reallocating sitting time to standing or stepping through isotemporal analysis: Associations with markers of chronic low-grade inflammation. J. Sports Sci. 2018, 36, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Yates, T.; Henson, J.; Edwardson, C.; Dunstan, D.; Bodicoat, D.H.; Khunti, K. Objectively measured sedentary time and associations with insulin sensitivity: Importance of reallocating sedentary time to physical activity. Prev. Med. 2015, 76, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Stamatakis, E.; Steptoe, A. Effects of Substituting Sedentary Time with Physical Activity on Metabolic Risk. Med. Sci. Sports Exerc. 2014, 46, 1946–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falconer, C.L.; Page, A.S.; Andrews, R.C.; Cooper, A.R. The Potential Impact of Displacing Sedentary Time in Adults with Type 2 Diabetes. Med. Sci. Sports Exerc. 2015, 47, 2070–2075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, P.M.; Ryan, C.G.; Tigbe, W.W.; Granat, M.H. The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. Br. J. Sports Med. 2006, 40, 992–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwardson, C.L.; Winkler, E.A.H.; Bodicoat, D.H.; Yates, T.; Davies, M.J.; Dunstan, D.W.; Healy, G.N. Considerations when using the activPAL monitor in field-based research with adult populations. J. Sport Health Sci. 2017, 6, 162–178. [Google Scholar] [CrossRef] [Green Version]
- Mekary, R.A.; Willett, W.C.; Hu, F.B.; Ding, E.L. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am. J. Epidemiol. 2009, 170, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Chastin, S.F.M.; Palarea-Albaladejo, J.; Dontje, M.L.; Skelton, D.A. Combined Effects of Time Spent in Physical Activity, Sedentary Behaviors and Sleep on Obesity and Cardio-Metabolic Health Markers: A Novel Compositional Data Analysis Approach. PLoS ONE 2015, 10, e0139984. [Google Scholar] [CrossRef] [PubMed]
- Dumuid, D.; Pedisic, Z.; Stanford, T.E.; Martin-Fernadez, J.-A.; Hron, K.; Maher, C.A.; Lewis, L.K.; Olds, T. The compositional isotemporal substitution model: A method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat. Methods Med. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Dumuid, D.; Stanford, T.E.; Pedisic, Z.; Maher, C.; Lewis, L.K.; Martin-Fernandez, J.A.; Katzmarzyk, P.T.; Chaput, J.P.; Fogelholm, M.; Standage, M.; et al. Adiposity and the isotemporal substitution of physical activity, sedentary time and sleep among school-aged children: A compositional data analysis approach. BMC Public Health 2018, 18, 311. [Google Scholar] [CrossRef] [PubMed]
- Yates, T.; Davies, M.J.; Henson, J.; Troughton, J.; Edwardson, C.; Gray, L.J.; Khunti, K. Walking away from type 2 diabetes: Trial protocol of a cluster randomised controlled trial evaluating a structured education programme in those at high risk of developing type 2 diabetes. BMC Fam. Pract. 2012, 13, 46. [Google Scholar] [CrossRef] [PubMed]
- Yates, T.; Edwardson, C.L.; Henson, J.; Gray, L.J.; Ashra, N.B.; Troughton, J.; Khunti, K.; Davies, M.J. Walking Away from Type 2 diabetes: A cluster randomized controlled trial. Diabet. Med. 2016, 34, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Gray, L.J.; Davies, M.J.; Hiles, S.; Taub, N.A.; Webb, D.R.; Srinivasan, B.T.; Khunti, K. Detection of impaired glucose regulation and/or type 2 diabetes mellitus, using primary care electronic data, in a multiethnic UK community setting. Diabetologia 2012, 55, 959–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozey-Keadle, S.; Libertine, A.; Lyden, K.; Staudenmayer, J.; Freedson, P.S. Validation of Wearable Monitors for Assessing Sedentary Behavior. Med. Sci. Sports Exerc. 2011, 43, 1561–1567. [Google Scholar] [CrossRef] [PubMed]
- Lyden, K.; Kozey Keadle, S.L.; Staudenmayer, J.W.; Freedson, P.S. Validity of Two Wearable Monitors to Estimate Breaks from Sedentary Time. Med. Sci. Sports Exerc. 2012, 44, 2243–2252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, C.G.; Grant, P.M.; Tigbe, W.W.; Granat, M.H. The validity and reliability of a novel activity monitor as a measure of walking. Br. J. Sports Med. 2006, 40, 779–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stansfield, B.; Hajarnis, M.; Sudarshan, R. Characteristics of very slow stepping in healthy adults and validity of the activPAL3™ activity monitor in detecting these steps. Med. Eng. Phys. 2015, 37, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Winkler, E.A.; Bodicoat, D.H.; Healy, G.N.; Bakrania, K.; Yates, T.; Owen, N.; Dunstan, D.W.; Edwardson, C.L. Identifying adults’ valid waking wear time by automated estimation in activPAL data collected with a 24 h wear protocol. Physiol. Meas. 2016, 37, 1653. [Google Scholar] [CrossRef] [PubMed]
- Edwardson, C.; Bakrania, K.; Bodicoat, D.; Yates, T.; Healy, G.; Winkler, E. Validation of an automated STATA algorithm developed for isolating waking wear data in activPAL data. In Proceedings of the International Conference on Ambulatory Monitoring of Physical Activity and Movement, Limerick, Ireland, 10–12 June 2015. [Google Scholar]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Matsuda, M. Reduced Time Points to Calculate the Composite Index. Diabetes Care 2010, 33, e93. [Google Scholar] [CrossRef] [PubMed]
- Carson, V.; Tremblay, M.S.; Chaput, J.-P.; Chastin, S.F. Associations between sleep duration, sedentary time, physical activity, and health indicators among Canadian children and youth using compositional analyses. Appl. Physiol. Nutr. Metab. 2016, 41, S294–S302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carson, V.; Tremblay, M.S.; Chastin, S.F.M. Cross-sectional associations between sleep duration, sedentary time, physical activity, and adiposity indicators among Canadian preschool-aged children using compositional analyses. BMC Public Health 2017, 17, 848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairclough, S.J.; Dumuid, D.; Taylor, S.; Curry, W.; McGrane, B.; Stratton, G.; Maher, C.; Olds, T. Fitness, fatness and the reallocation of time between children’s daily movement behaviours: An analysis of compositional data. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 64. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Dumuid, D.; Korshøj, M.; Jørgensen, M.B.; Søgaard, K.; Holtermann, A. Is Daily Movement Behaviors’ Composition Related to Blood Pressure in Working Adults? Med. Sci. Sports Exerc. 2018, 50, 2150–2155. [Google Scholar] [CrossRef] [PubMed]
- Hawari, N.S.; Al-Shayji, I.; Wilson, J.; Gill, J.M. Frequency of Breaks in Sedentary Time and Postprandial Metabolic Responses. Med. Sci. Sports Exerc. 2016, 48, 2495–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyashita, M.; Park, J.-H.; Takahashi, M.; Suzuki, K.; Stensel, D.; Nakamura, Y. Postprandial lipaemia: Effects of sitting, standing and walking in healthy normolipidaemic humans. Int. J. Sports Med. 2013, 34, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Pulsford, R.M.; Blackwell, J.; Hillsdon, M.; Kos, K. Intermittent walking, but not standing, improves postprandial insulin and glucose relative to sustained sitting: A randomised cross-over study in inactive middle-aged men. J. Sci. Med. Sport 2016, 20, 178–283. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.P.; Locke, C.D. Breaking up prolonged sitting with light-intensity walking improves postprandial glycemia, but breaking up sitting with standing does not. J. Sci. Med. Sport 2015, 18, 294–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henson, J.; Davies, M.J.; Bodicoat, D.H.; Edwardson, C.L.; Gill, J.M.R.; Stensel, D.J.; Tolfrey, K.; Dunstan, D.W.; Khunti, K.; Yates, T. Breaking Up Prolonged Sitting With Standing or Walking Attenuates the Postprandial Metabolic Response in Postmenopausal Women: A Randomized Acute Study. Diabetes Care 2016, 39, 130–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulsford, R.M.; Stamatakis, E.; Britton, A.R.; Brunner, E.J.; Hillsdon, M. Associations of sitting behaviours with all-cause mortality over a 16-year follow-up: The Whitehall II study. Int. J. Epidemiol. 2015, 44, 1909–1916. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Thomas, E.L.; Bell, J.D.; Hamer, M. The association between objectively measured sitting and standing with body composition: A pilot study using MRI. BMJ Open 2014, 4, e005476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katzmarzyk, P.T. Standing and mortality in a prospective cohort of Canadian adults. Med. Sci. Sports Exerc. 2014, 46, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Van der Ploeg, H.P.; Chey, T.; Ding, D.; Chau, J.Y.; Stamatakis, E.; Bauman, A.E. Standing time and all-cause mortality in a large cohort of Australian adults. Prev. Med. 2014, 69, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Dumuid, D.; Maher, C.; Lewis, L.K.; Stanford, T.E.; Martin Fernandez, J.A.; Ratcliffe, J.; Katzmarzyk, P.T.; Barreira, T.V.; Chaput, J.P.; Fogelholm, M.; et al. Human development index, children’s health-related quality of life and movement behaviors: A compositional data analysis. Qual. Life Res. 2018, 27, 1473–1482. [Google Scholar] [CrossRef] [PubMed]
- Oja, P.; Kelly, P.; Murtagh, E.M.; Murphy, M.H.; Foster, C.; Titze, S. Effects of frequency, intensity, duration and volume of walking interventions on CVD risk factors: A systematic review and meta-regression analysis of randomised controlled trials among inactive healthy adults. Br. J. Sports Med. 2018, 52, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.J.; Marques, E.; Mota, J. Training and Detraining Effects on Functional Fitness after a Multicomponent Training in Older Women. Gerontology 2008, 55, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Lobo, A.; Carvalho, J.; Santos, P. Effects of Training and Detraining on Physical Fitness, Physical Activity Patterns, Cardiovascular Variables, and HRQoL after 3 Health-Promotion Interventions in Institutionalized Elders. Int. J. Fam. Med. 2010, 2010, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mora-Rodriguez, R.; Ortega, J.F.; Hamouti, N.; Fernandez-Elias, V.E.; Cañete Garcia-Prieto, J.; Guadalupe-Grau, A.; Saborido, A.; Martin-Garcia, M.; Guio de Prada, V.; Ara, I.; et al. Time-course effects of aerobic interval training and detraining in patients with metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 792–798. [Google Scholar] [CrossRef] [PubMed]
Characteristics | n = 435 | Stepping Time Tertiles | ||
---|---|---|---|---|
Low | Median | High | ||
Age (years) | 66.9 (7.4) | 67.3 (8.1) | 66.8 (7.0) | 66.5 (7.1) |
Male (%) | 61.7 | 44.8 | 65.5 | 74.5 |
White European (%) | 89.2 | 89.7 | 89.0 | 89.0 |
Body Mass Index (BMI) (kg/m2) | 31.4 (5.3) | 33.3 (5.6) | 31.2 (5.3) | 29.9 (4.4) |
Using β-Blockers (%) | 20.2 | 14.5 | 19.3 | 15.2 |
Using Lipid-Lowering Medication (%) | 32.3 | 24.8 | 33.1 | 35.2 |
Family History of Diabetes (%) | 32.7 | 31.7 | 34.5 | 39.3 |
Current Smokers (%) | 7.3 | 7.6 | 5.5 | 6.2 |
HbA1c (unit %) | 5.7 (0.5) | 5.7 (0.5) | 5.6 (0.6) | 5.7 (0.4) |
Normal Range [≤6.0] (%) | 79.7 | 72.2 | 82.8 | 84.1 |
Prediabetes Range [6–6.5] (%) | 15.4 | 19.4 | 14.5 | 12.4 |
Diabetes Range [≥6.5] (%) | 4.8 | 8.3 | 2.8 | 3.4 |
Fasting Plasma Glucose (mmol/L) | 5.2 (4.8–5.5) | 5.3 (4.9–5.7) | 5.0 (4.7–5.4) | 5.2 (4.9–5.5) |
2-h Plasma Glucose (mmol/L) | 5.6 (4.7–6.9) | 6.0 (4.9–7.3) | 5.4 (4.7–6.3) | 5.5 (4.4–6.3) |
Fasting Insulin (mU/L) | 9.0 (6.3–13.1) | 11.0 (7.3–15.1) | 8.5 (6.4–12.6) | 7.8 (5.4–11.8) |
2-h Insulin (mU/L) | 44.0 (23.7–79.2) | 56.8 (35.9–98.0) | 40.8 (22.2–70.2) | 36.4 (18.3–65.8) |
Characteristics | Minutes/Day | Percentage of 24 h |
---|---|---|
Sleep | 512.7 | 35.6 |
Sitting | 570.0 | 39.6 |
Standing | 261.2 | 18.1 |
Stepping | 96.1 | 6.7 |
Sleep | Sitting | Standing | Stepping | |
---|---|---|---|---|
Sleep | 0.074 | 0.159 | 0.201 | |
Sitting | 0.074 | 0.236 | 0.255 | |
Standing | 0.159 | 0.236 | 0.181 | |
Stepping | 0.201 | 0.255 | 0.181 |
Sleep | Sitting | Standing | Stepping | Model Fit (R2) | |
---|---|---|---|---|---|
Model 1 | |||||
Fasting glucose | 1.01 | 1.01 | 1.03 | 0.95 † | 0.002 |
(95% CI) | (0.95; 1.07) | (0.97; 1.05) | (0.99; 1.07) | (0.91; 0.99) | |
Fasting insulin | 1.28 | 1.14 | 0.96 | 0.72 * | 0.061 |
(95% CI) | (0.94; 1.76) | (0.90; 1.44) | (0.82; 1.32) | (0.58; 0.89) | |
Two-hour glucose | 1.11 | 1.02 | 1.08 | 0.82 *** | 0.062 |
(95% CI) | (0.96; 1.27) | (0.92; 1.13) | (0.98; 1.19) | (0.74; 0.90) | |
Two-hour insulin | 1.63 | 1.11 | 1.05 | 0.53 ** | 0.059 |
(95% CI) | (0.98; 2.69) | (0.75; 0.61) | (0.74; 1.50) | (0.37; 0.76) | |
HOMA-IS | 0.75 | 0.89 | 1.01 | 1.49 * | 0.061 |
(95% CI) | (0.54; 1.04) | (0.69; 1.14) | (0.70; 1.17) | (1.18; 1.89) | |
Matsuda-ISI | 0.66 | 0.89 | 1.01 | 1.70 ** | 0.087 |
(95% CI) | (0.44; 0.97) † | (0.66; 1.19) | (0.77; 1.33) | (1.23; 2.23) | |
Model 2 | |||||
Fasting glucose | 1.01 | 1.01 | 1.03 | 0.96 | 0.009 |
(95% CI) | (0.95; 1.07) | (0.97; 1.05) | (0.99; 1.07) | (0.92; 1.00) | |
Fasting insulin | 1.28 | 1.00 | 0.92 | 0.84 | 0.149 |
(95% CI) | (0.96; 1.72) | (0.79; 1.26) | (0.74; 1.15) | (0.68; 1.05) | |
Two-hour glucose | 1.12 | 1.00 | 1.08 | 0.83 ** | 0.062 |
(95% CI) | (0.97; 1.28) | (0.83; 1.23) | (0.98; 1.19) | (0.75; 0.91) | |
Two-hour insulin | 1.63 | 1.05 | 1.04 | 0.57 * | 0.064 |
(95% CI) | (0.98; 2.72) | (0.71; 1.56) | (0.73; 1.48) | (0.40; 0.80) | |
HOMA-IS | 0.75 | 1.01 | 1.05 | 1.26 | 0.146 |
(95% CI) | (0.54; 1.04) | (0.78; 1.30) | (0.83; 1.33) | (1.00; 1.59) | |
Matsuda-ISI | 0.66 † | 0.98 | 1.02 | 1.51 * | 0.133 |
(95% CI) | (0.46; 0.96) | (0.73; 1.32) | (0.78; 1.34) | (1.15; 1.98) |
Sleep | Sitting | Standing | Stepping | |
---|---|---|---|---|
Model 1 | ||||
Fasting glucose | ||||
Sleep | 1.00 (1.00; 1.00) | 1.00 (1.00; 1.01) | 0.99 (0.98; 1.00) | |
Sitting | 1.00 (1.00; 1.00) | 1.00 (1.00; 1.01) | 0.99 (0.98; 1.00) | |
Standing | 1.00 (1.00; 1.00) | 1.00 (0.99; 1.00) | 0.99 (0.97; 1.00) | |
Stepping | 1.02 (1.00; 1.03) | 1.02 (1.00; 1.03) | 1.02 (1.00; 1.03) | |
Fasting insulin | ||||
Sleep | 0.99 (0.97; 1.02) | 0.98 (0.95; 1.02) | 0.91 (0.86; 0.97) | |
Sitting | 1.01 (0.98; 1.03) | 0.99 (0.97; 1.01) | 0.92 (0.87; 0.97) | |
Standing | 1.02 (0.98; 1.05) | 1.01 (0.98; 1.04) | 0.93 (0.87; 0.99) | |
Stepping | 1.13 (1.04; 1.22) | 1.12 (1.04; 1.21) | 1.11 (1.02; 1.21) | |
Two-hour glucose | ||||
Sleep | 1.00 (0.98; 1.01) | 1.00 (0.99; 1.02) | 0.95 (0.92; 0.97) | |
Sitting | 1.00 (0.99; 1.02) | 1.01 (1.00; 1.02) | 0.95 (0.93; 0.98) | |
Standing | 1.00 (0.98; 1.01) | 0.99 (0.98; 1.00) | 0.94 (0.91; 0.98) | |
Stepping | 1.07 (1.04; 1.10) | 1.06 (1.03; 1.10) | 1.07 (1.03; 1.11) | |
Two-hour insulin | ||||
Sleep | 0.98 (0.94; 1.02) | 0.98 (0.93; 1.03) | 0.83 (0.73; 0.92) | |
Sitting | 1.02 (0.98; 1.06) | 1.00 (0.96; 1.04) | 0.85 (0.76; 0.93) | |
Standing | 1.02 (0.97; 1.07) | 1.00 (0.96; 1.04) | 0.85 (0.74; 0.96) | |
Stepping | 0.77 (0.65; 0.89) | 0.79 (0.68; 0.91) | 0.79 (0.65; 0.93) | |
HOMA-IS | ||||
Sleep | 1.01 (0.98; 1.04) | 1.02 (0.98; 1.05) | 1.11 (1.05; 1.19) | |
Sitting | 0.99 (0.96; 1.02) | 1.01 (0.98; 1.03) | 1.10 (1.04; 1.17) | |
Standing | 0.98 (0.95; 1.02) | 0.99 (0.97; 1.02) | 1.10 (1.02; 1.18) | |
Stepping | 0.87 (0.80; 0.94) | 0.87 (0.81; 0.95) | 0.88 (0.80; 0.97) | |
Matsuda-ISI | ||||
Sleep | 1.02 (0.98; 1.05) | 1.02 (0.98; 1.06) | 1.15 (1.07; 1.22) | |
Sitting | 0.99 (0.95; 1.02) | 1.01 (0.98; 1.04) | 1.13 (1.06; 1.20) | |
Standing | 0.98 (0.94; 1.02) | 0.99 (0.96; 1.03) | 1.12 (1.04; 1.21) | |
Stepping | 0.81 (0.71; 0.90) | 0.82 (0.73; 0.91) | 0.83 (0.72; 0.94) | |
Model 2 | ||||
Fasting glucose | ||||
Sleep | 1.00 (0.99; 1.00) | 1.00 (1.00; 1.01) | 0.99 (0.98; 1.00) | |
Sitting | 1.00 (1.00; 1.01) | 1.00 (1.00; 1.01) | 0.99 (0.98; 1.00) | |
Standing | 1.00 (1.00; 1.00) | 1.00 (0.99; 1.00) | 0.99 (0.98; 1.00) | |
Stepping | 1.01 (1.00; 1.03) | 1.01 (1.00; 1.03) | 1.02 (1.00; 1.03) | |
Fasting insulin | ||||
Sleep | 0.99 (0.96; 1.01) | 0.98 (0.95; 1.01) | 0.95 (0.90; 1.00) | |
Sitting | 1.01 (0.99; 1.04) | 0.99 (0.97; 1.02) | 0.96 (0.91; 1.01) | |
Standing | 1.02 (0.99; 1.05) | 1.01 (0.98; 1.03) | 0.97 (0.90; 1.03) | |
Stepping | 1.07 (1.00; 1.15) | 1.06 (0.99; 1.14) | 1.05 (0.97; 1.14) | |
Two-hour glucose | ||||
Sleep | 0.99 (0.98; 1.01) | 1.00 (0.99; 1.02) | 0.95 (0.93; 0.98) | |
Sitting | 1.01 (0.99; 1.02) | 1.01 (1.00; 1.02) | 0.96 (0.93; 0.98) | |
Standing | 1.00 (0.98; 1.01) | 0.99 (0.98; 1.00) | 0.95 (0.92; 0.98) | |
Stepping | 1.06 (1.03; 1.10) | 1.06 (1.03; 1.09) | 1.07 (1.03; 1.11) | |
Two-hour insulin | ||||
Sleep | 0.98 (0.94; 1.02) | 0.98 (0.93; 1.03) | 0.84 (0.75; 0.93) | |
Sitting | 1.02 (0.98; 1.06) | 1.00 (0.96; 1.04) | 0.86 (0.78; 0.95) | |
Standing | 1.02 (0.97; 1.07) | 1.00 (0.96; 1.04) | 0.86 (0.75; 0.97) | |
Stepping | 1.21 (1.09; 1.33) | 1.19 (1.07; 1.31) | 1.19 (1.05; 1.33) | |
HOMA-IS | ||||
Sleep | 1.02 (0.99; 1.04) | 1.02 (0.99; 1.05) | 1.07 (1.01; 1.14) | |
Sitting | 0.99 (0.96; 1.01) | 1.00 (0.98; 1.02) | 1.05 (0.99; 1.12) | |
Standing | 0.98 (0.95; 1.01) | 1.00 (0.97; 1.02) | 1.05 (0.98; 1.13) | |
Stepping | 0.92 (0.85; 0.99) | 0.93 (0.86; 1.00) | 0.93 (0.85; 1.02) | |
Matsuda-ISI | ||||
Sleep | 1.02 (0.99; 1.05) | 1.02 (0.99; 1.06) | 1.12 (1.05; 1.19) | |
Sitting | 0.98 (0.95; 1.01) | 1.00 (0.97; 1.03) | 1.10 (1.03; 1.16) | |
Standing | 0.98 (0.94; 1.02) | 1.00 (0.97; 1.03) | 1.09 (1.01; 1.18) | |
Stepping | 0.85 (0.75; 0.94) | 0.87 (0.78; 0.96) | 0.87 (0.77; 0.98) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biddle, G.J.H.; Edwardson, C.L.; Henson, J.; Davies, M.J.; Khunti, K.; Rowlands, A.V.; Yates, T. Associations of Physical Behaviours and Behavioural Reallocations with Markers of Metabolic Health: A Compositional Data Analysis. Int. J. Environ. Res. Public Health 2018, 15, 2280. https://doi.org/10.3390/ijerph15102280
Biddle GJH, Edwardson CL, Henson J, Davies MJ, Khunti K, Rowlands AV, Yates T. Associations of Physical Behaviours and Behavioural Reallocations with Markers of Metabolic Health: A Compositional Data Analysis. International Journal of Environmental Research and Public Health. 2018; 15(10):2280. https://doi.org/10.3390/ijerph15102280
Chicago/Turabian StyleBiddle, Gregory J. H., Charlotte L. Edwardson, Joseph Henson, Melanie J. Davies, Kamlesh Khunti, Alex V. Rowlands, and Thomas Yates. 2018. "Associations of Physical Behaviours and Behavioural Reallocations with Markers of Metabolic Health: A Compositional Data Analysis" International Journal of Environmental Research and Public Health 15, no. 10: 2280. https://doi.org/10.3390/ijerph15102280
APA StyleBiddle, G. J. H., Edwardson, C. L., Henson, J., Davies, M. J., Khunti, K., Rowlands, A. V., & Yates, T. (2018). Associations of Physical Behaviours and Behavioural Reallocations with Markers of Metabolic Health: A Compositional Data Analysis. International Journal of Environmental Research and Public Health, 15(10), 2280. https://doi.org/10.3390/ijerph15102280