Is There Any Relationship between Plasma 25-Hydroxyvitamin D3, Adipokine Profiles and Excessive Body Weight in Type 2 Diabetic Patients?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Experimental Design
2.3. Biological Material Preparation
2.4. Determination of Plasma 25(OH)D3
2.5. Determination of Plasma Selected Adipokines
3. Statistics
4. Results
4.1. Anthropometric Indices and Biochemistry
4.2. 25(OH)D3 Concentration in Diabetic Patients and Controls
4.3. Adipokines’ Profile Across Quartiles of Vitamin D Concentration
4.4. Leptin/Adiponectin Ratio Across Quartiles of Vitamin D Concentration
4.5. Correlations between 25-Hydroxyvitamin D3 and Anthropometric Indices, Biochemical Parameters as Well as Adipokines among Type 2 Diabetic Patients
5. Discussion
5.1. Leptin
5.2. Adiponectin
5.3. Resistin
5.4. Visfatin
5.5. Leptin/Adiponectin Ratio
6. Conclusions
Author Contributions
Conflicts of Interest
References
- World Health Organization. Diabetes. Available online: http://www.who.int/diabetes/en/ (accessed on 15 September 2017).
- Farag, Y.M.; Gaballa, M.R. Diabesity: An overview of a rising epidemic. Nephrol. Dial. Transplant. 2011, 26, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.; Kim, Y. Vitamin D insufficiency exacerbates adipose tissue macrophage infiltration and decreases AMPK/SIRT1 activity in obese rats. Nutrients 2017, 9, 338. [Google Scholar] [CrossRef] [PubMed]
- Chagas, C.E.; Borges, M.C.; Martini, L.A.; Rogero, M.M. Focus on vitamin D, inflammation and type 2 diabetes. Nutrients 2012, 4, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, S.; Jialal, G.; Cook, T.; Siegel, D.; Jialal, I. Low vitamin D levels in Northern American adults with the metabolic syndrome. Horm. Metab. Res. 2011, 43, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Ducloux, R.; Nobécourt, E.; Chevallier, J.M.; Ducloux, H.; Elian, N.; Altman, J.J. Vitamin D deficiency before bariatric surgery: Should supplement intake be routinely prescribed? Obes. Surg. 2011, 21, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Grineva, E.N.; Karonova, T.; Micheeva, E.; Belyaeva, O.; Nikitina, I.L. Vitamin D deficiency is a risk factor for obesity and diabetes type 2 in women at late reproductive age. Aging 2013, 5, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Lucato, P.; Solmi, M.; Maggi, S.; Bertocco, A.; Bano, G.; Trevisan, C.; Manzato, E.; Sergi, G.; Schofield, P.; Kouidrat, Y.; et al. Low vitamin D levels increase the risk of type 2 diabetes in older adults: A systematic review and meta-analysis. Maturitas 2017, 100, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Norman, A.W.; Okamura, W.H.; Sen, A.; Zemel, M.B. 1alpha,25-Dihydroxyvitamin D3 modulates human adipocyte metabolism via nongenomic action. FASEB J. 2001, 15, 2751–2753. [Google Scholar] [CrossRef] [PubMed]
- Norman, A.W.; Frankel, J.B.; Heldt, A.M.; Grodsky, G.M. Vitamin D deficiency inhibits pancreatic secretion of insulin. Science 1980, 209, 823–825. [Google Scholar] [CrossRef] [PubMed]
- Mitri, J.; Murau, M.D.; Pittas, A.G. Vitamin D and type 2 diabetes: A systematic review. Eur. J. Clin. Nutr. 2011, 65, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Pittas, A.G.; Lau, J.; Hu, F.B.; Dawson-Hughes, B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2007, 92, 2017–2029. [Google Scholar] [CrossRef] [PubMed]
- Belenchia, A.M.; Tosh, A.K.; Hillman, L.S.; Peterson, C.A. Correcting vitamin D insufficiency improves insulin sensitivity in obese adolescents: A randomized controlled trial. Am. J. Clin. Nutr. 2013, 97, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Poomthavorn, P.; Nantarakchaikul, P.; Mahachoklertwattana, P.; Chailurkit, L.O.; Khlairit, P. Effects of correction of vitamin D insufficiency on serum osteocalcin and glucose metabolism in obese children. Clin. Endocrinol. 2014, 80, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, L.; Pittas, A.G.; Del Gobbo, L.C.; Zhang, C.; Manson, J.E.; Hu, F.B. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: A meta-analysis of prospective studies. Diabetes Care 2013, 36, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T.; Woelfle, J.; Wiegand, S.; Karges, B.; Meissner, T.; Nagl, K.; Holl, R.W. Leptin but not adiponectin is related to type 2 diabetes mellitus in obese adolescents. Pediatr. Diabetes 2015, 17, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Kataria, M.A.; Saini, V.; Yadav, A. Role of leptin and adiponectin in insulin resistance. Clin. Chim. Acta 2013, 417, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Leal Vde, O.; Mafra, D. Adipokines in obesity. Clin. Chim. Acta 2013, 419, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Park, H.K.; Ahima, R.S. Resistin in rodents and humans. Diabetes Metab. J. 2013, 37, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Oliveira, V.; Câmara, N.O.; Moraes-Vieira, P.M. Adipokines as drug targets in diabetes and underlying disturbances. J. Diabetes Res. 2015, 2015, 681612. [Google Scholar] [CrossRef] [PubMed]
- Lilja, M.; Rolandsson, O.; Norberg, M.; Soderberg, S. The impact of leptin and adiponectin on incident type 2 diabetes is modified by sex and insulin resistance. Metab. Syndr. Relat. Disord. 2012, 10, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Al-Hamodi, Z.; Al-Habori, M.; Al-Meeri, A.; Saif-Ali, R. Association of adipokines, leptin/adiponectin ratio and C-reactive protein with obesity and type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2014, 6, 99. [Google Scholar] [CrossRef] [PubMed]
- Satoh, N.; Naruse, M.; Usui, T.; Tagami, T.; Suganami, T.; Yamada, K.; Kuzuya, H.; Shimatsu, A.; Ogawa, Y. Leptin to adiponectin ratio as a potential atherogenic index in obese type 2 diabetic patients. Diabetes Care 2004, 27, 2488–2490. [Google Scholar] [CrossRef] [PubMed]
- Cimbek, A.; Gürsoy, G.; Kirnap, N.G.; Acar, Y.; Erol, B.; Özaşik, I.; Güngör, F. Relation of Serum 25 hydroxy Vitamin D3 levels with insulin resistance in type 2 diabetic patients and normal subjects. Med-Science 2012, 1, 305–314. [Google Scholar] [CrossRef]
- Taheri, E.; Saedisomeolia, A.; Djalali, M.; Qorbani, M.; Madani Civi, M. The relationship between serum 25-hydroxy vitamin D concentration and obesity in type 2 diabetic patients and healthy subjects. J. Diabetes Metab. Disord. 2012, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Maggi, S.; Siviero, P.; Brocco, E.; Albertin, M.; Romanato, G.; Crepaldi, G. Vitamin D deficiency, serum leptin and osteoprotegerin levels in older diabetic patients: An input to new research avenues. Acta Diabetol. 2014, 51, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Mutt, S.J.; Hyppönen, E.; Saarnio, J.; Järvelin, M.R.; Herzig, K.H. Vitamin D and adipose tissue-more than storage. Front. Physiol. 2014, 5, 228. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.; Li-Xing, S.; Nian-Chun, P.; Shu-Jing, X.; Miao, Z.; Hong, L.; Hui-Jun, Z.; Ming-Xian, G.; Song, Z.; Rui, W.; et al. Serum 25(OH)D Level and parathyroid hormone in Chinese adult population: A cross-sectional study in Guiyang Urban Community from Southeast of China. Int. J. Endocrinol. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.A. Physiological functions of Vitamin D in adipose tissue. J. Steroid Biochem. Mol. Biol. 2017, 165, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Lorente-Cebrián, S.; Eriksson, A.; Dunlop, T.; Mejhert, N.; Dahlman, I.; Aström, G.; Sjölin, E.; Wåhlén, K.; Carlberg, C.; Laurencikiene, J.; et al. Differential effects of 1α,25-dihydroxycholecalciferol on MCP-1 and adiponectin production in human white adipocytes. Eur. J. Nutr. 2012, 51, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Walker, G.E.; Ricotti, R.; Roccio, M.; Moia, S.; Bellone, S.; Prodam, F.; Bona, G. Pediatric obesity and vitamin D deficiency: A proteomic approach identifies multimeric adiponectin as a key link between these conditions. PLoS ONE 2014, 9, e83685. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Chen, Y.; Zhu, G.; Zhao, Q.; Li, Y.C. 1,25-Dihydroxyvitamin D3 upregulates leptin expression in mouse adipose tissue. J. Endocrinol. 2013, 216, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Menendez, C.; Lage, M.; Peino, R.; Baldelli, R.; Concheiro, P.; Diéguez, C.; Casanueva, F.F. Retinoic acid and vitamin D(3) powerfully inhibit in vitro leptin secretion by human adipose tissue. J. Endocrinol. 2001, 170, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Narvaez, C.J.; Matthews, D.; Broun, E.; Chan, M.; Welsh, J. Lean phenotype and resistance to diet-induced obesity in vitamin D receptor knockout mice correlates with induction of uncoupling protein-1 in white adipose tissue. Endocrinology 2009, 150, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Amir, E.; Cecchini, R.S.; Ganz, P.A.; Costantino, J.P.; Beddows, S.; Hood, N.; Goodwin, P.J. 25-Hydroxy vitamin-D, obesity, and associated variables as predictors of breast cancer risk and tamoxifen benefit in NSABP-P1. Breast Cancer Res. Treat. 2012, 133, 1077–1088. [Google Scholar] [CrossRef] [PubMed]
- Figuiredo-Dias, V.; Cuppari, L.; Garcia-Lopes, M.G.; de Carvalho, A.B.; Draibe, S.A.; Kamimura, M.A. Risk factors for hypovitaminosis D in nondialyzed chronic kidney disease patients. J. Ren. Nutr. 2012, 22, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Grethen, E.; Hill, K.M.; Jones, R.; Cacucci, B.M.; Gupta, C.E.; Acton, A.; Considine, R.V.; Peacock, M. Serum leptin, parathyroid hormone, 1,25-dihydroxyvitamin D, fibroblast growth factor 23, bone alkaline phosphatase, and sclerostin relationships in obesity. J. Clin. Endocrinol. Metab. 2012, 97, 1655–1662. [Google Scholar] [CrossRef] [PubMed]
- Naini, A.E.; Vahdat, S.; Hedaiati, Z.P.; Shahzeidi, S.; Pezeshki, A.H.; Nasri, H. The effect of vitamin D administration on serum leptin and adiponectin levels in end-stage renal disease patients on hemodialysis with vitamin D deficiency: A placebo-controlled double-blind clinical trial. J. Res. Med. Sci. 2016, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Ghavamzadeh, S.; Mobasseri, M.; Mahdavi, R. The effect of Vitamin D supplementation on adiposity, blood glycated hemoglobin, serum leptin and tumor necrosis factor-α in Type 2 diabetic patients. Int. J. Prev. Med. 2014, 5, 1091–1098. [Google Scholar] [PubMed]
- Adams, J.S.; Hewison, M. Update in Vitamin D. J. Clin. Endocrinol. Metab. 2010, 95, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Lv, C.; Wang, F.; Gan, K.; Zhang, M.; Tan, W. Modulatory effect of 1,25-dihydroxyvitamin D3 on IL1 β-induced RANKL, OPG, TNF-α and IL-6 expression in human rheumatoid synoviocyte MH7A. Clin. Dev. Immunol. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Al-Daghri, N.M.; Al-Attas, O.S.; Alokail, M.S.; Alkharfy, K.M.; Al-Othman, A.; Draz, H.M.; Yakout, S.M.; Al-Saleh, Y.; Al-Yousef, M.; Sabico, S.; et al. Hypovitaminosis D associations with adverse metabolic parameters are accentuated in patients with Type 2 diabetes mellitus: A body mass index-independent role of adiponectin? J. Endocrinol. Investig. 2013, 36, 1–6. [Google Scholar] [CrossRef]
- Kim, M.; Na, W.; Sohn, C. Correlation between vitamin D and cardiovascular disease predictors in overweight and obese Koreans. J. Clin. Biochem. Nutr. 2013, 52, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Wright, O.R.; Hickman, I.J.; Petchey, W.G.; Sullivan, C.M.; Ong, C.; Rose, F.J.; Ng, C.; Prins, J.B.; Whitehead, J.P.; O’Moore-Sullivan, T.M. The effect of 25-hydroxyvitamin D on insulin sensitivity in obesity: Is it mediated via adiponectin? Can. J. Physiol. Pharmacol. 2013, 91, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Ulutas, O.; Taskapan, H.; Taskapan, M.C.; Temel, I. Vitamin D deficiency, insulin resistance, serum adipokine, and leptin levels in peritoneal dialysis patients. Int. Urol. Nephrol. 2013, 45, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Breslavsky, A.; Frand, J.; Matas, Z.; Boaz, M.; Barnea, Z.; Shargorodsky, M. Effect of high doses of vitamin D on arterial properties, adiponectin, leptin and glucose homeostasis in type 2 diabetic patients. Clin. Nutr. 2013, 32, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Roth, C.L.; Elfers, C.; Kratz, M.; Hoofnagle, A.N. Vitamin d deficiency in obese children and its relationship to insulin resistance and adipokines. J. Obes. 2011, 2011. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.; Guo, D.H.; Pollock, N.K.; Petty, K.; Bhagatwala, J.; Gutin, B.; Houk, C.; Zhu, H.; Dong, Y. Circulating 25-hydroxyvitamin D concentrations are correlated with cardiometabolic risk among American black and white adolescents living in a year-round sunny climate. Diabetes Care 2012, 35, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- Stepien, M.; Nugent, A.P.; Brennan, L. Metabolic profiling of human peripheral blood mononuclear cells: Influence of vitamin d status and gender. Metabolites 2014, 4, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ling, G.; Hong-Xia, S.; Yuan-Min, R.; Chen-Xin, D.; Yuan, T.; Ji, M.; Jing, X. Effects of Vitamin D on insulin sensitivity and the adipokine factors, TNF-α in patients with gestational diabetes mellitus. Her. Med. 2014, 33, 593–597. [Google Scholar]
- Kiyak, C.E.; Engin-Üstun, Y.; Sari, N.; Göçmen, A.Y.; Seckin, L.; Kara, M.; Metin, A.; Polat, M.F. Is there association between vitamin D levels, apelin 36, and visfatin in PCOS? Gynecol. Endocrinol. 2016, 32, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Savastano, S.; Valentino, R.; Di Somma, C.; Orio, F.; Pivonello, C.; Passaretti, F.; Brancato, V.; Formisano, P.; Colao, A.; Beguinot, F.; et al. Serum 25-Hydroxyvitamin D Levels, phosphoprotein enriched in diabetes gene product(PED/PEA-15) and leptin-to-adiponectin ratio in women with PCOS. Nutr. Metab. 2011, 8, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anusha, K.; Hettiaratchi, U.P.K.; Athiththan, L.V.; Perera, P.P.R. Inter-relationship of serum leptin levels with selected anthropometric parameters among a non-diabetic population: A cross-sectional study. Eat. Weight Disord. 2017. [Google Scholar] [CrossRef] [PubMed]
- Krzyzanowska, K.; Aso, Y.; Mittermayer, F.; Inukai, T.; Brix, J.; Schernthaner, G. High-molecular-weight adiponectin does not predict cardiovascular events in patients with type 2 diabetes. Transl. Res. 2009, 153, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Tingelstad, H.C.; Filion, L.G.; Martin, J.; Spivock, M.; Tang, V.; Haman, F. Levels of circulating cortisol and cytokines in members of the Canadian Armed Forces: Associations with age, sex and anthropometry. Appl. Physiol. Nutr. Metab. 2017. [Google Scholar] [CrossRef] [PubMed]
Women | |||||
Variable | Quartile I (n = 12) | Quartile II (n = 12) | Quartile III (n = 12) | Quartile IV (n = 12) | Total (n = 48) |
25(OH)D3 (ng/mL) | <10.87 | 10.88–19.41 | 19.42–25.81 | >25.82 | |
Age | 59.00 (56.00–63.00) | 53.50 (33.00–61.50) | 30.00 (26.00–43.00) | 57.00 (52.00–61.00) | 55.00 (30.00–62.00) |
BMI (kg/m2) | 32.33 (29.36–38.69) | 24.30 (23.13–30.05) | 23.99 (22.23–25.68) a (K) | 25.36 (23.44–30.80) | 25.36 (23.18–32.36) |
WHR | 0.94 ± 0.09 | 0.84 ± 0.08 | 0.84 ± 0.09 | 0.89 ± 0.09 | 0.88 ± 0.09 |
SBP (mmHg) | 134.42 ± 20.72 | 141.72 ± 22.90 | 136.23 ± 22.10 | 145.08 ± 13.66 | 139.25 ± 19.98 |
DBP (mmHg) | 74.67 ± 11.77 | 77.73 ± 11.69 | 83.92 ± 12.51 | 78.00 ± 7.89 | 78.71 ± 11.32 |
HbA1c (%) | 8.34 ± 2.33 | 7.09 ± 2.79 | 6.89 ± 2.00 | 8.30 ± 2.33 | 7.71 ± 2.37 |
TC (mg/dL) | 172.63 ± 60.97 | 187.17 ± 39.83 | 178.62 ± 27.69 | 185.00 ± 28.97 | 180.98 ± 39.83 |
TG (mg/dL) | 135.10 ± 56.08 | 111.25 ± 46.89 | 89.46 ± 38.43 | 128.91 ± 119.43 | 114.50 ± 71.129 |
HDL (mg/dL) | 57.00 ± 17.02 | 61.17 ± 8.84 | 68.00 ± 16.13 | 69.75 ± 20.58 | 64.21 ± 16.49 |
LDL (mg/dL) | 91.09 ± 43.09 | 105.63 ± 32.13 | 92.67 ± 27.71 | 91.63 ± 14.29 | 95.29 ± 30.28 |
Men | |||||
Variable | Quartile I (n = 11) | Quartile II (n = 11) | Quartile III (n = 11) | Quartile IV (n = 11) | Total (n = 44) |
25(OH)D3 (ng/mL) | <12.09 | 12.10–17.03 | 17.04–2.29 | >22.30 | |
Age | 45.41 ± 15.76 | 50.63 ± 14.73 | 47.75 ± 13.61 | 43.25 ± 13.74 | 46.68 ± 14.27 |
BMI (kg/m2) | 34.01 ± 14.03 | 33.36 ± 9.36 | 30.81 ± 6.76 | 24.49 ± 3.59 | 30.61 ± 9.73 |
WHR | 0.99 ± 0.10 | 1.00 ± 0.11 | 0.98 ± 0.08 | 0.90 ± 0.04 | 0.97 ± 0.09 |
SBP (mmHg) | 150.50 ± 27.54 | 145.54 ± 32.81 | 137.27 ± 25.63 | 122.58 ± 13.95 *, # (T) | 138.86 ± 27.14 |
DBP (mmHg) | 87.91 ± 22.85 | 84.63 ± 15.56 | 87.00 ± 11.05 | 75.41 ± 10.05 | 83.65 ± 16.10 |
HbA1c (%) | 7.79 ± 2.57 | 7.28 ± 1.62 | 7.01 ± 2.19 | 6.26 ± 1.79 | 7.07 ± 2.09 |
TC (mg/dL) | 171.58 ± 50.41 | 181.60 ± 45.2 | 204.83 ± 45.5 | 173.08 ± 44.29 | 182.82 ± 46.97 |
TG (mg/dL) | 171.00 (88.00–222.00) | 111.00 (98.00–128.00) | 144.00 (103.00–248.00) | 103.00 (94.00–132.00) | 112.00 (93.00–208.00) |
HDL (mg/dL) | 40.50 (33.00–48.00) | 49.50 (38.00–61.00) | 48.50 (41.00–55.50) | 63.00 (41.00–66.50) | 46.50 (39.00–61.00) |
LDL (mg/dL) | 99.80 (93.40–122.60) | 107.66 (98.00–131.20) | 129.20 (106.60–138.00) | 87.40 (54.10–111.10) | 100.80 (87.40–129.80) |
25(OH)D3 (ng/mL) | ||||||
---|---|---|---|---|---|---|
Women (n = 48) | Men (n = 44) | Total (n = 92) | ||||
r | p | r | p | r | p | |
Age | −0.21 | 0.19 | −0.12 | 0.47 | −0.16 | 0.17 |
BMI (kg/m2) | −0.38 | 0.015 | −0.30 | 0.07 | −0.36 | 0.001 |
WHR | −0.30 | 0.06 | −0.30 | 0.06 | −0.33 | 0.003 |
SBP (mmHg) | −0.019 | 0.91 | −0.51 | 0.04 | −0.43 | 0.0003 |
DBP (mmHg) | −0.04 | 0.83 | −0.02 | 0.94 | −0.21 | 0.09 |
HbA1c (%) | 0.18 | 0.40 | −0.01 | 0.96 | −0.08 | 0.51 |
TC (mg/dL) | 0.16 | 0.34 | 0.02 | 0.92 | 0.09 | 0.43 |
TG (mg/dL) | 0.30 | 0.08 | −0.19 | 0.29 | −0.26 | 0.03 |
HDL (mg/dL) | 0.243 | 0.16 | 0.35 | 0.03 | 0.30 | 0.01 |
LDL (mg/dL) | 0.06 | 0.71 | 0.06 | 0.72 | 0.02 | 0.84 |
Leptin (ng/mL) | −0.65 | 0.000007 | −0.53 | 0.0007 | −0.52 | 0.000001 |
Adiponectin (µg/mL) | 0.33 | 0.044 | 0.23 | 0.17 | 0.26 | 0.02 |
L/A ratio | −0.63 | 0.00005 | −0.57 | 0.0002 | −0.54 | 0.000002 |
Resistin (µg/mL) | −0.11 | 0.49 | 0.12 | 0.47 | 0.01 | 0.92 |
Visfatin (µg/mL) | 0.03 | 0.90 | 0.30 | 0.07 | 0.10 | 0.42 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocot, J.; Dziemidok, P.; Kiełczykowska, M.; Kurzepa, J.; Szcześniak, G.; Musik, I. Is There Any Relationship between Plasma 25-Hydroxyvitamin D3, Adipokine Profiles and Excessive Body Weight in Type 2 Diabetic Patients? Int. J. Environ. Res. Public Health 2018, 15, 19. https://doi.org/10.3390/ijerph15010019
Kocot J, Dziemidok P, Kiełczykowska M, Kurzepa J, Szcześniak G, Musik I. Is There Any Relationship between Plasma 25-Hydroxyvitamin D3, Adipokine Profiles and Excessive Body Weight in Type 2 Diabetic Patients? International Journal of Environmental Research and Public Health. 2018; 15(1):19. https://doi.org/10.3390/ijerph15010019
Chicago/Turabian StyleKocot, Joanna, Piotr Dziemidok, Małgorzata Kiełczykowska, Jacek Kurzepa, Grzegorz Szcześniak, and Irena Musik. 2018. "Is There Any Relationship between Plasma 25-Hydroxyvitamin D3, Adipokine Profiles and Excessive Body Weight in Type 2 Diabetic Patients?" International Journal of Environmental Research and Public Health 15, no. 1: 19. https://doi.org/10.3390/ijerph15010019
APA StyleKocot, J., Dziemidok, P., Kiełczykowska, M., Kurzepa, J., Szcześniak, G., & Musik, I. (2018). Is There Any Relationship between Plasma 25-Hydroxyvitamin D3, Adipokine Profiles and Excessive Body Weight in Type 2 Diabetic Patients? International Journal of Environmental Research and Public Health, 15(1), 19. https://doi.org/10.3390/ijerph15010019