Associations between Obesity and Spinal Diseases: A Medical Expenditure Panel Study Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Kopelman, P.G. Obesity as a medical problem. Nature 2000, 404, 635–643. [Google Scholar] [PubMed]
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of Obesity in the United States, 2009–2010; NCHS Data Brief; NCHS: Atlanta, GA, USA, 2012; pp. 1–8. [Google Scholar]
- Ogden, C.L.; Carroll, M.D.; Fryar, C.D.; Flegal, K.M. Prevalence of Obesity among Adults and Youth: United States, 2011–2014; NCHS Data Brief; NCHS: Atlanta, GA, USA, 2015; pp. 1–8. [Google Scholar]
- Zhang, J.Q.; Geng, H.; Ma, M.; Nan, X.Y.; Sheng, B.W. Metabolic Syndrome Components are Associated with Increased Prostate Cancer Risk. Int. Med. J. Exp. Clin. Res. 2015, 21, 2387–2396. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Lavie, C.J.; Blair, S.N. Obesity and Cardiovascular Disease. Circ. Res. 2016, 118, 1752–1770. [Google Scholar] [CrossRef] [PubMed]
- Ingaramo, R.A. Obesity, Diabetes, and Other Cardiovascular Risk Factors in Native Populations of South America. Curr. Hypertens. Rep. 2016, 18, 9. [Google Scholar] [CrossRef] [PubMed]
- Sowers, M. Epidemiology of risk factors for osteoarthritis: Systemic factors. Curr. Opin. Rheumatol. 2001, 13, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Hinton, R.; Moody, R.L.; Davis, A.W.; Thomas, S.F. Osteoarthritis: Diagnosis and therapeutic considerations. Am. Fam. Physician 2002, 65, 841–848. [Google Scholar] [PubMed]
- Koyanagi, A.; Stickley, A.; Garin, N.; Miret, M.; Ayuso-Mateos, J.L.; Leonardi, M.; Koskinen, S.; Galas, A.; Haro, J.M. The association between obesity and back pain in nine countries: A cross-sectional study. BMC Public Health 2015, 15, 123. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Heuch, I.; Heuch, I.; Hagen, K.; Zwart, J.A. A Comparison of Anthropometric Measures for Assessing the Association between Body Size and Risk of Chronic Low Back Pain: The HUNT Study. PLoS ONE 2015, 10, e0141268. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shiri, R.; Lallukka, T.; Karppinen, J.; Viikari-Juntura, E. Obesity as a risk factor for sciatica: A meta-analysis. Am. J. Epidemiol 2014, 179, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Brooks, C.; Siegler, J.C.; Marshall, P.W. Relative abdominal adiposity is associated with chronic low back pain: A preliminary explorative study. BMC Public Health 2016, 16, 700. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.H.; Beckenkamp, P.; Maher, C.G.; Hopper, J.L.; Ferreira, M.L. Nature or nurture in low back pain? Results of a systematic review of studies based on twin samples. Eur. J. Pain 2013, 17, 957–971. [Google Scholar] [CrossRef] [PubMed]
- Heuch, I.; Heuch, I.; Hagen, K.; Zwart, J.A. Body mass index as a risk factor for developing chronic low back pain: A follow-up in the Nord-Trondelag Health Study. Spine 2013, 38, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Smuck, M.; Kao, M.C.; Brar, N.; Martinez-Ith, A.; Choi, J.; Tomkins-Lane, C.C. Does physical activity influence the relationship between low back pain and obesity? Spine J. 2014, 14, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Manchikanti, L.; Singh, V.; Falco, F.J.; Benyamin, R.M.; Hirsch, J.A. Epidemiology of low back pain in adults. Neuromodulation 2014, 17 (Suppl. 2), 3–10. [Google Scholar] [CrossRef] [PubMed]
- Wilson Zingg, R.; Kendall, R. Obesity, Vascular Disease, and Lumbar Disk Degeneration: Associations of Comorbidities in Low Back Pain. PM&R 2016. [Google Scholar] [CrossRef]
- Manchikanti, L.; Singh, V.; Datta, S.; Cohen, S.P.; Hirsch, J.A. Comprehensive review of epidemiology, scope, and impact of spinal pain. Pain Physician 2009, 12, E35–E70. [Google Scholar] [PubMed]
- Wertli, M.M.; Held, U.; Campello, M.; Schecter Weiner, S. Obesity is associated with more disability at presentation and after treatment in low back pain but not in neck pain: Findings from the OIOC registry. BMC Musculoskelet. Disord. 2016, 17, 140. [Google Scholar] [CrossRef] [PubMed]
- Knutsson, B.; Sanden, B.; Sjoden, G.; Jarvholm, B.; Michaelsson, K. Body Mass Index and Risk for Clinical Lumbar Spinal Stenosis: A Cohort Study. Spine 2015, 40, 1451–1456. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Martinez, N.G.; Perez-Orribo, L.; Kalb, S.; Reyes, P.M.; Newcomb, A.G.; Hughes, J.; Theodore, N.; Crawford, N.R. The role of obesity in the biomechanics and radiological changes of the spine: An in vitro study. J. Neurosurg. Spine 2016, 24, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Dario, A.B.; Ferreira, M.L.; Refshauge, K.M.; Lima, T.S.; Ordonana, J.R.; Ferreira, P.H. The relationship between obesity, low back pain, and lumbar disc degeneration when genetics and the environment are considered: A systematic review of twin studies. Spine J. 2015, 15, 1106–1117. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liang, J.; Wu, W.K.; Yu, X.; Yu, J.; Weng, X.; Shen, J. Leptin activates RhoA/ROCK pathway to induce cytoskeleton remodeling in nucleus pulposus cells. Int. J. Mol. Sci. 2014, 15, 1176–1188. [Google Scholar] [CrossRef] [PubMed]
- Teraguchi, M.; Yoshimura, N.; Hashizume, H.; Muraki, S.; Yamada, H.; Minamide, A.; Oka, H.; Ishimoto, Y.; Nagata, K.; Kagotani, R.; et al. Prevalence and distribution of intervertebral disc degeneration over the entire spine in a population-based cohort: The Wakayama Spine Study. Osteoarthr. Cartil. 2014, 22, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Takatalo, J.; Karppinen, J.; Taimela, S.; Niinimaki, J.; Laitinen, J.; Sequeiros, R.B.; Samartzis, D.; Korpelainen, R.; Nayha, S.; Remes, J.; et al. Association of abdominal obesity with lumbar disc degeneration—A magnetic resonance imaging study. PLoS ONE 2013, 8, e56244. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Xu, X.; Li, X.; Wu, W. Association Between Overweight or Obesity and Lumbar Disk Diseases: A Meta-Analysis. Clin. Spine Surg. 2015, 28, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Urquhart, D.M.; Kurniadi, I.; Triangto, K.; Wang, Y.; Wluka, A.E.; O’Sullivan, R.; Jones, G.; Cicuttini, F.M. Obesity is associated with reduced disc height in the lumbar spine but not at the lumbosacral junction. Spine 2014, 39, E962–E966. [Google Scholar] [CrossRef] [PubMed]
- Onyemaechi, N.O.; Anyanwu, G.E.; Obikili, E.N.; Onwuasoigwe, O.; Nwankwo, O.E. Impact of overweight and obesity on the musculoskeletal system using lumbosacral angles. Patient Preference Adher. 2016, 10, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Martinez, E.; Nava-Ruiz, C.; Escamilla-Chimal, E.; Borgonio-Perez, G.; Rivas-Arancibia, S. The Effect of Chronic Ozone Exposure on the Activation of Endoplasmic Reticulum Stress and Apoptosis in Rat Hippocampus. Front. Aging Neurosci. 2016, 8, 245. [Google Scholar] [CrossRef] [PubMed]
- De la Garza-Ramos, R.; Bydon, M.; Abt, N.B.; Sciubba, D.M.; Wolinsky, J.P.; Bydon, A.; Gokaslan, Z.L.; Rabin, B.; Witham, T.F. The impact of obesity on short- and long-term outcomes after lumbar fusion. Spine 2015, 40, 56–61. [Google Scholar] [CrossRef] [PubMed]
- McGuire, K.J.; Khaleel, M.A.; Rihn, J.A.; Lurie, J.D.; Zhao, W.; Weinstein, J.N. The effect of high obesity on outcomes of treatment for lumbar spinal conditions: Subgroup analysis of the spine patient outcomes research trial. Spine 2014, 39, 1975–1980. [Google Scholar] [CrossRef] [PubMed]
- Burgstaller, J.M.; Held, U.; Brunner, F.; Porchet, F.; Farshad, M.; Steurer, J.; Ulrich, N.H.; Group, L.S. The Impact of Obesity on the Outcome of Decompression Surgery in Degenerative Lumbar Spinal Canal Stenosis: Analysis of the Lumbar Spinal Outcome Study (LSOS): A Swiss Prospective Multicenter Cohort Study. Spine 2016, 41, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Higgins, D.M.; Mallory, G.W.; Planchard, R.F.; Puffer, R.C.; Ali, M.; Gates, M.J.; Clifton, W.E.; Jacob, J.T.; Curry, T.B.; Kor, D.J.; et al. Understanding the Impact of Obesity on Short-term Outcomes and In-hospital Costs After Instrumented Spinal Fusion. Neurosurgery 2016, 78, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Giannadakis, C.; Nerland, U.S.; Solheim, O.; Jakola, A.S.; Gulati, M.; Weber, C.; Nygaard, O.P.; Solberg, T.K.; Gulati, S. Does Obesity Affect Outcomes After Decompressive Surgery for Lumbar Spinal Stenosis? A Multicenter, Observational, Registry-Based Study. World Neurosurg. 2015, 84, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Kong, L.; Meng, F.; Zhang, Y.; Shen, Y. Impact of obesity on lumbar spinal surgery outcomes. J. Clin. Neurosci. 2016, 28, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Lingutla, K.K.; Pollock, R.; Benomran, E.; Purushothaman, B.; Kasis, A.; Bhatia, C.K.; Krishna, M.; Friesem, T. Outcome of lumbar spinal fusion surgery in obese patients: A systematic review and meta-analysis. Bone Jt. J. 2015, 97, 1395–1404. [Google Scholar] [CrossRef] [PubMed]
- Buerba, R.A.; Fu, M.C.; Gruskay, J.A.; Long, W.D., 3rd; Grauer, J.N. Obese Class III patients at significantly greater risk of multiple complications after lumbar surgery: An analysis of 10,387 patients in the ACS NSQIP database. Spine J. 2014, 14, 2008–2018. [Google Scholar] [CrossRef] [PubMed]
- Rihn, J.A.; Kurd, M.; Hilibrand, A.S.; Lurie, J.; Zhao, W.; Albert, T.; Weinstein, J. The influence of obesity on the outcome of treatment of lumbar disc herniation: Analysis of the Spine Patient Outcomes Research Trial (SPORT). J. Bone Jt. Surg. Am. Vol. 2013, 95, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sing, D.C.; Yue, J.K.; Metz, L.N.; Winkler, E.A.; Zhang, W.R.; Burch, S.; Berven, S.H. Obesity Is an Independent Risk Factor of Early Complications After Revision Spine Surgery. Spine 2016, 41, E632–E640. [Google Scholar] [CrossRef] [PubMed]
- Soroceanu, A.; Diebo, B.G.; Burton, D.; Smith, J.S.; Deviren, V.; Shaffrey, C.; Kim, H.J.; Mundis, G.; Ames, C.; Errico, T.; et al. Radiographical and Implant-Related Complications in Adult Spinal Deformity Surgery: Incidence, Patient Risk Factors, and Impact on Health-Related Quality of Life. Spine 2015, 40, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Ou, C.Y.; Lee, T.C.; Lee, T.H.; Huang, Y.H. Impact of body mass index on adjacent segment disease after lumbar fusion for degenerative spine disease. Neurosurgery 2015, 76, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Yadla, S.; Malone, J.; Campbell, P.G.; Maltenfort, M.G.; Harrop, J.S.; Sharan, A.D.; Vaccaro, A.R.; Ratliff, J.K. Obesity and spine surgery: Reassessment based on a prospective evaluation of perioperative complications in elective degenerative thoracolumbar procedures. Spine J. 2010, 10, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Samartzis, D.; Karppinen, J.; Chan, D.; Luk, K.D.; Cheung, K.M. The association of lumbar intervertebral disc degeneration on magnetic resonance imaging with body mass index in overweight and obese adults: A population-based study. Arthritis Rheum. 2012, 64, 1488–1496. [Google Scholar] [CrossRef] [PubMed]
- Samartzis, D.; Karppinen, J.; Mok, F.; Fong, D.Y.; Luk, K.D.; Cheung, K.M. A population-based study of juvenile disc degeneration and its association with overweight and obesity, low back pain, and diminished functional status. J. Bone Jt. Surg. Am. Vol. 2011, 93, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Longo, U.G.; Denaro, L.; Spiezia, F.; Forriol, F.; Maffulli, N.; Denaro, V. Symptomatic disc herniation and serum lipid levels. Eur. Spine J. 2011, 20, 1658–1662. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.W.; Cohen, S.B.; Banthin, J.S. The medical expenditure panel survey: A national information resource to support healthcare cost research and inform policy and practice. Med. Care 2009, 47 (Suppl. S1), S44–S50. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, F.; Valliant, R. A survey on survey statistics: What is done and can be done in Stata. Stata J. 2007, 7, 1–21. [Google Scholar]
- Liuke, M.; Solovieva, S.; Lamminen, A.; Luoma, K.; Leino-Arjas, P.; Luukkonen, R.; Riihimaki, H. Disc degeneration of the lumbar spine in relation to overweight. Int. J. Obes. 2005, 29, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.E.; Crespo, C.J.; Bartlett, S.J.; Bathon, J.M.; Fontaine, K.R. Relationship between body weight gain and significant knee, hip, and back pain in older Americans. Obes. Res. 2003, 11, 1159–1162. [Google Scholar] [CrossRef] [PubMed]
- Michel, A.; Kohlmann, T.; Raspe, H. The association between clinical findings on physical examination and self-reported severity in back pain. Results of a population-based study. Spine 1997, 22, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Webb, R.; Brammah, T.; Lunt, M.; Urwin, M.; Allison, T.; Symmons, D. Prevalence and predictors of intense, chronic, and disabling neck and back pain in the UK general population. Spine 2003, 28, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Deyo, R.A.; Bass, J.E. Lifestyle and low-back pain. The influence of smoking and obesity. Spine 1989, 14, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Leboeuf-Yde, C.; Kyvik, K.O.; Bruun, N.H. Low back pain and lifestyle. Part II—Obesity. Information from a population-based sample of 29,424 twin subjects. Spine 1999, 24, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Fanuele, J.C.; Abdu, W.A.; Hanscom, B.; Weinstein, J.N. Association between obesity and functional status in patients with spine disease. Spine 2002, 27, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Yagi, M.; Machida, M.; Yasuda, A.; Konomi, T.; Miyake, A.; Fujiyoshi, K.; Kaneko, S.; Takemitsu, M.; Machida, M.; et al. Reoperation rate and risk factors of elective spinal surgery for degenerative spondylolisthesis: Minimum 5-year follow-up. Spine J. 2015, 15, 1536–1544. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kumar, D.; Kumar, S. Risk factors in cervical spondylosis. J. Clin. Orthop. Trauma 2014, 5, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Samal, S.; Panigrahi, P.; Dutta, A. Social epidemiology of excess weight and central adiposity in older Indians: Analysis of Study on global ageing and adult health (SAGE). BMJ Open 2015, 5, e008608. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.B.; Smith, M.S. Obesity Statistics. Prim. Care 2016, 43, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, L.; Du, C.; Mo, Z.; Fan, Y. A comparative study on dynamic stiffness in redtypical finite element model and multi-body model of redC6-C7 cervical spine segment. Int. J. Numer. Methods Biomed. Eng. 2016. [Google Scholar] [CrossRef] [PubMed]
- Carrier, C.S.; Bono, C.M.; Lebl, D.R. Evidence-based analysis of adjacent segment degeneration and disease after ACDF: A systematic review. Spine J. 2013, 13, 1370–1378. [Google Scholar] [CrossRef] [PubMed]
- Collier, T. Review of Alan Acock’s a Gentle Introduction to Stata. Stata J. 2015, 15, 588–593. [Google Scholar]
- Fabris de Souza, S.A.; Faintuch, J.; Valezi, A.C.; Sant’Anna, A.F.; Gama-Rodrigues, J.J.; de Batista Fonseca, I.C.; de Melo, R.D. Postural changes in morbidly obese patients. Obes. Surg. 2005, 15, 1013–1016. [Google Scholar] [CrossRef] [PubMed]
- Rodacki, A.L.; Fowler, N.E.; Provensi, C.L.; Rodacki Cde, L.; Dezan, V.H. Body mass as a factor in stature change. Clin. Biomech. 2005, 20, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T.; Goggins, J.; Niu, J.; Zhang, Y.; Hunter, D.J. The effect of body weight on progression of knee osteoarthritis is dependent on alignment. Arthritis Rheum. 2004, 50, 3904–3909. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.; Lou, C.; Cahue, S.; Dunlop, D.D. The mechanism of the effect of obesity in knee osteoarthritis: The mediating role of malalignment. Arthritis Rheum. 2000, 43, 568–575. [Google Scholar] [CrossRef]
- Yamakawa, K.; Tsai, C.K.; Haig, A.J.; Miner, J.A.; Harris, M.J. Relationship between ambulation and obesity in older persons with and without low back pain. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Verbunt, J.A.; Seelen, H.A.; Vlaeyen, J.W.; van de Heijden, G.J.; Heuts, P.H.; Pons, K.; Knottnerus, J.A. Disuse and deconditioning in chronic low back pain: Concepts and hypotheses on contributing mechanisms. Eur. J. Pain 2003, 7, 9–21. [Google Scholar] [CrossRef]
- Lean, M.E. Pathophysiology of obesity. Proc. Nutr. Soc. 2000, 59, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Miscio, G.; Guastamacchia, G.; Brunani, A.; Priano, L.; Baudo, S.; Mauro, A. Obesity and peripheral neuropathy risk: A dangerous liaison. J. Peripher. Nerv. Syst. 2005, 10, 354–358. [Google Scholar] [CrossRef] [PubMed]
- De Block, C.E.; De Leeuw, I.H.; Van Gaal, L.F. Impact of overweight on chronic microvascular complications in type 1 diabetic patients. Diabetes Care 2005, 28, 1649–1655. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, S.; Chaturvedi, N.; Eaton, S.E.; Ward, J.D.; Manes, C.; Ionescu-Tirgoviste, C.; Witte, D.R.; Fuller, J.H. Vascular risk factors and diabetic neuropathy. N. Engl. J. Med. 2005, 352, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, F. N-3 Polyunsaturated Fatty Acids and Inflammation in Obesity: Local Effect and Systemic Benefit. BioMed Res. Int. 2015, 2015, 581469. [Google Scholar] [CrossRef] [PubMed]
- Hamminga, E.A.; van der Lely, A.J.; Neumann, H.A.; Thio, H.B. Chronic inflammation in psoriasis and obesity: Implications for therapy. Med. Hypotheses 2006, 67, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Moschen, A.R. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 2006, 6, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Lord, G.M.; Matarese, G.; Howard, J.K.; Baker, R.J.; Bloom, S.R.; Lechler, R.I. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 1998, 394, 897–901. [Google Scholar] [PubMed]
- Xie, Q.; Wei, M.; Kang, X.; Liu, D.; Quan, Y.; Pan, X.; Liu, X.; Liao, D.; Liu, J.; Zhang, B. Reciprocal inhibition between miR-26a and NF-kappaB regulates obesity-related chronic inflammation in chondrocytes. Biosci. Rep. 2015, 35, e00204. [Google Scholar] [PubMed]
- Weber, K.T.; Alipui, D.O.; Sison, C.P.; Bloom, O.; Quraishi, S.; Overby, M.C.; Levine, M.; Chahine, N.O. Serum levels of the proinflammatory cytokine interleukin-6 vary based on diagnoses in individuals with lumbar intervertebral disc diseases. Arthritis Res. Ther. 2016, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Lao, L.; Zhong, G.; Li, X.; Liu, Z. A preliminary association study of fat mass and obesity associated gene polymorphisms and degenerative disc disease in a Chinese Han population. J. Int. Med. Res. 2014, 42, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Yang, Y.; Qiu, G. Association study between the polymorphisms of the fat mass- and obesity-associated gene with the risk of intervertebral disc degeneration in the Han Chinese population. Genet. Test. Mol. Biomark. 2013, 17, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Velmurugan, G.V.; Huang, H.; Sun, H.; Candela, J.; Jaiswal, M.K.; Beaman, K.D.; Yamashita, M.; Prakriya, M.; White, C. Depletion of H2S during obesity enhances store-operated Ca2+ entry in adipose tissue macrophages to increase cytokine production. Sci. Signal. 2015, 8, ra128. [Google Scholar] [CrossRef] [PubMed]
- Khimich, S. Level of sensitivity of pain in patients with obesity. Acta Chir. Hung. 1997, 36, 166–167. [Google Scholar] [PubMed]
- Janke, E.A.; Collins, A.; Kozak, A.T. Overview of the relationship between pain and obesity: What do we know? Where do we go next? J. Rehabil. Res. Dev. 2007, 44, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Blume, S.W.; Huang, J.C.; Hammer, M.; Graf, T.R. The Economic Burden of Obesity by Glycemic Stage in the United States. Pharmacoeconomics 2015, 33, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Grieve, E.; Fenwick, E.; Yang, H.C.; Lean, M. The disproportionate economic burden associated with severe and complicated obesity: A systematic review. Obes. Rev. 2013, 14, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; McPherson, K.; Marsh, T.; Gortmaker, S.L.; Brown, M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 2011, 378, 815–825. [Google Scholar] [CrossRef]
- Withrow, D.; Alter, D.A. The economic burden of obesity worldwide: A systematic review of the direct costs of obesity. Obes. Rev. 2011, 12, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Mathar, D.; Horstmann, A.; Pleger, B.; Villringer, A.; Neumann, J. Is it Worth the Effort? Novel Insights into Obesity-Associated Alterations in Cost-Benefit Decision-Making. Front. Behav. Neurosci. 2015, 9, 360. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Santos, R.; Sabench Pereferrer, F.; Estevez Fernandez, S.; del Castillo Dejardin, D.; Vilarrasa, N.; Frutos Bernal, D.; Ruiz de Adana, J.C.; Masdevall Noguera, C.; Torres Garcia, A. Is the morbid obesity surgery profitable in times of crisis? A cost-benefit analysis of bariatric surgery. Cir. Esp. 2013, 91, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J. Obesity: Health economics of bariatric surgery—Benefit versus cost. Nat. Rev. Endocrinol. 2012, 8, 632–633. [Google Scholar] [CrossRef] [PubMed]
- Haby, M.M.; Vos, T.; Carter, R.; Moodie, M.; Markwick, A.; Magnus, A.; Tay-Teo, K.S.; Swinburn, B. A new approach to assessing the health benefit from obesity interventions in children and adolescents: The assessing cost-effectiveness in obesity project. Int. J. Obes. 2006, 30, 1463–1475. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.F.; White, S.; Lindstrom, W., Jr. Cost-benefit analysis for the treatment of severe obesity. World J. Surg. 1998, 22, 1008–1017. [Google Scholar] [CrossRef] [PubMed]
Variable | Percentage | Mean (Standard Deviation) |
---|---|---|
Age | 46.0 (17.4) | |
Female | 52.2% | |
Living a metropolitan statistical area | 88.2% | |
Married | 50.9% | |
Not smoking | 82.2% | |
Diabetes | 11.0% | |
Mental disease | 17.0% | |
Skin problem | 8.1% | |
Pneumonia | 1.3% | |
Asthma | 17.4% | |
Cancer | 5.7% | |
Insurance status | ||
Private insurance | 56.7% | |
Public insurance | 21.3% | |
No insurance | 22.0% | |
Region | ||
Northeast | 16.1% | |
Midwest | 18.5% | |
South | 38.3% | |
West | 27.1% | |
Race/ethnicity | ||
Latino | 27.7% | |
Non-Latino White | 42.7% | |
Non-Latino Black | 19.9% | |
Asian | 9.7% | |
Educational attainment | ||
Below high school | 21.1% | |
High school diploma only | 30.1% | |
Some college | 26.1% | |
College or above | 22.8% | |
Household income | ||
≤Federal poverty line (FPL) | 24.5% | |
125%–200% of FPL | 16.9% | |
200%–400% of FPL | 29.5% | |
Above 400% FPL | 29.0% | |
Weight status | ||
Normal or underweight | 33.8% | |
Overweight | 34.5% | |
Obese | 31.7% |
Any Spinal Disease | Low Back Pain | Spondylosis | Other Cervical Disorder | Intervertebral Disc Disorder | |
---|---|---|---|---|---|
Percentage | 9.7% | 7.4% | 0.2% | 1.3% | 1.7% |
Variables | Any Spinal Disease | Lower Back Pain | Spondylosis | Other Cervical Disorder | Intervertebral Disc Disorder | |||
---|---|---|---|---|---|---|---|---|
Odds Ratio | Odds Ratio | Odds Ratio | Odds Ratio | Odds Ratio | ||||
Age | 1.012 *** | 1.012 *** | 1.029 ** | 1.009 * | 1.009 ** | |||
(0.000) | (0.000) | (0.006) | (0.016) | (0.007) | ||||
Race (Latinos as reference) | ||||||||
White | 1.327 *** | 1.169 * | 5.709 * | 1.613 ** | 2.020 *** | |||
(0.000) | (0.040) | (0.022) | (0.010) | (0.000) | ||||
Black | 0.993 | 0.958 | 4.137 | 0.762 | 1.489 * | |||
(0.932) | (0.626) | (0.080) | (0.268) | (0.049) | ||||
Other | 1.029 | 0.985 | 2.901 | 1.035 | 1.616 | |||
(0.775) | (0.890) | (0.295) | (0.895) | (0.054) | ||||
Education (below school as reference) | ||||||||
High school | 1.181 * | 1.151 | 0.376 | 1.331 | 1.366 | |||
(0.023) | (0.084) | (0.061) | (0.170) | (0.069) | ||||
Some college | 1.334 *** | 1.311 ** | 1.155 | 1.502 | 1.449 * | |||
(0.000) | (0.001) | (0.755) | (0.055) | (0.039) | ||||
College & above | 1.336 *** | 1.328 ** | 0.459 | 1.422 | 1.522 * | |||
(0.000) | (0.002) | (0.168) | (0.122) | (0.031) | ||||
Insurance (private as reference) | ||||||||
Public insurance | 1.122 | 1.165 * | 0.619 | 0.742 | 1.338 * | |||
(0.078) | (0.037) | (0.263) | (0.098) | (0.039) | ||||
No insurance | 0.774 *** | 0.798 ** | 0.153 | 0.744 | 0.803 | |||
(0.001) | (0.008) | (0.070) | (0.141) | (0.227) | ||||
Not smoking | 0.737 *** | 0.783 *** | 0.485 * | 0.890 | 0.535 *** | |||
(0.000) | (0.000) | (0.038) | (0.465) | (0.000) | ||||
Not married | 0.857 ** | 0.870 * | 0.899 | 1.020 | 0.778 * | |||
(0.002) | (0.013) | (0.744) | (0.876) | (0.025) | ||||
Weight (normal/under as reference) | ||||||||
Overweight | 1.257 *** | 1.244 ** | 1.324 | 0.890 | 1.554 ** | |||
(0.000) | (0.001) | (0.504) | (0.426) | (0.001) | ||||
Obese | 1.456 *** | 1.484 *** | 1.974 | 0.852 | 1.696 ** | |||
(0.000) | (0.000) | (0.091) | (0.293) | (0.000) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, B.; Feng, C.; Zhang, D.; Spitler, H.; Shi, L. Associations between Obesity and Spinal Diseases: A Medical Expenditure Panel Study Analysis. Int. J. Environ. Res. Public Health 2017, 14, 183. https://doi.org/10.3390/ijerph14020183
Sheng B, Feng C, Zhang D, Spitler H, Shi L. Associations between Obesity and Spinal Diseases: A Medical Expenditure Panel Study Analysis. International Journal of Environmental Research and Public Health. 2017; 14(2):183. https://doi.org/10.3390/ijerph14020183
Chicago/Turabian StyleSheng, Binwu, Chaoling Feng, Donglan Zhang, Hugh Spitler, and Lu Shi. 2017. "Associations between Obesity and Spinal Diseases: A Medical Expenditure Panel Study Analysis" International Journal of Environmental Research and Public Health 14, no. 2: 183. https://doi.org/10.3390/ijerph14020183