Understanding the Relationship between Socio-Economic Status, Physical Activity and Sedentary Behaviour, and Adiposity in Young Adult South African Women Using Structural Equation Modelling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample and Design
2.2. Anthropometrics
2.3. Socio-Economic Status (SES)
2.4. Physical Activity and Sedentary Behaviour
2.5. Statistical Analyses
3. Results
3.1. Descriptive Characteristics
3.2. Differences in Physical Activity between the Urban and Rural Groups
3.3. Structural Equation Models for BMI and Waist Circumference
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stalsberg, R.; Pedersen, A.V. Effects of socioeconomic status on the physical activity in adolescents: A systematic review of the evidence. Scand. J. Med. Sci. Sports 2010, 20, 368–383. [Google Scholar] [CrossRef] [PubMed]
- Micklesfield, L.K.; Pedro, T.M.; Kahn, K.; Kinsman, J.; Pettifor, J.M.; Tollman, S.; Norris, S.A. Physical activity and sedentary behavior among adolescents in rural South Africa: Levels, patterns and correlates. BMC Public Health 2014, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- McLaren, L. Socioeconomic status and obesity. Epidemiol. Rev. 2007, 29, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Roskam, A.J.R.; Kunst, A.E.; Van Oyen, H.; Demarest, S.; Klumbiene, J.; Regidor, E.; Helmert, U.; Jusot, F.; Dzurova, D.; Mackenbach, J.P.; et al. Comparative appraisal of educational inequalities in overweight and obesity among adults in 19 European countries. Int. J. Epidemiol. 2010, 39, 392–404. [Google Scholar] [CrossRef] [PubMed]
- Letamo, G. The prevalence of, and factors associated with, overweight and obesity in Botswana. J. Biosoc. Sci. 2011, 43, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Dake, F.A.; Tawiah, E.O.; Badasu, D.M. Sociodemographic correlates of obesity among Ghanaian women. Public Health Nutr. 2010, 14, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Steyn, N.P.; Nel, J.H.; Parker, W.A.; Ayah, R.; Mbithe, D. Dietary, social, and environmental determinants of obesity in Kenyan women. Scand. J. Public Health 2011, 39, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Olatunbosun, S.T.; Kaufman, J.S.; Bella, A.F. Prevalence of obesity and overweight in urban adult Nigerians. Obes. Rev. 2010, 12, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Puoane, T.; Steyn, K.; Bradshaw, D.; Laubscher, R.; Fourie, J.; Lambert, V.; Mbananga, N. Obesity in South Africa: The South African demographic and health survey. Obes. Res. 2002, 10, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Uys, M.; Bassett, S.; Draper, C.E.; Micklesfield, L.; Monyeki, A.; de Villiers, A.; Lambert, E.V.; HAKSA 2016 Writing Group. Results from South Africa’s 2016 report card on physical activity for children and youth. J. Phys. Act. Health 2016, 13, S265–S273. [Google Scholar] [CrossRef] [PubMed]
- Kimani-Murage, E.W.; Kahn, K.; Pettifor, J.M.; Tollman, S.M.; Dunger, D.B.; Gómez-Olivé, X.F.; Norris, S.A. The prevalence of stunting, overweight and obesity, and metabolic disease risk in rural South African children. BMC Public Health 2010, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Dugas, L.R.; Kliethermes, S.; Plange-Rhule, J.; Tong, L.; Bovet, P.; Forrester, T.E.; Lambert, E.V.; Schoeller, D.A.; Durzo-Arvizu, R.A.; Shoham, D.A.; et al. Accelerometer-measured physical activity is not associated with two-year weight change in African-origin adults from five diverse populations. Peer J. 2017, 5, e2902. [Google Scholar] [CrossRef] [PubMed]
- Dickie, K.; Micklesfield, L.K.; Chantler, S.; Lambert, E.V.; Goedecke, J.H. Cardiorespiratory fitness and light-intensity physical activity are independently associated with reduced cardiovascular disease risk in urban black South African Women: A cross-sectional study. Metab. Syndr. Relat. Disord. 2016, 14, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Prioreschi, A.; Brage, S.; Westgate, K.; Norris, S.A.; Micklesfield, L.K. Cardiorespiratory fitness levels and associations with physical activity and body composition in young South African adults from Soweto. BMC Public Health 2017, 17, 301. [Google Scholar] [CrossRef] [PubMed]
- Statistics South Africa (Stats SA). Mortality and Causes of Death in South Africa, 2015: Findings from Death Notification; Statistics South Africa: Pretoria, South Africa, 2017; pp. 1–140.
- Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 2009, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.C.; Roberts, J.; Catov, J.; Krishnamurthy, R.; Shypailo, R.; Bacha, F. Mother’s pre-pregnancy BMI is an important determinant of adverse cardiometabolic risk in childhood. Pediatr. Diabetes 2015, 16, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Kahn, K.; Collinson, M.A.; Gómez-Olivé, F.X.; Mokoena, O.; Twine, R.; Mee, P.; Afolabi, S.A.; Clark, B.D.; Kabudula, C.W.; Khosa, A.; et al. Profile: Agincourt health and socio-demographic surveillance system. Int. J. Epidemiol. 2012, 41, 988–1001. [Google Scholar] [CrossRef] [PubMed]
- Richter, L.; Norris, S.; Pettifor, J.; Yach, D.; Cameron, N. Cohort profile: Mandela’s children: The 1990 birth to twenty study in South Africa. Int. J. Epidemiol. 2007, 36, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Filmer, D.; Scott, K. Assessing asset indices. Demography 2011, 49, 359–392. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Maslin, T.S.; Armstrong, T. Global physical activity questionnaire (GPAQ): Nine country reliability and validity study. J. Phys. Act. Health 2009, 6, 790–804. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Schermelleh-Engel, K.; Moosbrugger, H.; Muller, H. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods Psychol. Res. Online 2003, 8, 23–74. [Google Scholar]
- Vandenberg, R.J. Introduction: Statistical and methodological myths and urban legends. Organ. Res. Methods 2006, 9, 194–201. [Google Scholar] [CrossRef]
- Malambo, P.; Kengne, A.P.; Lambert, E.V.; de Villiers, A.; Puoane, T. Prevalence and socio-demographic correlates of physical activity levels among South African adults in Cape Town and Mount Frere communities in 2008–2009. Arch. Public Health 2016, 74, 54. [Google Scholar] [CrossRef] [PubMed]
- Peer, N.; Bradshaw, D.; Laubscher, R.; Steyn, N.; Steyn, K. Urban–rural and gender differences in tobacco and alcohol use, diet and physical activity among young black South Africans between 1998 and 2003. Glob. Health Action 2013, 6, 934. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, I.O.; Adebamowo, C.; Adami, H.-O.; Dalal, S.; Diamond, M.B.; Bajunirwe, F.; Guwatudde, D.; Njelekela, M.; Nankya-Mutyoba, J.; Chiwanga, F.S.; et al. Urban–rural and geographic differences in overweight and obesity in four sub-Saharan African adult populations: A multi-country cross-sectional study. BMC Public Health 2016, 16, 1126. [Google Scholar] [CrossRef] [PubMed]
- Shisana, O.; Labadarios, D.; Rehle, T.; Simbayi, L.; Zuma, K.; Dhansay, A.; Reddy, P.; Parker, W.; Hoosain, E.; Naidoo, P.; et al. South African National Health and Nutrition Examination Survey (SANHANES-1); HSRC Press: Cape Town, South Africa, 2013. [Google Scholar]
- Moniruzzaman, M.; Ahmed, M.S.A.M.; Zaman, M.M. Physical activity levels and associated socio-demographic factors in Bangladeshi adults: A cross-sectional study. BMC Public Health 2017, 17, 59. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Ono, T.; Strong, K.L.; Chatterji, S.; Morabia, A. Worldwide variability in physical inactivity. Am. J. Prev. Med. 2008, 34, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Louazani, S.A.; Riley, L.M.; Cowan, M.J.; Bovet, P.; Damasceno, A.; Sambo, B.H.; Tesfaye, F.; Armstrong, T.P. Physical activity in 22 African Countries. Am. J. Prev. Med. 2011, 41, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Malambo, P.; Kengne, A.P.; Lambert, E.V.; De Villers, A.; Puoane, T. Association between perceived built environmental attributes and physical activity among adults in South Africa. BMC Public Health 2017, 17, 213. [Google Scholar] [CrossRef] [PubMed]
- Cook, I.; Alberts, M.; Brits, J.S.; Choma, S.R.; Mkhonto, S.S. Descriptive epidemiology of ambulatory activity in rural, black South Africans. Med. Sci. Sports Exerc. 2010, 42, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Hosseinpoor, A.R.; Bergen, N.; Kunst, A.; Harper, S.; Guthold, R.; Rekve, D.; d’Espaignet, E.T.; Naidoo, N.; Chatterji, S. Socioeconomic inequalities in risk factors for non communicable diseases in low-income and middle-income countries: Results from the World Health Survey. BMC Public Health 2012, 12, 912. [Google Scholar] [CrossRef] [PubMed]
- Bauman, A.; Ma, G.; Cuevas, F.; Omar, Z.; Waqanivalu, T.; Phongsavan, P.; Keke, K.; Bhushan, A.; Equity and Non-communicable Disease Risk Factors Project Collaboration Group. Cross-national comparisons of socioeconomic differences in the prevalence of leisure-time and occupational physical activity, and active commuting in six Asia-Pacific countries. J. Epidemiol. Community Health 2010, 65, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Beenackers, M.A.; Kamphuis, C.B.M.; Giskes, K.; Brug, J.; Kunst, A.E.; Burdorf, A.; van Lenthe, F.J. Socioeconomic inequalities in occupational, leisure-time, and transport related physical activity among European adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wu, Y.; Narimatsu, H.; Li, X.; Wang, C.; Luo, J.; Zhao, G.; Chen, Z.; Xu, W. Socioeconomic status and physical activity in Chinese adults: A report from a community-based survey in Jiaxing, China. PLoS ONE 2015, 10, e0132918. [Google Scholar] [CrossRef] [PubMed]
- Mielke, G.I.; da Silva, I.C.M.; Owen, N.; Hallal, P.C. Brazilian adults’ sedentary behaviors by life domain: Population-based study. PLoS ONE 2014, 9, e91614. [Google Scholar] [CrossRef] [PubMed]
- Mielke, G.I.; Brown, W.J.; Nunes, B.P.; Silva, I.C.M.; Hallal, P.C. Socioeconomic correlates of sedentary behavior in adolescents: Systematic review and meta-analysis. Sports Med. 2016, 47, 61–75. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, G.; Perchoux, C.; Mensah, K.; Lakerveld, J.; van der Ploeg, H.; Bernaards, C.; Chastin, S.F.; Simon, C.; O’Gorman, D.; Nazare, J.A.; et al. A systematic review of correlates of sedentary behaviour in adults aged 18–65 years: A socio-ecological approach. BMC Public Health 2016, 16, 163. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, E.; Grunseit, A.C.; Coombs, N.; Ding, D.; Chau, J.Y.; Phongsavan, P.; Bauman, A.; SEEF Project. Associations between socio-economic position and sedentary behaviour in a large population sample of Australian middle and older-aged adults: The social, economic, and environmental factor (SEEF) study. Prev. Med. 2014, 63, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Blair, S.N.; Archer, E.; Hand, G.A. Commentary: Luke and cooper are wrong: Physical activity has a crucial role in weight management and determinants of obesity. Int. J. Epidemiol. 2014, 42, 1836–1838. [Google Scholar] [CrossRef] [PubMed]
- Church, T.S.; Thomas, D.M.; Tudor-Locke, C.; Katzmarzyk, P.T.; Earnest, C.P.; Rodarte, R.Q.; Martin, C.K.; Blair, S.N.; Bouchard, C. Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. PLoS ONE 2011, 6, e19657. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.D.; Lundeen, E.A.; Martorell, R.; Suchdev, P.S.; Mehta, N.K.; Richter, L.M.; Norris, S.A. Pubertal development and prepubertal height and weight jointly predict young adult height and body mass index in a prospective study in South Africa. J. Nutr. 2016, 146, 1394–1401. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total | n | Urban | n | Rural | p Value |
---|---|---|---|---|---|---|
Age (years) | 22.04 (1.24) | 492 | 22.77 (0.49) | 476 | 21.28 (1.31) | 0.001 |
Weight (kg) | 64.62 (14.82) | 493 | 64.67 (15.6) | 473 | 64.55 (14.03) | 0.90 |
Height (m) | 1.61 (0.007) | 492 | 1.60 (0.07) | 475 | 1.61 (0.07) | 0.001 |
BMI (kg/m2) | 25.05 (5.59) | 492 | 25.32 (5.91) | 473 | 24.78 (5.24) | 0.13 |
BMI classification (%) | 0.015 | |||||
Underweight (<18.4 kg/m2) | 5.98 | 7.10 | 4.82 | |||
Normal weight (18.5–24.9 kg/m2) | 51.34 | 46.45 | 56.39 | |||
Overweight (25–29.9 kg/m2) | 26.19 | 29.21 | 23.06 | |||
Obese (>30 kg/m2) | 16.49 | 17.24 | 15.72 | |||
Waist circumference (cm) | 80.60 (12.08) | 493 | 80.18 (12.63) | 477 | 81.03 (11.47) | 0.26 |
Household SES index (sum of assets) | 7.24 (2.70) | 493 | 8.83 (2.37) | 476 | 5.59 (1.91) | 0.001 |
Highest Education attained (%) | 480 | 371 | 0.001 | |||
Primary school | 1.18 | 0.00 | 2.70 | |||
Secondary school | 60.75 | 48.33 | 76.82 | |||
Tertiary education | 38.07 | 51.67 | 20.49 |
Physical Activity Domain | Total Median (IQR) | n | Urban Median (IQR) | n | Rural Median (IQR) | p Value |
---|---|---|---|---|---|---|
Total MVPA (minutes/week) | 870 (280–1810) | 492 | 420 (160–900) | 385 | 1680 (970–2580) | <0.001 |
Total leisure time MVPA (minutes/week) | 0 (0–90) | 492 | 0 (0–0) | 385 | 0 (0–120) | <0.001 |
(Excluding Zero) | 180 (90–360) | 110 | 233 (120–360) | 184 | 128 (60–290) | <0.001 |
Total work MVPA (minutes/week) | 450 (0–1400) | 484 | 45 (0–450) | 385 | 1260 (720–2100) | <0.001 |
Total moderate PA (minutes/week) | 630 (210–1550) | 492 | 360 (140–840) | 385 | 1320 (525–2190) | <0.001 |
Total vigorous PA (minutes/week) | 0 (0–90) | 492 | 0 (0–0) | 385 | 60 (0–360) | <0.001 |
Total walking for travel (minutes/week) | 120 (60–250) | 488 | 140 (65–275) | 385 | 120 (60–240) | 0.060 |
Sitting time (minutes/day) | 300 (240–480) | 492 | 360 (240–480) | 385 | 300 (180–360) | <0.001 |
Effect of: | Outcome: | Direct Effects (95% CI) | Indirect Effects (95% CI) | Total Effects (95% CI) | Proportion of Total Effect Mediated |
---|---|---|---|---|---|
Household assets (urban) | BMI | 0.14 (−0.09; 0.36) | −0.015 (−0.043; 0.013) | 0 .121 (−0.101; 0.343) | 0.1 a |
via MVPA | |||||
MVPA | −41.69 (−73.40; −9.98) ** | −41.69 (−73.40; −9.98) ** | |||
MVPA (urban) # | BMI | 0.04 (−0.03; 0.1) | 0.04 (−0.03; 0.1) | ||
Household assets (rural) | BMI | 0.306 (0.03; 0.59) * | −0.009 (−0.033; 0.014) | 0.30 (0.02; 0.58) * | 0.03 a |
via MVPA | |||||
MVPA | −30.33 (−88.42; 27.76) | −30.33 (−88.42; 27.76) | |||
MVPA (rural) # | BMI | 0.03 (−0.02; 0.08) | 0.03 (−0.02; 0.08) | ||
Household assets (pooled) | BMI | 0.14 (−0.011; 0.30) | −0.06 (−0.113; −0.006) * | 0.083 (−0.07; 0.23) | 0.3 a |
via MVPA | |||||
MVPA | −144 (−170.34; −119.04) *** | −144 (−170.34; −119.04) *** | |||
MVPA (pooled) # | BMI | 0.04 (0.01; 0.08) * | 0.04 (0.01; 0.08) * |
Effect of: | Outcome: | Direct Effects (95% CI) | Indirect Effects (95% CI) | Total Effects (95% CI) | Proportion of Total Effect Mediated |
---|---|---|---|---|---|
Household assets (urban) | BMI | 0.121 (−0.101; 0.3433) | −0.0003 (−0.0151; 0.0145) | 0.12 (−0.10; 0.34) | 0.002 a |
via sitting time | |||||
Sitting time | 38.77 (−12.39; 89.92) | 38.77 (−12.39; 89.92) | |||
Sitting (urban) | BMI | 0.00 (−0.0003; 0.0004) | 0.00 (−0.0003; 0.0004) | ||
Household assets (rural) | BMI | 0.30 (0.02; 0.58) * | −0.002 (−0.02; 0.017) | 0.298 (0.02; 0.58) * | 0.01 a |
via sitting time | |||||
Sitting time | 38.24 (−21.37; 97.85) | 38.24 (−21.37; 97.85) | |||
Sitting (rural) | BMI | −0.000 (−0.0005; 0.0004) | −0.000 (−0.0005; 0.0004) | ||
Household assets (pooled) | BMI | 0.10 (−0.05; 0.25) | −0.006 (−0.036; 0.0234) | 0.090 (−0.06; 0.24) | 0.06 a |
via sitting time | |||||
Sitting time | 101.45 (69.75; 133.15) *** | 101.45 (69.75; 133.15) *** | |||
Sitting (pooled) | BMI | −0.000 (−0.0004; 0.0002) | −0.000 (−0.0004; 0.0002) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Micklesfield, L.K.; Munthali, R.J.; Prioreschi, A.; Said-Mohamed, R.; Van Heerden, A.; Tollman, S.; Kahn, K.; Dunger, D.; Norris, S.A. Understanding the Relationship between Socio-Economic Status, Physical Activity and Sedentary Behaviour, and Adiposity in Young Adult South African Women Using Structural Equation Modelling. Int. J. Environ. Res. Public Health 2017, 14, 1271. https://doi.org/10.3390/ijerph14101271
Micklesfield LK, Munthali RJ, Prioreschi A, Said-Mohamed R, Van Heerden A, Tollman S, Kahn K, Dunger D, Norris SA. Understanding the Relationship between Socio-Economic Status, Physical Activity and Sedentary Behaviour, and Adiposity in Young Adult South African Women Using Structural Equation Modelling. International Journal of Environmental Research and Public Health. 2017; 14(10):1271. https://doi.org/10.3390/ijerph14101271
Chicago/Turabian StyleMicklesfield, Lisa K., Richard J. Munthali, Alessandra Prioreschi, Rihlat Said-Mohamed, Alastair Van Heerden, Stephen Tollman, Kathleen Kahn, David Dunger, and Shane A. Norris. 2017. "Understanding the Relationship between Socio-Economic Status, Physical Activity and Sedentary Behaviour, and Adiposity in Young Adult South African Women Using Structural Equation Modelling" International Journal of Environmental Research and Public Health 14, no. 10: 1271. https://doi.org/10.3390/ijerph14101271
APA StyleMicklesfield, L. K., Munthali, R. J., Prioreschi, A., Said-Mohamed, R., Van Heerden, A., Tollman, S., Kahn, K., Dunger, D., & Norris, S. A. (2017). Understanding the Relationship between Socio-Economic Status, Physical Activity and Sedentary Behaviour, and Adiposity in Young Adult South African Women Using Structural Equation Modelling. International Journal of Environmental Research and Public Health, 14(10), 1271. https://doi.org/10.3390/ijerph14101271