Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities
Abstract
:1. Introduction
2. Origin of Toxic Metals in Tobacco and Transfer of Metals from Tobacco to Smoke
3. Cadmium and Zinc as Markers of Exposure to Tobacco Smoke
4. Evidence for a Role for Cadmium and Zinc in Tobacco-Related Morbidities
5. Cardiovascular Disease
6. Pulmonary Disease
7. Prostate Disease
8. Cervical Cancer
9. Pancreatic Disease
10. Oral Pathologies
11. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pappas, R.S.; Stanfill, S.B.; Watson, C.H.; Ashley, D.L. Analysis of toxic metals in commercial moist snuff and Alaska iqmik. J. Anal. Toxicol. 2008, 32, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Pappas, R.S.; Fresquez, M.R.; Martone, N.; Watson, C.H. Toxic metal concentrations in mainstream smoke from cigarettes available in the USA. J. Anal. Toxicol. 2014, 38, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Adams, D. The mucus barrier and absorption through the oral mucosa. J. Dent. Res. 1975, 54, B19–B26. [Google Scholar] [CrossRef] [PubMed]
- Squier, C.A. The permeability of oral mucosa. Crit. Rev. Oral Biol. Med. 1991, 2, 13–32. [Google Scholar] [CrossRef] [PubMed]
- American Toxic Substances and Disease Registry (ATSDR). Routes of Exposure, Toxicology Curriculum for Communities Trainer’s Manual; Module II; American Toxic Substances and Disease Registry: Atlanta, GA, USA, 2002; pp. 95–100. Available online: http://www.atsdr.cdc.gov/training/toxmanual/pdf/module-2.pdf (accessed on 31 August 2017).
- Mauro, M.; Crosera, M.; Bianco, C.; Bellomo, F.; Bovenzia, M.; Adami, G.; Filon, F.L. In vitro permeability of silver nanoparticles through porcine oromucosal membrane. Colloids Surf. B Biointerfaces 2015, 132, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferin, J.; Oberdorster, G. Translocation of particles from pulmonary alveoli into the interstitium. J. Aerosol Med. 1992, 5, 179–187. [Google Scholar] [CrossRef]
- Oberdorster, G.; Sharp, Z.; Lunts, A.; Kreyling, W.; Cox, C. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J. Toxicol. Environ. Health A 2002, 65, 1531–1543. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences Institute of Medicine. Clearing the Smoke: Assessing the Science Base for Tobacco Harm Reduction, in Committee to Assess the Science Base for Tobacco Harm Reduction, Board on Health Promotion and Disease Prevention; Institute of Medicine: Washington, DC, USA, 2001; p. 656. [Google Scholar]
- Bernhard, D.; Rossman, A.; Wick, G. Metals in cigarette smoke. IUBMB Life 2005, 57, 805–809. [Google Scholar] [CrossRef] [PubMed]
- American Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Cadmium; American Toxic Substances and Disease Registry: Atlanta, GA, USA, 2012; pp. 12–105. Available online: http://www.atsdr.cdc.gov/toxprofiles/tp5.pdf (accessed on 31 August 2017).
- The International Agency for Research on Cancer (IARC). Cadmium and Cadmium Compounds; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization International Agency for Research on Cancer: Lyon, France, 2012; Volume 100C, pp. 121–145. [Google Scholar]
- The International Agency for Research on Cancer (IARC). Tobacco Smoking; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization International Agency for Research on Cancer: Lyon, France, 2012; Volume 100E, pp. 44–154. [Google Scholar]
- Schultze, B.; Lind, P.M.; Larsson, A.; Lind, L. Whole blood and serum concentrations of metals in a Swedish population-based sample. Scand. J. Clin. Lab. Investig. 2014, 74, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Feron, V.J.; Arts, J.H.E.; Kuper, C.F.; Slootweg, P.J.; Woutersen, R.A. Health risks associated with inhaled nasal toxicants. Crit. Rev. Toxicol. 2001, 31, 313–347. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.M. Inflammation in epithelial skin tumours: Old stories and new ideas. Eur. J. Cancer 2006, 42, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Pappas, R.S. Toxic elements in tobacco and in cigarette smoke: Inflammation and sensitization. Metallomics 2011, 3, 1181–1198. [Google Scholar] [CrossRef] [PubMed]
- Ibs, K.-H.; Rink, L. Zinc-altered immune function. J. Nutr. 2003, 133, 1452S–1456S. [Google Scholar] [PubMed]
- Costello, L.C.; Franklin, R.B.; Feng, P.; Tan, M.; Bagasra, O. Zinc and prostate cancer: A critical scientific, medical, and public interest issue (United States). Cancer Causes Control 2005, 16, 901–915. [Google Scholar] [CrossRef] [PubMed]
- Anetor, J.I.; Ajose, F.; Iyanda, A.A.; Babalola, O.O.; Adeniyi, F.A.A. High cadmium/zinc ratio in cigarette smokers: Potential implications as a biomarker of risk of prostate cancer. Niger. J. Physiol. Sci. 2008, 23, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Adamu, C.A.; Bell, P.F.; Mulchi, C.; Chaney, R. Residual metal concentrations in soils and leaf accumulations in tobacco a decade following farmland application of municipal sludge. Environ. Pollut. 1989, 56, 113–126. [Google Scholar] [CrossRef]
- Bache, C.A.; Doss, G.J.; Hoffmann, D.; Adams, J.D. Cadmium and nickel in mainstream particulates of cigarettes containing tobacco grown on a low-cadmium soil-sludge mixture. Toxicol. Environ. Health 1985, 16, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Mulchi, C.L.; Bell, P.F.; Adamu, C.; Chaney, R. Long term availability of metals in sludge amended acid soils. J. Plant Nutr. 1987, 10, 1149–1161. [Google Scholar] [CrossRef]
- Fresquez, M.R.; Pappas, R.S.; Watson, C.H. Establishment of Toxic Metal Reference Range in Tobacco from U.S. Cigarettes. J. Anal. Toxicol. 2013, 37, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Pappas, R.S.; Martone, N.; Gonzalez-Jimenez, N.; Fresquez, M.R.; Watson, C.H. Determination of toxic metals in little cigar tobacco with ‘Triple Quad’ ICP-MS. J. Anal. Toxicol. 2015, 39, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Rodgman, A.; Perfetti, P.T. The Chemical Components of Tobacco and Tobacco Smoke, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013; p. 3091. [Google Scholar]
- Fresquez, M.R.; Pappas, R.S.; Watson, C.H. Determination of Differences in Cadmium, Mercury, Copper, Lead and Zinc Transport in Cigarette Smoke Using Electrothermal Vaporization-Inductively Coupled Plasma-Mass Spectrometry. In Proceedings of the Winter Conference on Plasma Spectrochemistry, Amelia Island, FL, USA, 6–11 January 2014. [Google Scholar]
- Pappas, R.S.; Fresquez, M.R.; Watson, C.H. Cigarette smoke cadmium breakthrough from traditional filters: Implications for exposure. J. Anal. Toxicol. 2015, 39, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Kasahara, M.; Nakatsuka, H.; Ikeda, M. Cadmium and lead contents of cigarettes produced in various areas of the world. Sci. Total Environ. 1987, 66, 29–37. [Google Scholar] [CrossRef]
- O’Connor, R.J.; Li, Q.; Stephens, W.E.; Hammond, D.; Elton-Marshall, T.; Cummings, K.M.; Giovino, G.A.; Fong, G.T. Cigarettes sold in China: Design, emissions and metals. Tob. Control 2010, 19, i47–i53. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization. Routine Analytical Cigarette-Smoking Machine—Definitions and Standard Conditions; ISO 3308; International Organization for Standardization: Geneva, Switzerland, 2000; pp. 1–23. [Google Scholar]
- Counts, M.E.; Hsu, F.S.; Laffoon, S.W.; Dwyer, S.W.; Cox, R.H. Mainstream smoke constituent yields and predicting relationships from a worldwide market sample of cigarette brands: ISO smoking conditions. Regul. Toxicol. Pharmacol. 2004, 39, 111–134. [Google Scholar] [CrossRef] [PubMed]
- Pappas, R.S.; Polzin, G.M.; Watson, C.H.; Ashley, D.L. Cadmium, lead, and thallium in smoke particulate from counterfeit cigarettes compared to authentic U.S. brands. Food Chem. Toxicol. 2007, 45, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Hammond, D.; Fong, G.T.; Cummings, K.M.; O’Connor, R.J.; Giovino, G.A.; McNeill, A. Cigarette yields and human exposure: A comparison of alternative testing regimens. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Chiba, M.; Masironi, R. Toxic and trace elements in tobacco and tobacco smoke. Bull. World Health Organ. 1992, 70, 269–275. [Google Scholar] [PubMed]
- Iskander, F.Y. Egyptian and foreign cigarettes: I. Determination of trace elements in cigarette filter before and after smoking. J. Radioanal. Nucl. Chem. 1985, 91, 191–196. [Google Scholar] [CrossRef]
- Oregon State University. Linus Pauling Institute, Micronutrient Information Center Zinc. Available online: http://lpi.oregonstate.edu/mic/minerals/zinc#RDA (accessed on 31 August 2017).
- Hoffmann, K.; Becker, K.; Friedrich, C.; Helm, D.; Krause, C.; Seifert, B. The German Environmental Survery 1990/1992 (GerESII): Cadmium in blood, urine, and hair of adults and children. J. Expo. Anal. Environ. Epidemiol. 2000, 10, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Paschal, D.C.; Burt, V.; Caudill, S.P.; Gunter, E.W.; Pirkle, J.L.; Sampson, E.J.; Miller, D.T.; Jackson, R.J. Exposure of the U.S. population aged 6 years and older to cadmium: 1988–1994. Arch. Environ. Contam. Toxicol. 2000, 38, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Richter, P.A.; Bishop, E.E.; Wang, J.; Swahn, M.H. Tobacco smoke exposure and levels of urinary metals in the U.S. youth and adult population: The National Health and Nutrition Examination Survey (NHANES) 1999–2004. Int. J. Environ. Res. Public Health 2009, 6, 1930–1946. [Google Scholar] [CrossRef] [PubMed]
- Adams, V.A.; Newcomb, P.A. Cadmium blood and urine concentrations as measures of exposure: NHANES 1999–2010. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Morgan, H.; Sherlock, J.C. Cadmium intake and cadmium in the human kidney. Food Addit. Contam. 1984, 1, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Suwazono, Y.; Kido, T.; Nakagawa, H.; Nishijo, M.; Honda, R.; Kobayashi, E.; Doshi, M.; Nogawa, K. Biological half-life of cadmium in the urine of inhabitants after cessation of cadmium exposure. Biomarkers 2009, 14, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). National Report on Human Exposure to Environmental Chemicals (2009 Report Updated February 2015). Available online: http://www.cdc.gov/exposurereport/ (accessed on 29 August 2017).
- Townsend, A.T.; Miller, K.A.; Mclean, S.; Aldous, S. The determination of copper, zinc, cadmium and lead in urine by high resolution ICP-MS. J. Anal. At. Spectrom. 1998, 13, 1213–1219. [Google Scholar] [CrossRef]
- Rostan, E.F.; DeBuys, H.V.; Madey, D.L.; Pinnell, S.R. Evidence supporting zinc as an important antioxidant for skin. Int. J. Dermatol. 2002, 41, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Landsberger, S.; Larson, S. Determination of the elemental distribution in cigarette components and smoke by instrumental neutron activation analysis. J. Radioanal. Nucl. Chem. 1997, 217, 77–82. [Google Scholar] [CrossRef]
- Pelit, F.O.; Demirdogen, D.R.; Henden, E. Investigation of heavy metal content of Turkish tobacco leaves, cigarette butt, ash, and smoke. Environ. Monit. Assess. 2013, 185, 9471–9479. [Google Scholar] [CrossRef] [PubMed]
- Galan, P.; Viteri, F.E.; Bertrais, S.; Czernichow, S.; Faure, H.; Arnaud, J.; Ruffieux, D.; Chenal, S.; Arnault, N.; Favier, A.; et al. Serum concentrations of beta-carotene, vitamins C and E, zinc and selenium are influenced by sex, age, diet, smoking status, alcohol consumption and corpulence in a general French adult population. Eur. J. Clin. Nutr. 2005, 59, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Buxaderas, S.C.; Farré-Rovira, R. Whole blood and serum zinc levels in relation to sex and age. Rev. Esp. Fisiol. 1985, 41, 463–470. [Google Scholar] [PubMed]
- Uz, E.; Sahin, S.; Hepsen, I.F.; Var, A.; Sogut, S.; Akyol, O. The relationship between serum trace element changes and visual function in heavy smokers. Acta Ophthalmol. Scand. 2003, 81, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Afridi, H.I.; Kazi, T.G.; Kazi, N.G.; Jamali, M.K.; Arain, M.B.; Sirajuddin Baig, J.A.; Kandhro, G.A.; Wadhwa, S.K.; Shah, A.Q. Evaluation of cadmium, lead, nickel and zinc status in biological samples of smokers and nonsmokers hypertensive patients. J. Hum. Hypertens. 2010, 24, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Kocyigit, A.; Erel, O.; Gur, S. Effects of tobacco smoking on plasma selenium, zinc, copper and iron concentrations and related antioxidative enzyme activities. Clin. Biochem. 2001, 34, 629–633. [Google Scholar] [CrossRef]
- Hassan, F.; Xu, X.; Nuovo, G.; Killilea, D.W.; Tyrrell, J.; Tan, C.D.; Tarran, R.; Diaz, P.; Jee, J.; Knoell, D.; et al. Accumulation of metals in GOLD4 COPD lungs is associated with decreased CFTR levels. Respir. Res. 2014, 15, 69. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P. Occupational and community exposures to toxic metals: Lead, cadmium, mercury and arsenic. West. J. Med. 1982, 137, 531–539. [Google Scholar] [PubMed]
- Pääkö, P.; Kokkonen, P.; Anttila, S.; Kalliomäki, P.-L. Cadmium and chromium as markers of smoking in human lung tissue. Environ. Res. 1989, 49, 197–207. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease; A Report of the Surgeon General; National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health: Atlanta, GA, USA, 2010; p. 727. Available online: https://www.ncbi.nlm.nih.gov/books/NBK53017 (accessed on 31 August 2017).
- Kazi, T.G.; Wadhwa, S.K.; Afridi, H.I.; Kazi, N.; Kandhro, G.A.; Baig, J.A.; Shah, A.Q.; Kolachi, N.F.; Khan, S. Evaluation of cadmium and zinc in biological samples of tobacco and alcohol user male mouth cancer patients. Hum. Exp. Toxicol. 2010, 29, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Kazi, T.G.; Wadhwa, S.K.; Afridi, H.I.; Kazi, N.; Kandhro, G.A.; Baig, J.A.; Shah, A.Q.; Kolachi, N.F.; Arain, M.B. Interaction of cadmium and zinc in biological samples of smokers and chewing tobacco female mouth cancer patients. J. Hazard. Mater. 2010, 176, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Shimada, A.; Kawamura, N.; Okajima, M.; Kaewamatawong, T.; Inoue, H.; Morita, T. Translocation pathway of the intratracheally instilled ultrafine particles from the lung into the blood circulation in the mouse. Toxicol. Pathol. 2006, 34, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Goyer, R.A. Mechanisms of lead and cadmium nephrotoxicity. Toxicol. Lett. 1989, 46, 153–162. [Google Scholar] [CrossRef]
- Lewis, G.P.; Jusko, W.J.; Coughlin, L.L.; Hartz, S. Cadmium accumulation in man: Influence of smoking, occupation, alcoholic habit, and disease. J. Chronic Dis. 1972, 25, 717–726. [Google Scholar] [CrossRef]
- Lewis, G.P.; Coughlin, L.L.; Jusko, W.J.; Hartz, S. Contribution of cigarette smoking to cadmium accumulation in man. Lancet 1972, 299, 291–292. [Google Scholar] [CrossRef]
- Thévenod, F.; Wolff, N.A. Iron transport in the kidney: Implications for physiology and cadmium nephrotoxicity. Metallomics 2016, 8, 17–41. [Google Scholar] [CrossRef] [PubMed]
- Winge, D.R. Limited proteolysis of metallothionein method. Methods Enzymol. 1991, 205, 438–447. [Google Scholar] [PubMed]
- Bofill, R.; Capdevila, M.; Atrian, S. Independent metal-binding features of recombinant metallothioneins convergently draw a step gradation between Zn- and Cu-thioneins. Metallomics 2009, 1, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Waalkes, M.P. Cadmium carcinogenesis. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis. Mutat. Res. 2003, 533, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, C.A.; Ohta, H.; Albores, A.; Koropatnick, J.; Cherian, M.G. Induction of metallothionein synthesis by zinc in cadmium pretreated rats. Toxicology 1990, 63, 273–284. [Google Scholar] [CrossRef]
- Navas-Acien, A.; Silbergeld, E.K.; Sharrett, A.R.; Calderon-Aranda, E.; Selvin, E.; Guallar, E. Metals in urine and peripheral arterial disease. Environ. Health Perspect. 2005, 113, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Navas-Acien, A.; Selvin, E.; Sharrett, A.R.; Calderon-Aranda, E.; Silbergeld, E.K.; Guallar, E. Lead, Cadmium, Smoking, and Increased Risk of Peripheral Arterial Disease. Circulation 2004, 109, 3196–3201. [Google Scholar] [CrossRef] [PubMed]
- Guallar, E.; Silbergeld, E.K.; Navas-Acien, A.; Malhotra, S.; Astor, B.C.; Sharrett, A.R.; Schwartz, B.S. Confounding of the relation between homocysteine and peripheral arterial disease by lead, cadmium, and renal function. Am. J. Epidemiol. 2006, 163, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Everett, C.J.; Frithsen, I.L. Association of urinary cadmium and myocardial infarction. Environ. Res. 2008, 106, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Kowal, N.E.; Johnson, D.E.; Kraemer, D.F.; Pahren, H.R. Normal levels of cadmium in diet, urine, blood, and tissues of inhabitants of the United States. J. Toxicol. Environ. Health 1979, 5, 995–1014. [Google Scholar] [CrossRef] [PubMed]
- Tellez-Plaza, M.; Guallar, E.; Howard, B.V.; Umans, J.G.; Francesconi, K.A.; Goessler, W.; Silbergeld, E.K.; Devereux, R.B.; Navas-Acien, A. Cadmium exposure and incident cardiovascular disease. Epidemiology 2013, 24, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Ponteva, M.; Elomaa, I.; Bäckman, H.; Hansson, L.; Kilpiö, J. Blood cadmium and plasma zinc measurements in acute myocardial infarction. Eur. J. Cardiol. 1979, 9, 379–391. [Google Scholar] [PubMed]
- Eum, K.D.; Lee, M.S.; Paek, D. Cadmium in blood and hypertension. Sci. Total Environ. 2008, 407, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Folsom, A.R.; Jacobs, D.R. Iron, zinc, and alcohol consumption and mortality from cardiovascular diseases: The Iowa Women’s Health Study. Am. J. Clin. Nutr. 2005, 81, 787–791. [Google Scholar] [PubMed]
- Singh, R.B.; Niaz, M.A.; Rastogi, S.S.; Bajaj, S.; Gaoli, Z.; Shoumin, Z. Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. J. Am. Coll. Nutr. 1998, 17, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Sundblad, B.-M.; Ji, J.; Levänen, B.; Midander, K.; Julander, A.; Larsson, K.; Palmberg, L.; Lindén, A. Extracellular cadmium in the bronchoalveolar space of long-term tobacco smokers with and without COPD and its association with inflammation. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 1005–1013. [Google Scholar]
- Pinto-Plata, V.; Casanova, C.; Müllerova, H.; de Torres, J.P.; Corado, H.; Varo, N.; Cordoba, E.; Zeineldine, S.; Paz, H.; Baz, R.; et al. Inflammatory and repair serum biomarker pattern. Association to clinical outcomes in COPD. Respir. Res. 2012, 13, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannino, D.M.; Holguin, F.; Greves, H.M.; Savage-Brown, A.; Stock, A.L.; Jones, R.L. Urinary cadmium levels predict lower lung function in current and former smokers: data from the Third National Health and Nutrition Examination Survey. Thorax 2004, 59, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Lampe, B.J.; Park, S.K.; Robins, T.; Mukherjee, B.; Litonjua, A.A.; Amarasiriwardena, C.; Weisskopf, M.; Sparrow, D.; Hu, H. Association between 24-hour urinary cadmium and pulmonary function among community-exposed men: The VA Normative Aging Study. Environ. Health Perspect. 2008, 116, 1226–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.-S.; Caffrey, J.L.; Chang, M.-H.; Dowling, N.; Lin, J.-W. Cigarette smoking, cadmium exposure, and zinc intake on obstructive lung disorder. Respir. Res. 2010, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.M. Cadmium and zinc abnormalities in bronchogenic carcinoma. Cancer 1970, 25, 1394–1398. [Google Scholar] [CrossRef]
- Rosado-de-Christenson, M.L.; Templeton, P.A.; Moran, C.A. Bronchogenic carcinoma: Radiologic-pathologic correlation. Radiographics 1994, 14, 429–446. [Google Scholar] [CrossRef] [PubMed]
- Davies, I.J.T.; Musa, M.; Dormandy, T.L. Measurements of plasma zinc in malignant disease Part II. J. Clin. Pathol. 1968, 21, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Voyatzoglou, V.; Mountokalakis, T.; Tsata-Voyatzoglou, V.; Koutselinis, A.; Skalkeas, G. Serum zinc levels and urinary zinc excretion in patients with bronchogenic carcinoma. Am. J. Surg. 1982, 144, 355–358. [Google Scholar] [CrossRef]
- Andrews, G.S. Studies of plasma zinc, copper, caeruloplasmin, and growth hormone. J. Clin. Pathol. 1979, 32, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Strain, W.H.; Mansour, E.G.; Flynn, A.; Pories, W.J.; Tomaro, A.J.; Hill, O.A. Plasma-zinc concentration in patients with bronchogenic cancer. Lancet 1972, 299, 1021–1022. [Google Scholar] [CrossRef]
- Smith, J.C.; Hansen, H.H.; Selawry, O.S.; Howard, M.P.; Halsted, J.A. Serum zinc concentration: An unreliable parameter for diagnosing bronchogenic carcinoma. J. Nat. Cancer Inst. 1973, 51, 1379–1381. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). The World Health Report 2002: Reducing Risks, Promoting Healthy Life Style; World Health Organization: Geneva, Switzerland, 2002; Available online: http://www.who.int/whr/2002/en/ (accessed on 31 August 2017).
- World Health Organization (WHO). COPD Predicted to Be Third Leading Cause of Death in 2030; World Health Organization: Geneva, Switzerland, 2008; Available online: http://www.who.int/respiratory/copd/World_Health_Statistics_2008/en/ (accessed on 31 August 2017).
- Xu, Y.-M.; Gao, Y.-M.; Wu, D.-D.; Yu, F.-Y.; Zang, Z.-S.; Yang, L.; Yao, Y.; Cai, N.-L.; Zhou, Y.; Chiu, J.-F.; et al. Aberrant cytokine secretion and zinc uptake in chronic cadmium-exposed lung epithelial cells. Proteom. Clin. Appl. 2016. [Google Scholar] [CrossRef] [PubMed]
- Dhar, N.K.; Goel, T.C.; Dube, P.C.; Chowdhury, A.R.; Kar, A.B. Distribution and concentration of zinc in the subcellular fractions of benign hyperplastic and malignant neoplastic human prostate. Exp. Mol. Pathol. 1973, 19, 139–142. [Google Scholar] [CrossRef]
- Feustal, A.; Wennrich, R.; Steiniger, D.; Klauss, P. Zinc and cadmium concentration in prostatic carcinoma of different histological grading in comparison to normal prostate tissue and adenofibromyomatosis (BPH). Urol. Res. 1982, 10, 301–303. [Google Scholar] [CrossRef]
- Gonic, P.; Oberleas, D.; Knechtges, T.; Prasad, A.S. Atomic absorption determination of zinc in the prostate. Investig. Urol. 1969, 6, 345–347. [Google Scholar]
- Gyorkey, F.; Min, K.-W.; Huff, J.A.; Gyorkey, P. Zinc and magnesium in human prostate gland: Normal, hyperplastic, and neoplastic. Cancer Res. 1967, 27, 1349–1353. [Google Scholar]
- Habib, F.K.; Mason, M.K.; Smith, P.H.; Stitch, S.R. Cancer of the prostate: Early diagnosis by zinc and hormone analysis? Br. J. Cancer 1979, 39, 700–704. [Google Scholar] [CrossRef] [PubMed]
- Lahtonen, R. Zinc and cadmium concentrations in whole tissue and in separated epithelium and stroma from human benign prostatic hypertrophic glands. Prostate 1985, 6, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Ogunlewe, J.O.; Osegbe, D.N. Zinc and cadmium concentrations in indigenous blacks with normal, hypertrophic, and malignant prostate. Cancer 1989, 63, 1388–1392. [Google Scholar] [CrossRef]
- Zaichick, V.Y.; Sviridova, T.V.; Zaichick, S.V. Zinc in the human prostate gland: Normal, hyperplastic, cancerous. Int. Urol. Nephrol. 1997, 29, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.L.; Botta, G.; Gao, S.; Li, T.; Van Allen, E.M.; Treacy, D.J.; Cai, C.; He, H.H.; Sweeney, C.J.; Brown, M.; et al. PLZF, a tumor suppressor genetically lost in metastatic castration-resistant prostate cancer, is a mediator of resistance to androgen deprivation therapy. Cancer Res. 2015, 75, 1944–1948. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniyan, N.; Subramanian, S.; Sekar, N.; Bhuvarahamurthy, V.; Govindasamy, S. Involvement of plasma copper, zinc and cadmium in human carcinoma of uterine cervix. Med. Sci. Res. 1994, 22, 475–476. [Google Scholar] [CrossRef]
- Hecht, S.S. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat. Rev. Cancer 2003, 3, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Department of Health and Human Services (DHHS). The Health Consequences of Smoking: A Report of the Surgeon General; Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health: Washington, DC, USA, 2004.
- Silverman, D.T.; Dunn, J.A.; Hoover, R.N.; Schijfman, M.; Lillemoe, K.D.; Schoenberg, J.B.; Brown, L.M.; Greenberg, R.S.; Hayes, R.B.; Swanson, G.M.; et al. Cigarette smoking and pancreas cancer: A case-control study based on direct interviews. J. Nat. Cancer Inst. 1994, 86, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.G.; Reis, I.M. Is cadmium a cause of human pancreatic cancer? Cancer Epidemiol. Biomark. Prev. 2000, 9, 139–145. [Google Scholar]
- García-Esquinas, E.; Pollan, M.; Tellez-Plaza, M.; Francesconi, K.A.; Goessler, W.; Guallar, E.; Umans, J.G.; Yeh, J.; Best, L.G.; Navas-Acien, A. Cadmium exposure and cancer mortality in a prospective cohort: The Strong Heart Study. Environ. Health Perspect. 2014, 122, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Costello, L.C.; Levy, B.A.; Desouki, M.M.; Zou, J.; Bagasra, O.; Johnson, L.A.; Hanna, N.; Franklin, R.B. Decreased zinc and downregulation of ZIP3 zinc uptake transporter in the development of pancreatic adenocarcinoma. Cancer Biol. Ther. 2011, 12, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Costello, L.C.; Zou, J.; Desouki, M.M.; Franklin, R.B. Evidence for Changes in RREB-1, ZIP3, and zinc in the early development of pancreatic adenocarcinoma. J. Gastrointest. Cancer 2012, 43, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Franklin, R.B.; Zou, J.; Costello, L.C. The cytotoxic role of RREB1, ZIP3 zinc transporter, and zinc in human pancreatic adenocarcinoma. Cancer Biol. Ther. 2014, 15, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, Y.; Liu, Z.; Bharadwaj, U.; Wang, H.; Wang, X.; Zhang, S.; Liuzzi, J.P.; Chang, S.M.; Cousins, R.J.; et al. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc. Natl. Acad. Sci. USA 2007, 104, 18636–18641. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, S.L.; McCormick, N.H.; Velasquez, V.; Lopez, V. Zinc in specialized secretory tissues: Roles in the pancreas, prostate, and mammary gland. Adv. Nutr. 2011, 2, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Yaprak, E.; Yolcubal, İ.; Sinanoğlu, A.; Doğrul-Demiray, A.; Guzeldemir-Akcakanat, E.; Marakoğlu, İ. High levels of heavy metal accumulation in dental calculus of smokers: A pilot inductively coupled plasma mass spectrometry study. J. Periodontal Res. 2016. [Google Scholar] [CrossRef] [PubMed]
- Katsuragi, H.; Hasegawa, A.; Saito, K. Distribution of metallothionein in cigarette smokers and non-smokers in advanced periodontitis patients. J. Periodontol. 1997, 68, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Johann, A.C.B.R.; da Silveira-Júnior, J.B.; Souto, G.R.; Campolina, M.; Horta, R.; Aguiar, M.C.F.; Mesquita, R.A. Metallothionein immunoexpression in oral leukoplakia. Med. Oral Patol. Oral Y Cir. Bucal 2008, 13, E156–E160. [Google Scholar]
- Dietrich, T.; Reichart, P.A.; Scheifele, C. Clinical risk factors of oral leukoplakia in a representative sample of the US population. Oral Oncol. 2004, 40, 158–163. [Google Scholar] [CrossRef]
- Shiu, M.N.; Chen, T.H.; Chang, S.H.; Hahn, L.J. Risk factors for leukoplakia and malignant transformation to oral carcinoma: A leukoplakia cohort in Taiwan. Br. J. Cancer 2000, 82, 1871–1874. [Google Scholar] [CrossRef] [PubMed]
- Sundelin, K.; Jadner, M.; Norberg-Spaak, L.; Davidsson, Å.; Hellquist, H.B. Metallothionein and Fas (CD95) are expressed in squamous cell carcinoma of the tongue. Eur. J. Cancer 1997, 33, 1860–1864. [Google Scholar] [CrossRef]
- Cherian, M.G.; Jayasurya, A.; Bay, B.-H. Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat. Res. 2003, 533, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Jayadeep, A.; Raveendran, P.K.; Kannan, S.; Nalinakumari, K.R.; Mathew, B.; Krishnan, N.M.; Menon, V.P. Serum levels of copper, zinc, iron and ceruplasmin in oral leukoplakia and squamous cell carcinoma. J. Exp. Clin. Cancer Res. 1997, 16, 295–300. [Google Scholar] [PubMed]
- Palaniappan, U.; Starkey, L.J.; O’Loughlin, J.; Donald, K.G. Fruit and vegetable consumption is lower and saturated fat intake is higher among Canadians reporting smoking. J. Nutr. 2001, 131, 1952–1958. [Google Scholar] [PubMed]
- Prasad, A.S. Zinc: Role in immunity, oxidative stress and chronic inflammation. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 646–652. [Google Scholar] [CrossRef] [PubMed]
Target | Manifestation of Toxicity | References |
---|---|---|
Smoking | Elevated urine cadmium | [38,39,40,41,44,45,52,69,72,73,83] |
Elevated blood, serum, or plasma cadmium | [20,38,41,43,51,57,58,69,70,72] | |
Lower blood, serum, or plasma zinc | [20,52] | |
Elevated urine zinc | [52] | |
Elevated blood, serum, or plasma cadmium/zinc ratio | [20,75] | |
Elevated bronchoalveolar lavage cadmium | [79] | |
Elevated lung tissue cadmium | [54,56] | |
Elevated dental calculus cadmium | [115] | |
Cardiovascular Disease | Elevated urine cadmium | [74] |
Peripheral artery disease | Elevated urine cadmium | [69] |
Elevated blood, serum, or plasma cadmium | [70,71] | |
Elevated urine zinc | [72] | |
Low dietary zinc | [78] | |
Myocardial infarction | Elevated blood, serum, or plasma cadmium | [75] |
Lower blood, serum, or plasma zinc | [75] | |
Elevated blood, serum, or plasma cadmium/zinc ratio | [75] | |
Hypertension | Elevated urine cadmium | [52] |
Elevated blood, serum, or plasma cadmium | [52,76] | |
Lower blood, serum, or plasma zinc | [52] | |
Elevated urine zinc | [52] | |
Pulmonary Disease | ||
Inflammation markers | Elevated bronchoalveolar lavage cadmium | [79] |
Reduced lung function | Elevated urine cadmium | [81,82] |
Obstructive lung disease | Elevated lung tissue cadmium | [54] |
Elevated urine cadmium | [83] | |
Low dietary zinc | [83] | |
Bronchogenic carcinoma | Elevated blood, serum, or plasma cadmium | [86] |
Lower blood, serum, or plasma zinc | [84,86,87] | |
Elevated urine zinc | [85] | |
Prostate Disease | Elevated blood, serum, or plasma cadmium | [20,100] |
Lower blood, serum, or plasma zinc | [20,100] | |
Elevated blood, serum, or plasma cadmium/zinc ratio | [20] | |
Low tissue zinc | [19,94,95,96,97,98,99,100,101] | |
Cervical Cancer | Elevated blood, serum, or plasma cadmium | [103] |
Lower blood, serum, or plasma zinc | [103] | |
Pancreatic Cancer | Elevated tissue cadmium | [73,108,109] |
Oral Pathologies | Elevated blood, serum, or plasma cadmium | [58,59] |
Oral cancer/leukoplakia | Lower blood, serum, or plasma zinc | [58,59,122] |
Elevated blood, serum, or plasma cadmium/zinc ratio | [59,68] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richter, P.; Faroon, O.; Pappas, R.S. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities. Int. J. Environ. Res. Public Health 2017, 14, 1154. https://doi.org/10.3390/ijerph14101154
Richter P, Faroon O, Pappas RS. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities. International Journal of Environmental Research and Public Health. 2017; 14(10):1154. https://doi.org/10.3390/ijerph14101154
Chicago/Turabian StyleRichter, Patricia, Obaid Faroon, and R. Steven Pappas. 2017. "Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities" International Journal of Environmental Research and Public Health 14, no. 10: 1154. https://doi.org/10.3390/ijerph14101154
APA StyleRichter, P., Faroon, O., & Pappas, R. S. (2017). Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities. International Journal of Environmental Research and Public Health, 14(10), 1154. https://doi.org/10.3390/ijerph14101154