Legionella Risk Management and Control in Potable Water Systems: Argument for the Abolishment of Routine Testing
Abstract
:1. Introduction
2. The Presence of Legionella in Potable Water Sources
3. Interpreting Legionella Test Results
4. Limitations with the Standard Method for Legionella Detection
5. Guidelines
6. Control Mechanisms
7. Conclusions
Conflicts of Interest
References
- Beauté, J.; Zucs, P.; de Jong, B. On behalf of the European Legionnaires’ Disease Surveillance Network, Legionnaires’ disease in Europe, 2009–2010. Eurosurveillance 2013, 18, 6–12. [Google Scholar]
- Roig, J.; Sabria, M.; Pedro-Botet, M.L. Legionella spp.: Community acquired and nosocomial infections. Curr. Opin. Infect. Dis. 2003, 16, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Diederen, B.M.W. Legionella spp. and Legionnaires’ disease. J. Infect. 2008, 56, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Fields, B.S.; Benson, R.F.; Besser, R.E. Legionella and Legionnaires’ disease: 25 years of investigation. Clin. Microbiol. Rev. 2002, 15, 506–526. [Google Scholar] [CrossRef] [PubMed]
- Misch, E.A. Legionella: Virulence factors and host response. Curr. Opin. Infect. Dis. 2016, 29, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Davidson, S. Nosocomial legionellosis outbreak in a leukemia unit attributed to potable water source at a hospital in Alabama. In 2015 CSTE Annual Conference, 14–18 June 2015; CSTE: Boston, MA, USA, 2015. [Google Scholar]
- Kool, J.; Bergmire-Sweat, D.; Butler, J.; Brown, E.; Peabody, D.; Massi, D.; Carpenter, J.; Pruckler, J.; Robert, B.; Fields, B. Hospital characteristics associated with colonization of water systems by Legionella and risk of nosocomial Legionnaires’ disease: A cohort study of 15 hospitals. Infect. Control Hosp. Epidemiol. 1999, 20, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Parr, A.; Whitney, E.A.; Berkelman, R.L. Legionellosis on the rise: A review of guidelines for prevention in the United States. J. Public Health Manag. Pract. 2015, 21, E17–E26. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Surveillance for waterborne disease outbreaks associated with drinking water and other nonrecreational water—United States, 2009–2010. Morb. Mortal. Wkly. Rep. (MMWR) 2013, 62, 714–720. [Google Scholar]
- Farnham, A.; Alleyne, L.; Cimini, D.; Balter, S. Legionnaires’ disease incidence and risk factors, New York, New York, USA, 2002–2011. Emerg. Infect. Dis. 2014, 20, 1795–1802. [Google Scholar] [CrossRef] [PubMed]
- Collier, S.; Stockman, L.; Hicks, L.; Garrison, L.; Zhou, F.; Beach, M. Direct healthcare costs of selected diseases primarily or partially transmitted by water. Epidemiol. Infect. 2012, 140, 2003–2013. [Google Scholar] [CrossRef] [PubMed]
- Suzman, R.; Beard, J.R.; Boerma, T.; Chatterji, S. Health in an ageing world—What do we know? Lancet 2015, 385, 484–486. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; ESA Working Paper; FAO: Rome, Italy, 2012. [Google Scholar]
- Bartram, J.; Chartier, Y.; Lee, J.V.; Pond, K.; Surman-Lee, S. Legionella and the Prevention of Legionellosis; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Falkinham, J.O.; Pruden, A.; Edwards, M. Opportunistic premise plumbing pathogens: Increasingly important pathogens in drinking water. Pathogens 2015, 4, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Bentham, R. Risk assessment for Legionella in building water systems. Environ. Health 2003, 3, 20. [Google Scholar]
- Beer, K.D.; Gargano, J.W.; Roberts, V.A.; Hill, V.R.; Garrison, L.E.; Kutty, P.K.; Hilborn, E.D.; Wade, T.J.; Fullerton, K.E.; Yoder, J.S. Surveillance for waterborne disease outbreaks associated with drinking water—United States, 2011–2012. Morb. Mortal. Wkly. Rep. (MMWR) 2015, 64, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, A.N.; Hughes, R.L.; Howard, R.M.; Williams, T.C.; Nolte, F.S.; Jackson, D.; Ribner, B.S. Pseudo outbreak of Legionella pneumophila serogroup 8 infection associated with a contaminated ice machine in a bronchoscopy suite. Infect. Control Hosp. Epidemiol. 2009, 30, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Ozerol, I.H.; Bayraktar, M.; Cizmeci, Z.; Durmaz, R.; Akbas, E.; Yildirim, Z.; Yologlu, S. Legionnaire’s disease: A nosocomial outbreak in Turkey. J. Hosp. Infect. 2006, 62, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Hanrahan, J.P.; Morse, D.L.; Scharf, V.B.; Debbie, J.G.; Schmid, G.P.; McKinney, R.M.; Shayegani, M. A community hospital outbreak of Legionellosis: Transmission by potable hot water. Am. J. Epidemiol. 1987, 125, 639–649. [Google Scholar] [PubMed]
- Hampton, L.M.; Garrison, L.; Kattan, J.; Brown, E.; Kozak-Muiznieks, N.A.; Lucas, C.; Fields, B.; Fitzpatrick, N.; Sapian, L.; Martin-Escobar, T.; et al. Legionnaires’ Disease Outbreak at a Resort in Cozumel, Mexico. Open Forum Infect. Dis. 2016. [Google Scholar] [CrossRef] [PubMed]
- Zmirou-Navier, D.; Remen, T.; Bauer, M.; Deloge-Abarkan, M.; Tossa, P.; Mathieu, L. Legionella in shower aerosols and pontiac fever among health workers and residents in nursing homes. Epidemiology 2007, 18, S50. [Google Scholar] [CrossRef]
- Tobin, J.O.; Dunnill, M.S.; French, M.; Morris, P.J.; Beare, J.; Fisher-Hoch, S.; Mitchell, R.G.; Muers, M.F. Legionnaires’ diseases in a transplant unit: Isolation of the causative agent from shower baths. Lancet 1980, 316, 118–121. [Google Scholar] [CrossRef]
- Lu, J.; Struewing, I.; Vereen, E.; Kirby, A.; Levy, K.; Moe, C.; Ashbolt, N. Molecular detection of Legionella spp. And their associations with Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in a drinking water distribution system. J. Appl. Microbiol. 2016, 120, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Edwards, M.A.; Falkinham, J.O.; Pruden, A. Molecular survey of occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in two chloraminated drinking water distribution systems. Appl. Environ. Microbiol. 2012, 78, 6285–6294. [Google Scholar] [CrossRef] [PubMed]
- Wullings, B.A.; van der Kooij, D. Occurrence and genetic diversity of uncultured Legionella spp. in drinking water treated at temperatures below 15 °C. Appl. Environm. Microbiol. 2006, 72, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Wullings, B.A.; Bakker, G.; van der Kooij, D. Concentration and diversity of uncultured Legionella spp. in two unchlorinated drinking water supplies with different concentrations of natural organic matter. Appl. Environ. Microbiol. 2011, 77, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Diederen, C.M.A.; de Jong, I.; Aarts, M.; Peeters, A.; van der Zee, A. Molecular evidence for the ubiquitous presence of Legionella species in dutch tap water installations. J. Water Health 2007, 5, 375. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, T.; Hoffmann, S.; Obst, U. Formation and bacterial composition of young, natural biofilms obtained from public bank-filtered drinking water systems. Water Res. 1998, 32, 2787–2797. [Google Scholar] [CrossRef]
- Lesnik, R.; Brettar, I.; Höfle, M.G. Legionella species diversity and dynamics from surface reservoir to tap water: From cold adaptation to thermophily. ISME J. 2016, 10, 1064–1080. [Google Scholar] [CrossRef] [PubMed]
- Darelid, J.; Bernander, S.; Jacobson, K.; Löfgren, S. The presence of a specific genotype of Legionella pneumophila serogroup 1 in a hospital and municipal water distribution system over a 12-year period. Scand. J. Infect. Dis. 2004, 36, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Martínez, S.; Sharaby, Y.; Pecellín, M.; Brettar, I.; Höfle, M.; Halpern, M. Spatial distribution of Legionella pneumophila MLVA-genotypes in a drinking water system. Water Res. 2015, 77, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Whiley, H.; Keegan, A.; Fallowfield, H.; Bentham, R. Detection of Legionella, L. pneumophila and mycobacterium avium complex (MAC) along potable water distribution pipelines. Int. J. Environ. Res. Public Health 2014, 11, 7393–7495. [Google Scholar] [CrossRef] [PubMed]
- Pule, D.; Valcina, O.; Berzins, A.; Viksna, L.; Krumina, A. Influence of sampling season and sampling protocol on detection of Legionella pneumophila contamination in hot water. Proceed. Latvian Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2016, 70, 227–231. [Google Scholar]
- Totaro, M.; Carnesecchi, E.; Valentini, P.; Porretta, A.; Bruni, B.; Privitera, G.; Casini, B.; Baggiani, A. Presence of Legionella in water networks of Italian residential buildings. Eur. J. Public Health 2015, 25, ckv175–ckv233. [Google Scholar]
- Sabrià, M.; García-Núñez, M.; Pedro-Botet, M.L.; Sopena, N.; Gimeno, J.M.; Reynaga, E.; Morera, J.; Rey-Joly, C. Presence and chromosomal subtyping of Legionella species in potable water systems in 20 hospitals of Catalonia, Spain. Infect. Control Hosp. Epidemiol. 2001, 22, 673–676. [Google Scholar] [CrossRef] [PubMed]
- Colbourne, J.; Trew, R. Presence of Legionella in London’s water supplies. Isr. J. Med. Sci. 1986, 22, 633–639. [Google Scholar] [PubMed]
- Rakić, A.; Štambuk-Giljanović, N. Physical and chemical parameter correlations with technical and technological characteristics of heating systems and the presence of Legionella spp. in the hot water supply. Environ. Monit. Assess. 2016, 188, 73. [Google Scholar] [CrossRef] [PubMed]
- Lasheras, A.; Boulestreau, H.; Rogues, A.-M.; Ohayon-Courtes, C.; Labadie, J.-C.; Gachie, J.-P. Influence of amoebae and physical and chemical characteristics of water on presence and proliferation of Legionella species in hospital water systems. Am. J. Infect. Control 2006, 34, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Eslami, A.; Momayyezi, M.H.; Esmaili, D.; Joshani, G.H. Presence of Legionella pneumophila and environmental factors affecting its growth, in the water distribution system in Taleghani hospital, Tehran. Pajoohandeh J. 2012, 17, 32–37. [Google Scholar]
- Qin, T.; Zhou, H.; Ren, H.; Guan, H.; Li, M.; Zhu, B.; Shao, Z. Distribution of sequence-based types of Legionella pneumophila serogroup 1 strains isolated from cooling towers, hot springs, and potable water systems in China. Appl. Environ. Microbiol. 2014, 80, 2150–2157. [Google Scholar] [CrossRef] [PubMed]
- Donohue, M.J.; O’Connell, K.; Vesper, S.J.; Mistry, J.H.; King, D.; Kostich, M.; Pfaller, S. Widespread molecular detection of Legionella pneumophila serogroup 1 in cold water taps across the United States. Environ. Sci. Technol. 2014, 48, 3145–3152. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, E.; Humphreys, H. Surveillance of hospital water and primary prevention of nosocomial Legionellosis: What is the evidence? J. Hosp. Infect. 2005, 59, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, T.W.; Haas, C.N. Quantitative microbial risk assessment model for Legionnaires’ disease: Assessment of human exposures for selected spa outbreaks. J. Occup. Environ. Hyg. 2007, 4, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Whiley, H.; Keegan, A.; Fallowfield, H.; Ross, K. Uncertainties associated with assessing the public health risk from Legionella. Front. Microbiol. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Azuma, K.; Uchiyama, I.; Okumura, J. Assessing the risk of Legionnaires’ disease: The inhalation exposure model and the estimated risk in residential bathrooms. Regul. Toxicol. Pharmacol. 2013, 65, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, K.; Haas, C. Critical review of mathematical approaches for quantitative microbial risk assessment (QMRA) of Legionella in engineered water systems: Research gaps and a new framework. Environ. Sci. Water Res. Technol. 2016, 2, 599–613. [Google Scholar] [CrossRef]
- Ashbolt, N. Environmental (saprozoic) pathogens of engineered water systems: Understanding their ecology for risk assessment and management. Pathogens 2015, 4, 390–405. [Google Scholar] [CrossRef] [PubMed]
- Breiman, R.F.; Horwitz, M.A. Guinea pigs sublethally infected with aerosolized Legionella pneumophila develop humoral and cell-mediated immune responses and are protected against lethal aerosol challenge. A model for studying host defense against lung infections caused by intracellular pathogens. J. Exp. Med. 1987, 165, 799–811. [Google Scholar] [PubMed]
- Davis, G.; Winn, W., Jr.; Gump, D.; Craighead, J.; Beaty, H. Legionnaires’ pneumonia after aerosol exposure in guinea pigs and rats. Am. Rev. Respir. Dis. 1982, 126, 1050–1057. [Google Scholar] [PubMed]
- Berendt, R.F.; Young, H.W.; Allen, R.G.; Knutsen, G.L. Dose-response of guinea pigs experimentally infected with aerosols of Legionella pneumophila. J. Infect. Dis. 1980, 141, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Alli, O.T.; Zink, S.; von Lackum, N.K.; Abu-Kwaik, Y. Comparative assessment of virulence traits in Legionella spp. Microbiology 2003, 149, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Mauchline, W.S.; James, B.W.; Fitzgeorge, R.B.; Dennis, P.J.; Keevil, C.W. Growth temperature reversibly modulates the virulence of Legionella pneumophila. Infect. Immun. 1994, 62, 2995–2997. [Google Scholar] [PubMed]
- Larsen, S.E. Virulence traits in different strains of Legionella pneumophila. Infect. Immun. 2015, 66, 3029–3034. [Google Scholar]
- Heuner, K.; Steinert, M. The flagellum of Legionella pneumophila and its link to the expression of the virulent phenotype. Int. J. Med. Microbiol. 2003, 293, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Kirschner, A.K.T. Determination of viable Legionellae in engineered water systems: Do we find what we are looking for? Water Res. 2016, 93, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Tossa, P.; Deloge-Abarkan, M.; Zmirou-Navier, D.; Hartemann, P.; Mathieu, L. Pontiac fever: An operational definition for epidemiological studies. BMC Public Health 2006, 6, 112. [Google Scholar] [CrossRef] [PubMed]
- Boer, J.D.; Yzerman, E.P.; Schellekens, J.; Lettinga, K.D.; Boshuizen, H.C.; Steenbergen, J.; Bosman, A.; Hof, S.; Vliet, H.; Peeters, M.F. A large outbreak of Legionnaires’ disease at a flower show, The Netherlands, 1999. Emerg. Infect. Dis. 2002, 8, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Bopp, C.A.; Sumner, J.W.; Morris, G.K.; Wells, J.G. Isolation of Legionella spp. From environmental water samples by low-pH treatment and use of a selective medium. J. Clin. Microbiol. 1981, 13, 714–719. [Google Scholar] [PubMed]
- International Organization for Standardization ISO 11731: Water Quality—Detection and Enumeration of Legionella. 1998. Available online: http://www.iso.org/iso/catalogue_detail?csnumber=19653 (accessed on 21 December 2016).
- Shih, H.-Y.; Lin, Y.E. Caution on interpretation of Legionella results obtained using real-time PCR for environmental water samples. Appl. Environ. Microbiol. 2006, 72, 6859. [Google Scholar] [CrossRef] [PubMed]
- Whiley, H.; Taylor, M. Legionella detection by culture and QPCR: Comparing apples and oranges. Crit. Rev. Microbiol. 2016, 42, 65–74. [Google Scholar] [PubMed]
- Borges, A.; Simões, M.; Martínez-Murcia, A.; Saavedra, M. Detection of Legionella spp. in natural and man-made water systems using standard guidelines. J. Microbiol. Res. 2012, 2, 95–102. [Google Scholar]
- United States Environmental Protection Agency. Technologies for Legionella Control: Scientific Literature Review; U.S. Environmental Protection Agency, Office of Water: Washington, DC, USA, 2015.
- Turetgen, I. Induction of viable but nonculturable (VBNC) state and the effect of multiple subculturing on the survival of Legionella pneumophila strains in the presence of monochloramine. Ann. Microbiol. 2008, 58, 153–156. [Google Scholar] [CrossRef]
- Alleron, L.; Merlet, N.; Lacombe, C.; Frère, J. Long term survival of Legionella pneumophila in the viable but nonculturable state after monochloramine treatment. Curr. Microbiol. 2008, 57, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.W.; Hwang, Y.H.; Cheng, W.Y.; Chang, C.P. Effects of chlorination and heat disinfection on long-term starved Legionella pneumophila in warm water. J. Appl. Microbiol. 2007, 102, 1636–1644. [Google Scholar] [CrossRef] [PubMed]
- Dusserre, E.; Ginevra, C.; Hallier-Soulier, S.; Vandenesch, F.; Festoc, G.; Etienne, J.; Jarraud, S.; Molmeret, M. A PCR-based method for monitoring Legionella pneumophila in water samples detects viable but noncultivable legionellae that can recover their cultivability. Appl. Environ. Microbiol. 2008, 74, 4817–4824. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Viscogliosi, P.; Solignac, L.; Delattre, J.-M. Viability PCR, a culture-independent method for rapid and selective quantification of viable Legionella pneumophila cells in environmental water samples. Appl. Environ. Microbiol. 2009, 75, 3502–3512. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.E.; Taylor, T.H.; Fields, B.S. Accuracy and precision of Legionella isolation by U.S. laboratories in the ELITE program pilot study. Water Res. 2011, 45, 4428–4436. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency (EPA). Legionella Criteria Document; Office of Water, United States Environmental Protection Agency: Washington, DC, USA, 1985.
- EnHealth. Guidelines for Legionella Control in the Operation and Maintenance of Water Distribution Systems in Health and Aged Care Facilities; Australian Government: Canberra, Australian, 2015.
- U.K. Department of Health. Health Technical Memorandum 04-01: Safe Water in Healthcare Premises Part B: Operational Management; U.K. Department of Health: London, UK, 2016.
- Centers for Disease Control and Prevention. Developing a Water Management Program to Reduce Legionella Growth & Spread in Buildings: A Practical Guide to Implementing Industry Standards; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2016.
- European Working Group for Legionella Infections. Technical Guidelines for the Investigation, Control and Prevention of Travel Associated Legionnaires Disease, version 1.1; The European Centre for Disease Prevention and Control: Stockholm, Sweden, 2011. [Google Scholar]
- Occupational Safety & Health Administration. Osha Technical Manual, Ted 01-00-015, Section III, Chapter 7: Legionnaires’ Disease; Department of Labor: Washington, DC, USA, 1999.
- Barbaree, J.M.; Gorman, G.W.; Martin, W.T.; Fields, B.S.; Morrill, W.E. Protocol for sampling environmental sites for Legionellae. Appl. Environ. Microbiol. 1987, 53, 1454–1458. [Google Scholar] [PubMed]
- Sheffer, P.J.; Stout, J.E.; Wagener, M.M.; Muder, R.R. Efficacy of new point-of-use water filter for preventing exposure to Legionella and waterborne bacteria. Am. J. Infect. Control 2005, 33, S20–S25. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whiley, H. Legionella Risk Management and Control in Potable Water Systems: Argument for the Abolishment of Routine Testing. Int. J. Environ. Res. Public Health 2017, 14, 12. https://doi.org/10.3390/ijerph14010012
Whiley H. Legionella Risk Management and Control in Potable Water Systems: Argument for the Abolishment of Routine Testing. International Journal of Environmental Research and Public Health. 2017; 14(1):12. https://doi.org/10.3390/ijerph14010012
Chicago/Turabian StyleWhiley, Harriet. 2017. "Legionella Risk Management and Control in Potable Water Systems: Argument for the Abolishment of Routine Testing" International Journal of Environmental Research and Public Health 14, no. 1: 12. https://doi.org/10.3390/ijerph14010012
APA StyleWhiley, H. (2017). Legionella Risk Management and Control in Potable Water Systems: Argument for the Abolishment of Routine Testing. International Journal of Environmental Research and Public Health, 14(1), 12. https://doi.org/10.3390/ijerph14010012