Experimental Assessment of Recycled Diesel Spill-Contaminated Domestic Wastewater Treated by Reed Beds for Irrigation of Sweet Peppers
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Wastewater Recycling for Irrigation
1.3. Nutrient and Mineral Requirements
1.4. Rationale, Aim and Objectives
2. Materials and Methods
2.1. Wetlands Set-Up and Operational Arrangements
| Filters a | Design variables | |||
|---|---|---|---|---|
| Aggregate Diameter (mm) | Contact Time (h) | Resting Time (h) | Chemical Oxygen Demand (mg/L) | |
| Filter 1 b | 20 | 72 | 48 | 123.3 |
| Filter 2 | 20 | 72 | 48 | 123.3 |
| Filter 3 b | 10 | 72 | 48 | 123.3 |
| Filter 4 | 10 | 72 | 48 | 123.3 |
| Filter 5 b | 10 | 72 | 48 | 244.7 |
| Filter 6 | 10 | 72 | 48 | 244.7 |
| Filter 7 | 10 | 36 | 48 | 123.3 |
| Filter 8 | 10 | 36 | 24 | 123.3 |
| Control A b | 10 | 72 | 48 | 2.3 |
| Control B | 10 | 72 | 48 | 2.3 |
2.2. Water, Soil and Pepper Quality Analysis
2.3. Light, Humidity and Temperature
2.4. Sweet Pepper Growing
2.5. Data Analysis
| Variable | Class A | Class B | Class C | Class D | Class E |
|---|---|---|---|---|---|
| Quality class | Outstanding | Good | Good | Satisfactory | Unsatisfactory |
| European Union classification equivalent | “Extra” Class | Class I | Class II | Not applicable | Not applicable |
| Mean price estimate; pence (Sterling)/gram | 0.28 | 0.22 | 0.16 | 0.10 | 0.00 |
| Target market | Top restaurant | National supermarket | Independent retailer or market | Vegetable industry | Waste company |
| Product | Fresh vegetable | Fresh vegetable | Fresh vegetable | Frozen or canned | Waste |
| Contamination | Uncontaminated | Uncontaminated | Uncontaminated | Uncontaminated | Contaminated |
| Illnesses | None | None | None | Likely; no harm | Likely; harmful (rotten) |
| Length (L, mm) | Jumbo (L ≥ 110) | Extra-large (90 ≤ L < 110) | Large (70 ≤ L < 90) | Medium (40 ≤ L < 70) | Small (L < 40) |
| Diameter (D, mm) | Jumbo (D ≥ 90) | Extra-large (70 ≤ D < 90) | Large (50 ≤ D < 70) | Medium (30 ≤ D < 50) | Small (D < 30) |
| Weight (w, g) | Very Large (w ≥ 190) | Large (120 ≤ w < 190) | Medium (70 ≤ w ≤ 120) | Small (20 ≤ w < 70) | Very Small (w < 20) |
| Tolerance by weight or number per plant (%) | 5 | 10 | 10 | 10 | 10 |
| Defect in shape (Damage (%) of surface area) | Damage ≤ 10 | 10 ≤ Damage < 20 | 20 ≤ Damage < 30 | 30 ≤ Damage < 60 | Too many damages (>60) |
| Defect of the skin (Damage (%) of surface area) | Damage ≤ 3 | 3 ≤ Damage < 4 | 4 ≤ Damage < 5 | 5 ≤ Damage < 20 | Too many damages (>20) |
| Parameter | Soil Type | Total Per Pot (mg) | ||
|---|---|---|---|---|
| Compost | Sand | Compost | Sand | |
| pH | 6.43 | 9.40 | - | - |
| Redox potential (mV) | 62.60 | −79.20 | - | - |
| Electrical conductivity (μs/cm) | 2438.50 | 116.00 | - | - |
| Total nitrogen (mg/kg) | 998.75 | 7.60 | 3495.63 | 114.00 |
| Total phosphor (mg/kg) | 367.50 | 0.85 | 1286.25 | 12.75 |
| Aluminium (mg/kg) | 1118.38 | 1180.43 | 3914.33 | 17,706.45 |
| Calcium (mg/kg) | 18,421.96 | 174.16 | 64,476.86 | 2612.40 |
| Iron (mg/kg) | 6233.15 | 1196.48 | 21,816.03 | 17,947.20 |
| Potassium (mg/kg) | 2776.02 | 168.57 | 9716.07 | 2528.55 |
| Magnesium (mg/kg) | 5287.67 | 279.53 | 18,506.85 | 4192.95 |
| Manganese (mg/kg) | 201.59 | 8.09 | 705.57 | 121.35 |
| Zinc (mg/kg) | 26.59 | 1.95 | 93.07 | 29.25 |
| Boron (mg/kg) | 12.29 | <0.0001 | 43.02 | 0.0015 |
| Organic matter (%) | 89.00 | 0.03 | - | - |
| Bulk density(g/L) | 350 | 1522 | - | - |
3. Results and Discussion
3.1. Comparison of Irrigation Water Qualities
3.1.1. Comparison of Hydrocarbon Values
3.1.2. Comparison of Oxygen Demand Variables
| Water Type | TPH a (µg/L) | COD b (mg/L) | BOD c (mg/L) | NH4-N d (mg/L) | NO3-N e (mg/L) | PO4-P f (mg/L) | SS g (mg/L) | Turbidity (NTU) h | Ph (−) | EC I (µS/cm) | DO j (mg/L) | SAR k (me/L) l |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Filter 1 outflow | 100 | 77.7 ± 23.35 (18) | 25.8 ± 16.74 (53) | 4.8 ± 2.83 (22) | 0.4 ± 0.22 (19) | 4.0 ± 2.48 (18) | 11.3 ± 10.42 (56) | 9.0 ± 5.65 (54) | 6.4 ± 0.26 (54) | 336.5 ± 50.82 (22) | 1.5 ± 1.03 (15) | 2.4 ± 1.07 (5) |
| Filter 2 outflow | <10 | 34.9 ± 19.21 (15) | 13.6 ± 8.11 (51) | 6.2 ± 5.84 (20) | 2.2 ± 2.72 (18) | 3.3 ± 1.33 (18) | 6.7 ± 9.49 (56) | 5.4 ± 5.75 (53) | 6.5 ± 0.21 (54) | 328.6 ± 53.37 (22) | 1.7 ± 1.10 (15) | 1.8 ± 0.60 (5) |
| Filter 3 outflow | 69 | 87.5 ± 26.00 (18) | 22.8 ± 16.42 (51) | 3.7 ± 2.53 (22) | 0.4 ± 0.28 (19) | 3.3 ± 2.04 (18) | 11.7 ± 10.79 (56) | 8.7 ± 6.09 (53) | 6.5 ± 0.18 (54) | 396.7 ± 76.59 (22) | 1.7 ± 1.18 (15) | 1.7 ± 0.53 (5) |
| Filter 4 outflow | <10 | 34.9 ± 23.77 (15) | 12.8 ± .8.86 (50) | 5.0 ± 10.53 (20) | 1.8 ± 3.27 (18) | 2.9 ± 1.06 (18) | 7.4 ± 10.57 (56) | 5.7 ± 5.46 (53) | 6.5 ± 0.19 (54) | 352.6 ± 67.56 (22) | 2.0 ± 1.60 (15) | 2.4 ± 0.39 (5) |
| Filter 5 outflow | 14 | 100.8 ± 67.90 (18) | 22.5 ± 16.35 (51) | 9.7 ± 3.20 (21) | 0.9 ± 0.86 (19) | 4.4 ± 2.07 (18) | 11.3 ± 12.76 (57) | 8.6 ± 6.22 (53) | 6.6 ± 0.19 (54) | 564.1 ± 163.66 (22) | 1.5 ± 0.81 (15) | 2.2 ± 0.85 (5) |
| Filter 6 outflow | <10 | 35.6 ± 22.46 (14) | 15.9 ± 12.68 (52) | 9.0 ± 7.28 (20) | 3.6 ± 4.68 (18) | 4.6 ± 3.16 (18) | 6.9 ± 8.68 (57) | 5.4 ± 4.41 (53) | 6.8 ± 0.19 (55) | 524.3 ± 152.66 (22) | 1.6 ± 1.09 (15) | 3.1 ± 0.61 (5) |
| Filter 7 outflow | <10 | 32.5 ± 20.40 (14) | 11.9 ± 8.01 (61) | 3.6 ± 5.52 (24) | 2.8 ± 2.98 (18) | 3.6 ± 2.23 (17) | 2.6 ± 3.86 (66) | 3.4 ± 2.24 (62) | 6.6 ± 0.18 (62) | 355.0 ± 83.11 (28) | 1.7 ± 0.86 (25) | 2.4 ± 0.47 (5) |
| Filter 8 outflow | 116 | 55.9 ± 86.05 (15) | 13.9 ± 7.50 (69) | 1.4 ± 1.35 (22) | 2.8 ± 3.51 (16) | 3.3 ± 1.90 (16) | 2.9 ± 4.31 (76) | 3.6 ± 2.48 (76) | 6.5 ± 0.20 (78) | 339.7 ± 104.74 (25) | 1.9 ± 1.15 (22) | 2.1 ± 0.44 (5) |
| Control A outflow | 346 | 66.4 ± 44.32 (17) | 12.0 ± 7.58 (51) | 1.3 ± 1.79 (22) | 0.4 ± 0.44 (19) | 1.8 ± 0.56 (18) | 9.0 ± 10.25 (56) | 5.7 ± 4.31 (53) | 6.7 ± 0.17 (55) | 149.2 ± 32.47 (22) | 1.4 ± 0.93 (15) | 0.5 ± 0.15 (5) |
| Control B outflow | <10 | 16.0 ± 15.12 (15) | 8.8 ± 7.58 (52) | 1.3 ± 1.77 (21) | 0.3 ± 0.35 (18) | 1.9 ± 0.33 (18) | 3.6 ± 8.18 (56) | 4.1 ± 4.54 (53) | 6.5 ± 0.20 (54) | 153.9 ± 29.87 (22) | 1.8 ± 1.04 (15) | 0.5 ± 0.14 (5) |
| Deionised water | Nm m | 3.5 ± 0.08 (3) | 7.3 ± 1.84 (3) | 0.1 ± 0.13 (3) | 0.0 ± 0.00 (3) | 0.0 ± 0.00 (3) | 2.0 ± 2.31 (10) | 1.3 ± 0.14 (10) | 5.1 ± 0.58 (10) | 1.5 ± 0.72 (10) | nm | 0.1 ± 0.15 (5) |
| Tap water (100%) | Nm | 6.2 ± 0.33 (3) | 4.9 ± 1.13 (3) | 0.1 ± 0.00 (3) | 0.2 ± 0.00 (3) | 0.8 ± 0.00 (3) | 2.0 ± 2.31 (10) | 1.4 ± 0.21 (10) | 6.1 ± 1.06 (10) | 95.8 ± 15.20 (10) | nm | 0.8 ± 0.15 (5) |
| Tap water with fertiliser | Nm | 8.6 ± 0.22 (3) | 8.0 ± 2.62 (3) | 16.0 ± 0.01 (3) | 8.9 ± 0.38 (3) | 14.9 ± 0.07 (3) | 1.6 ± 0.46 (10) | 3.0 ± 0.49 (10) | 6.0 ± 0.28 (10) | 204.0 ± 5.66 (10) | nm | 0.8 ± 0.10 (5) |
| Wastewater (20%); tap water (80%) | Nm | 47.6 ± 15.39 (17) | 21.8 ± 15.99 (55) | 6.7 ± 3.69 (22) | 0.5 ± 0.64 (21) | 3.0 ± 1.43 (21) | 26.4 ± 18.48 (63) | 16.2 ± 15.18 (56) | 7.1 ± 0.07 (55) | 122.1 ± 55.98 (22) | nm | 1.7 ± 0.59 (5) |
| Wastewater (100%) | Nm | 237.9 ± 76.96 (17) | 105.3 ± 75.98 (55) | 33.6 ± 18.46 (22) | 2.4 ± 3.22 (21) | 14.9 ± 7.15 (21) | 131.9 ± 92.64 (63) | 80.4 ± 75.97 (56) | 7.5 ± 0.42 (55) | 575.5 ± 181.66 (22) | 5.2 ± 3.72 (16) | 2.8 ± 0.62 (5) |
| Standard | 1000 | - | - | 5 | 30 | 2 | 6.0–8.5 | 3000 | ≤15 |
3.1.3. Comparison of Nitrogen Compounds
3.1.4. Comparison of Ortho-Phosphate-Phosphorus
3.1.5. Comparison of Trace Elements

3.1.6. Comparison of Particles
3.1.7. Comparison of pH and Salinity
3.1.8. Comparison of Microbial Content

3.2. Environment Boundary Conditions
3.3. Sweet Pepper Growth Comparisons

| Parameter | Unit | A a | B b | C c | D d | E e | F f |
|---|---|---|---|---|---|---|---|
| Illuminance (one-off record during lab visit) | lux | 5587 ± 5501.1 (918) | nm | 4208 ± 2560.5 (36) | 12316 ± 1823.3 (102) | 3682 ± 3246.1 (513) | 5877 ± 9262.2 (267) |
| Temperature (one-off record during lab visit) | °C | 25.4 ± 2.12 (603) | 20.5 ± 1.25 (13) | 24.8 ± 1.17 (48) | 25.0 ± 1.89 (102) | 26.3 ± 2.32 (204) | 25.0 ± 1.83 (236) |
| Temperature (minimum within a 24-hour period) | °C | 20.8 ± 1.97 (75) | nm | nm | 20.3 ± 1.87 (8) | 21.2 ± 2.02 (33) | 20.6 ± 2.05 (34) |
| Temperature (maximum within a 24-hour period) | °C | 26.8 ± 2.59 (75) | nm | nm | 25.3 ± 1.98 (8) | 27.0 ± 2.83 (33) | 26.6 ± 2.26 (34) |
| Relative humidity (one-off record during lab visit) | % | 49 ± 11.7 (488) | nm | nm | 42 ± 5.4 (96) | 37 ± 7.6 (156) | 57 ± 7.8 (236) |
| Relative humidity (minimum within a 24-hour period) | % | 35 ± 7.1 (75) | nm | nm | 36 ± 3.7 (8) | 30 ± 3.5 (33) | 38 ± 8.5 (34) |
| Relative humidity (maximum within a 24-hour period) | % | 55 ± 12.5 (75) | nm | nm | 46 ± 5.6 (8) | 48 ± 10.5 (33) | 63 ± 9.8 (34) |

| Water Type | Total Applied Mass (mg) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| NH4-N a | NO3-N b | PO4-P c | Ca d | Fe e | K f | Mg g | Mn h | Zn i | B j | |
| Filter 1 outflow | 74.8 | 6.2 | 62.3 | 591.9 | 32.6 | 149.0 | 89.0 | 3.6 | 1.2 | 0.8 |
| Filter 2 outflow | 87.5 | 31.0 | 46.5 | 484.3 | 4.6 | 112.7 | 71.1 | 0.9 | 1.3 | 0.7 |
| Filter 3 outflow | 42.4 | 4.6 | 37.8 | 919.3 | 24.9 | 115.1 | 74.1 | 4.2 | 1.4 | 0.6 |
| Filter 4 outflow | 64.5 | 23.2 | 37.4 | 638.7 | 3.7 | 50.6 | 69.8 | 0.9 | 1.3 | 0.5 |
| Filter 5 outflow | 107.7 | 10.0 | 48.9 | 834.9 | 21.8 | 157.2 | 104.2 | 4.2 | 1.5 | 0.6 |
| Filter 6 outflow | 103.7 | 41.5 | 53.0 | 765.8 | 11.0 | 154.1 | 112.5 | 1.3 | 1.7 | 0.7 |
| Filter 7 outflow | 52.2 | 40.6 | 52.2 | 650.8 | 13.1 | 105.0 | 78.9 | 2.3 | 1.2 | 0.4 |
| Filter 8 outflow | 15.9 | 31.8 | 37.5 | 506.8 | 5.4 | 69.4 | 57.6 | 1.0 | 1.8 | 0.3 |
| Control A outflow | 18.9 | 5.8 | 26.1 | 342.7 | 3.4 | 14.5 | 17.2 | 1.5 | 1.5 | 0.1 |
| Control B outflow | 18.3 | 4.2 | 26.7 | 429.8 | 1.0 | 11.1 | 17.8 | 0.6 | 2.3 | 0.1 |
| Deionised water | 1.5 | <0.1 | <0.1 | <0.1 | 1.0 | <0.1 | 1.4 | 1.2 | 0.7 | <0.1 |
| Tap water (100%) | 1.5 | 10.2 | 29.7 | 151.8 | 49.9 | 6.2 | 14.6 | 0.9 | 2.7 | <0.1 |
| Tap water with fertiliser | 276.7 | 153.9 | 257.7 | 179.8 | 1.6 | 331.4 | 20.9 | 1.6 | 1.5 | <0.1 |
| Wastewater (20%); tap water (80%) | 100.0 | 7.5 | 44.8 | 336.6 | 7.0 | 51.2 | 42.1 | 1.0 | 3.3 | 0.1 |
| Wastewater (100%) | 580.3 | 41.4 | 257.3 | 1149.9 | 65.0 | 244.4 | 169.1 | 2.9 | 4.0 | 1.0 |

3.4. Sweet Pepper Quality

4. Conclusions and Further Research
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Asano, T. Reusing urban wastewater—An alternative and a reliable water resource. Water Int. 1994, 19, 36–42. [Google Scholar] [CrossRef]
- Asano, T.; Burton, F.L.; Leverenz, H.; Tsuchihashi, R.; Tchobanoglous, G. Waterreuse: Issues, Technologies, and Applications; McGraw-Hill Education: Columbus, OH, USA, 2007. [Google Scholar]
- Jiménez, B.; Asano, T. Water Reclamation and Reuse Around the World, Water Reuse: An International Survey of Currentpractice, Issues and Needs; International Water Association Publishing: London, UK, 2008; pp. 3–26. [Google Scholar]
- Bichai, F.; Polo-López, M.I.; Fernández Ibañez, P. Solar disinfection of wastewater to reduce contamination of lettuce crops by Escherichia coli in reclaimed water irrigation. Water Res. 2012, 46, 6040–6050. [Google Scholar] [CrossRef] [PubMed]
- Singhirunnusorn, W.; Stenstrom, M. Appropriate wastewater treatment systems for developing countries: Criteria and indictor assessment in Thailand. Water Sci. Technol. 2009, 59, 1873–1884. [Google Scholar] [CrossRef] [PubMed]
- Curiel-Esparza, J.; Cuenca-Ruiz, M.A.; Martin-Utrillas, M.; Canto-Perello, J. Selecting a sustainable disinfection technique for wastewater reuse projects. Water 2014, 6, 2732–2747. [Google Scholar] [CrossRef]
- Kalbar, P.P.; Karmakar, S.; Asolekar, S.R. The influence of expert opinions on the selection of wastewater treatment alternatives: A group decision-making approach. J. Environ. Manage. 2013, 128, 844–851. [Google Scholar] [CrossRef] [PubMed]
- FAO. The Wealth of Waste: The Economics of Wastewater Use in Agriculture; Food and Agriculture Organisation (FAO) of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Aiello, R.; Cirelli, G.L.; Consoli, S. Effects of reclaimed wastewater irrigation on soil and tomato fruits: A case study in Sicily (Italy). Agric. Water Manage. 2007, 93, 65–72. [Google Scholar] [CrossRef]
- Asano, T.; Levine, A.D. Wastewater reclamation, recycling and reuse: Past, present, and future. Water Sci. Technol. 1996, 33, 1–14. [Google Scholar] [CrossRef]
- Cirelli, G.L.; Consoli, S.; Licciardello, F.; Aiello, R.; Giuffrida, F.; Leonardi, C. Treated municipal wastewater reuse in vegetable production. Agric. Water Manage. 2012, 104, 163–170. [Google Scholar] [CrossRef]
- García-Delgado, C.; Eymar, E.; Contreras, J.; Segura, M. Effects of fertigation with purified urban wastewater on soil and pepper plant (Capsicum annuum L.) production, fruit quality and pollutant contents. Span. J. Agric. Res. 2012, 10, 209–221. [Google Scholar] [CrossRef]
- Scholz, M. Wetland Systems—Storm Water Management Control; Springer Verlag: Berlin, Germany, 2010. [Google Scholar]
- Boyden, B.H.; Rababah, A.A. Recycling nutrients from municipal wastewater. Desalination 1996, 106, 241–246. [Google Scholar] [CrossRef]
- Bar-Tal, A.; Aloni, B.; Karni, L.; Oserovitz, J.; Hazan, A.; Itach, M.; Gantz, S.; Avidan, A.; Posalski, I.; Tratkovski, N. Nitrogen nutrition of greenhouse pepper. I. Effects of nitrogen concentration and NO3: NH4 ratio on yield, fruit shape, and the incidence of blossom-end rot in relation to plant mineral composition. HortScience 2001, 36, 1244–1251. [Google Scholar]
- Bar-Tal, A.; Aloni, B.; Karni, L.; Rosenberg, R. Nitrogen nutrition of greenhouse pepper. II. Effects of nitrogen concentration and NO3: NH4 ratio on growth, transpiration, and nutrient uptake. HortScience 2001, 36, 1252–1259. [Google Scholar]
- Rahimi, Z.; Aboutalebi, A.; Zakerin, A. Comparison of different medium for production of sweet pepper transplant. Int. Res. J. Appl. Basic Sci. 2013, 4, 307–310. [Google Scholar]
- Del Amor, F.M. Yield and fruit quality response of sweet pepper to organic and mineral fertilization. Renew. Agric. Food Syst. 2007, 22, 233–238. [Google Scholar] [CrossRef]
- Gungor, F.; Yildirim, E. Effect of different growing media on quality, growth and yield of pepper (Capsicum annuum L.) under greenhouse conditions. Pak. J. Bot. 2013, 45, 1605–1608. [Google Scholar]
- Dong, Y.; Wiliński, P.R.; Dzakpasu, M.; Scholz, M. Impact of hydraulic loading rate and season on water contaminant reductions within integrated constructed wetlands. Wetlands 2011, 31, 499–509. [Google Scholar] [CrossRef]
- Morari, F.; Giardini, L. Municipal wastewater treatment with vertical flow constructed wetlands for irrigation reuse. Ecol. Eng. 2009, 35, 643–653. [Google Scholar] [CrossRef]
- Lopez, A.; Pollice, A.; Lonigro, A.; Masi, S.; Palese, A.M.; Cirelli, G.L.; Toscano, A.; Passino, R. Agricultural wastewater reuse in Southern Italy. Desalination 2006, 187, 323–334. [Google Scholar] [CrossRef]
- Nickels, J. Growing Chillies—A Guide to the Domestic Cultivation of Chilli Plants; Jason Nickels: UK, 2012. [Google Scholar]
- Jones, J.B. Instructions for Growing Tomatoes in the Garden and Green-House; CreateSpace Independent Publishing Platform: Anderson, SC, USA, 2013. [Google Scholar]
- FAO. Users Manual for Irrigation with Treated Wastewater; FAO Regional Office of the Near East: Cairo, Egypt, 2003. [Google Scholar]
- Pescod, M.B. Wastewater treatment and use in agriculture—FAO irrigation and drainage paper number 47. Available online: http://www.Fao.Org/docrep/t0551e/t0551e00.Htm (accessed on 26 May 2014).
- Food and Agriculture Organization. The State of Food and Agriculture; Food and Agriculture Organization (FAO) of the United Nations: Rome, Italy, 1994. [Google Scholar]
- Sani, A.; Scholz, M.; Bouillon, L. Seasonal assessment of experimental vertical-flow constructed wetlands treating domestic wastewater. Bioresour. Technol. 2013, 147, 585–596. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association. Standard methods for the examination of water and wastewater. In American Public Health Association (APHA), American Water Works Association, and Water and Environment Federation, 21st ed.; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- Environmental Protection Agency. Determination Of Metals And Trace Elements In Water And Wastes By Inductively Coupled Plasma-Atomic Emission Spectrometry; U.S. Environmental Protection Agency (EPA): Cincinnati, OH, USA, 1994.
- Chary, N.S.; Kamala, C.T.; Raj, D.S.S. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 2008, 69, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation No. 1455/1999 Laying Down the Marketing Standard for Sweet Peppers. Available online: http://faolex.fao.org/cgi-bin/faolex.exe?rec_id=028004&database=faolex&search_type=link&table=result&lang=eng&format_name=@ERALL (accessed on 6 January 2005).
- Laying Down Detailed Rules for the Application of Council Regulation (EC) No.1234/2007 in Respect of the Fruits and Vegetables Sectors. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011R054315 (accessed on June 2011).
- Thai Agricultural Standard, National Bureau of Agricultural Commodity and Food Standards, Ministry of Agriculture and Cooperatives. Available online: http://www.acfs.go.th/standard/download/eng/peppers.pdf (accessed on 7 June 2004).
- SEPA. Standards for Irrigation Water Quality; State Environmental Protection Administration: Beijing, China, 2005. [Google Scholar]
- US Bell & Chile Pepper Statistics. Available online: http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1659 (accessed on 2 November 2015).
- Smith, E.; Gordon, R.; Madani, A.; Stratton, G. Year-round treatment of dairy wastewater by constructed wetlands in atlantic Canada. Wetlands 2006, 26, 349–357. [Google Scholar] [CrossRef]
- US EPA. Guidelines for Water Reuse; United States Environmental Protection Agency (EPA): Washington, DC, USA, 2004.
- Benedek, T.; Vajna, B.; Táncsics, A.; Márialigeti, K.; Lányi, S.; Máthé, I. Remarkable impact of PAHs and TPHs on the richness and diversity of bacterial species in surface soils exposed to long-term hydrocarbon pollution. World J. Microbiol. Biotechnol. 2013, 29, 1989–2002. [Google Scholar] [CrossRef] [PubMed]
- Deli, J.; Tiessen, H. Interaction of temperature and light intensity on flowering of Capsicum frutescens var grossum cv. California Wonder. J. Am. Soc. Hortic. Sci. 1969, 94, 349–351. [Google Scholar]
- Wein, H.C.; Zhang, Y. Prevention of flower abscission in bell pepper. J. Am. Soc. Hortic. Sci. 1991, 116, 516–519. [Google Scholar]
- Ciju, R.J. Bell Peppers—Growing Practices and Nutritional Value; CreateSpace Independent Publishing Platform: Ridgmont, UK, 2013. [Google Scholar]
- Chemicals, H. Nutritional Recommendations for Pepper. Available online: ttp://www.haifa-group.com/files/Guides/Pepper/Pepper.pdf (accessed on 3 February 2014).
- Bakker, J.C.; Ufflen, V.J.A.M. The effect of diurnal temperature regimes on growth and yield of greenhouse sweet pepper. Neth. J. Agric. Sci. 1988, 36, 201–208. [Google Scholar]
- Bhatt, R.; Srinivasa Rao, N. Photosynthesis and dry matter partitioning in three cultivars of Capsicum annuum L. grown at two temperature conditions. Photosynthetica 1989, 23, 21–26. [Google Scholar]
- Nilwik, H.J.M. Photosynthesis of whole sweet pepper plants. I. Response to irradiance and temperature as influenced by cultivation conditions. Photosynthetica 1980, 14, 373–381. [Google Scholar]
- Bakker, J.C. The effects of air humidity on flowering, fruit set, seed set and fruit growth of glasshouse sweet pepper (Capsicum annuum L.). Sci. Hortic. 1989, 40, 1–8. [Google Scholar] [CrossRef]
- Olle, M.; Ngouajio, M.; Siomos, A. Vegetable quality and productivity as influenced by growing medium: A review. Agriculture 2012, 99, 399–408. [Google Scholar]
- Baudoin, W.; Nono-Womdim, R.; Lutaladio, N.B.; Hodder, A. Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate Areas; Food and agriculture organization (FAO) of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Sillanpää, M. Trace Elements in Soils and Agriculture; Food and Agriculture Organisation (FAO) of the United Nations: Rome, Italy, 1972. [Google Scholar]
- Cakmak, I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 2005, 168, 521–530. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almuktar, S.A.A.A.N.; Scholz, M. Experimental Assessment of Recycled Diesel Spill-Contaminated Domestic Wastewater Treated by Reed Beds for Irrigation of Sweet Peppers. Int. J. Environ. Res. Public Health 2016, 13, 208. https://doi.org/10.3390/ijerph13020208
Almuktar SAAAN, Scholz M. Experimental Assessment of Recycled Diesel Spill-Contaminated Domestic Wastewater Treated by Reed Beds for Irrigation of Sweet Peppers. International Journal of Environmental Research and Public Health. 2016; 13(2):208. https://doi.org/10.3390/ijerph13020208
Chicago/Turabian StyleAlmuktar, Suhad A.A.A.N., and Miklas Scholz. 2016. "Experimental Assessment of Recycled Diesel Spill-Contaminated Domestic Wastewater Treated by Reed Beds for Irrigation of Sweet Peppers" International Journal of Environmental Research and Public Health 13, no. 2: 208. https://doi.org/10.3390/ijerph13020208
APA StyleAlmuktar, S. A. A. A. N., & Scholz, M. (2016). Experimental Assessment of Recycled Diesel Spill-Contaminated Domestic Wastewater Treated by Reed Beds for Irrigation of Sweet Peppers. International Journal of Environmental Research and Public Health, 13(2), 208. https://doi.org/10.3390/ijerph13020208
