Environmental Chemical Assessment in Clinical Practice: Unveiling the Elephant in the Room
Abstract
:1. Introduction
2. The Rise of Chemical Production and Exposures
3. Environmental Chemicals and the Origins of Chronic and Complex Disease
4. Chemical Risk and Chemical Risk Assessment
4.1. Dose Response and Low Dose Effects
4.2. Chemical Mixtures and “Something from Nothing” Effects
4.3. Timing and Transgenerational Epigenetic Effects
4.4. Individual Factors
4.5. New Horizons in Chemical Risk Assessment
5. The Challenges and Failure of Chemical Regulation
6. What Are the Barriers for Chemical Assessment in Clinical Practice?
6.1. What is Environmental Medicine?
6.2. Medical Training
6.3. Environmental Health Data and Its Relevance to Clinical Practice
7. How Can Clinicians Assess Environmental Chemical Exposures?
7.1. Lessons in History—Asking the Right Questions
7.2. The “Omics” Revolution and Personalised Medicine: A Match Made in Heaven
7.3. Citizen Science and Mobile Technologies
7.4. Tomorrow’s Doctor
- Establishing the patient’s inherent susceptibility to environmental chemicals through assessment of their demographics, ethnicity, socioeconomic status, comorbidities, nutritional and genomic profile.
- A detailed place history that includes places of residence and work across the lifespan and throughout the week including primary modes of transportation and an assessment of the patients living conditions including their proximity to traffic and other sources of air pollution and potential sources of lead and other heavy metals, mould, dust, indoor air pollution and chemicals in building materials, furnishing and consumer products.
- An obstetric, paediatric, environmental and occupational exposure history that includes a detailed dietary history, drinking water sources, pharmaceutical and recreational drug use and general lifestyle factors including the use of chemicals in the home and garden, cooking utensils, cleaning methods, personal care products and consumer goods.
- A family history that includes previous generations.
- A detailed symptom history that includes a timeline from the perinatal period and enquiry into multiple organ systems.
- A physical examination to look for physical signs of metabolic, neurological, reproductive or other disease and co-morbidities.
- Assessing current toxic load through performing various biomonitoring tests that include assessment of biomarkers in various body tissues to assess long term accumulation of toxicants as well as short term exposures.
- A consideration of external data sources such as geographical information systems and governmental or non-government environmental pollution reporting, ambient air monitoring, drinking water quality and any crowd-sourced data.
- Networking with other professionals who can assess the patient’s home and/or workplace to establish sources of exposure.
- Keeping up with the latest regulations and scientific information on environmental chemicals and how they may be assessed as well as their interactions with each other, different diseases and individual patient factors.
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Reichard, A.; Gulley, S.P.; Rasch, E.K.; Chan, L. Diagnosis isn’t enough: Understanding the connections between high health care utilization, chronic conditions and disabilities among U.S. working age adults. Disabil. Health J. 2015, 8, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Paoloni-Giacobino, A. Post genomic decade—The epigenome and exposome challenges. Swiss Med. Wkly. 2011. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.D.; Williams, T.N.; Levin, A.; Tonelli, M.; Singh, J.A.; Burney, P.; Rehm, J.; Volkow, N.D.; Koob, G.; Ferri, C.P. Remembering the forgotten non-communicable diseases. BMC Med. 2014. [Google Scholar] [CrossRef] [PubMed]
- Laborde, A.; Tomasina, F.; Bianchi, F.; Brune, M.N.; Buka, I.; Comba, P.; Corra, L.; Cori, L.; Duffert, C.M.; Harari, R. Children’s Health in Latin America: The Influence of Environmental Exposures. Environ. Health Perspect. 2015, 123, 201–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleisiaris, C.F.; Sfakianakis, C.; Papathanasiou, I.V. Health care practices in ancient Greece: The hippocratic ideal. J. Med. Ethics Hist. Med. 2014, 7, 6. [Google Scholar]
- CAS. CAS REGISTRY—The Gold Standard for Chemical Substance Information. 2015. Available online: http://www.cas.org/content/chemical-substances (accessed on 24 June 2015).
- Obodovskiy, I. 5—The effect of chemicals on biological structures. In Fundamentals of Radiation and Chemical Safetyl; Obodovskiy, I., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 133–179. [Google Scholar]
- Rosenthal, G.J. Toxicological assessment of the immune system. In Toxicological Testing Handbook: Principles, Applications, and Data Implementation; CRC Press: Boca Raton, FL, USA, 2000; p. 291. [Google Scholar]
- Walters, D.; Grodzki, K. Beyond limits? Dealing with Chemical Risks at Work in Europe; Elsevier: Philadelphia, PA, USA, 2006. [Google Scholar]
- United Nations Environment Programme (UNEP). Global Chemicals Outlook. Towards Sound Management of Chemicals; UNEP: Geneva, Switzerland, 2012. [Google Scholar]
- Calafat, A.M. The U.S. National Health and Nutrition Examination Survey and human exposure to environmental chemicals. Int. J. Hyg. Environ. Health 2012, 215, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Schindler, B.K.; Esteban, M.; Koch, H.M.; Castano, A.; Koslitz, S.; Cañas, A.; Casteleyn, L.; Kolossa-Gehring, M.; Schwedler, G.; Schoeters, G.; et al. The European COPHES/DEMOCOPHES project: Towards transnational comparability and reliability of human biomonitoring results. Int. J. Hyg. Environ. Health 2014, 217, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Schulz, C.; Seiwert, M.; Babisch, W.; Becker, K.; Conrad, A.; Szewzyk, R.; Kolossa-Gehring, M. Overview of the study design, participation and field work of the German Environmental Survey on Children 2003–2006 (GerES IV). Int. J. Hyg. Environ. Health 2012, 215, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Schoeters, G.; Hond, E.D.; Colles, A.; Loots, I.; Morrens, B.; Keune, H.; Bruckers, L.; Nawrot, T.; Sioen, I. Concept of the Flemish human biomonitoring programme. Int. J. Hyg. Environ. Health 2012, 215, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Fréry, N.; Vandentorren, S.; Etchevers, A.; Fillol, C. Highlights of recent studies and future plans for the French human biomonitoring (HBM) programme. Int. J. Hyg. Environ. Health 2012, 215, 127–132. [Google Scholar] [CrossRef]
- WHO. Human Biomonitoring: Facts and Figures; WHO: Copenhagen, Denmark, 2015. [Google Scholar]
- Pérez-gómez, B.; Pastor-barriuso, R.; Cervantes-amat, M.; Esteban, M.; Ruiz-moraga, M.; Aragonés, N.; Pollán, M.; Navarro, C.; Calvo, E.; Román, J.; et al. BIOAMBIENT.ES study protocol: Rationale and design of a cross-sectional human biomonitoring survey in Spain. Environ. Sci. Pollut. Res. Int. 2013, 20, 1193–1202. [Google Scholar]
- Olsen, J.; Melbye, M.; Olsen, S.F.; Sorensen, T.I.; Aaby, P.; Andersen, A.M.; Taxbol, D.; Hansen, K.D.; Juhl, M.; Schow, T.B.; et al. The Danish National Birth Cohort—Its background, structure and aim. Scand. J. Public Health 2001, 29, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Vandentorren, S.; Bois, C.; Pirus, C.; Sarter, H.; Salines, G.; Leridon, H. Rationales, design and recruitment for the Elfe longitudinal study. BMC Pediatr. 2009, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- Magnus, P.; Irgens, L.M.; Haug, K.; Nystad, W.; Skjaerven, R.; Stoltenberg, C. Cohort profile: The Norwegian Mother and Child Cohort Study (MoBa). Int. J. Epidemiol. 2006, 35, 1146–1150. [Google Scholar] [CrossRef]
- Fernandez, M.F.; Sunyer, J.; Grimalt, J.; Rebagliato, M.; Ballester, F.; Ibarluzea, J.; Ribas-Fitó, N.; Tardon, A.; Fernandez-Patier, R.; Torrent, M.; et al. The Spanish Environment and Childhood Research Network (INMA study). Int. J. Hyg. Environ. Health 2007, 210, 491–493. [Google Scholar] [CrossRef] [PubMed]
- Nuclear Regulatory Commission (NRC). Acute Exposure Guideline Levels for Selected Airborne Chemicals; National Academies Press: Washington, DC, USA, 2015; Volume 19. [Google Scholar]
- WHO. Fourth WHO-Coordinated Survey of Human Milk for Persistent Organic Pollutants in Cooperation with UNEP; Guidelines for Developing a National Protocol; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- EWG. Body Burden: The Pollution in Newborns. A Benchmark Investigation of Industriacl Chemicals, Pollutants and Pesticides in Umbilical Cord Blood. 2005. Available online: http://www.ewg.org/research/body-burden-pollution-newborns (accessed on 25 June 2015).
- Defence, E. Pre-Polluted: A Report on Toxic Substances in the Umbilical Cord of Canadian Newborns; Environmental Defence Canada: Toronto, ON, Canada, 2013. [Google Scholar]
- Genuis, S.J. Evolution in pediatric health care. Pediatr. Int. 2010, 52, 640–643. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Pediatrics. Pediatric Environmental Health, 3rd ed.; American Academy of Pediatrics: Elk Grove Village, IL, USA, 2012. [Google Scholar]
- Mohai, P.; Bryant, B. Environmental racism: Reviewing the evidence. In Race and the Incidence of Environmental Hazards: A Time for Discourse; Westview press: Boulder, CO, USA, 1992; p. 164. [Google Scholar]
- White, H.L. Hazardous waste incineration and minority communities. In Race and the Incidence of Environmental Hazards: A Time for Discourse; Westview press: Boulder, CO, USA, 1992; pp. 126–139. [Google Scholar]
- Hird, J.A. Environmental policy and equity: The case of Superfund. J. Policy Anal. Manag. 1993, 12, 323–343. [Google Scholar] [CrossRef]
- Zimmerman, R. Social Equity and Environmental Risk1. Risk Anal. 1993, 13, 649–666. [Google Scholar] [CrossRef]
- U.S. Government Accountability Office (GAO). Hazardous and Non-Hazardous Waste: Demographics of People Living Near Waste Facilities; GAO: Washington, DC, USA, 1995.
- Brown, P. Race, class, and environmental health: A review and systematization of the literature. Environ. Res. 1995, 69, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Krieg, E.J.; Faber, D.R. Not so black and white: Environmental justice and cumulative impact assessments. Environ. Impact Assess. Rev. 2004, 24, 667–694. [Google Scholar] [CrossRef]
- Bryant, B. Issues and potential policies and solutions for environmental justice: An overview. In Environmental Justice: Issues, Policies, and Solutions; Island Press: Covelo, CA, USA, 1995; pp. 8–34. [Google Scholar]
- Tyrrell, J.; Melzer, D.; Henley, W.; Galloway, T.S.; Osborne, N.J. Associations between socioeconomic status and environmental toxicant concentrations in adults in the USA: NHANES 2001–2010. Environ. Int. 2013, 59, 328–335. [Google Scholar] [CrossRef] [PubMed]
- WHO. Preventing Disease through Healthy Environments. Towards an Estimate of the Environmental Burden of Disease; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Trasande, L.; Zoeller, R.T.; Hass, U.; Kortenkamp, A.; Grandjean, P.; Myers, J.P.; DiGangi, J.; Bellanger, M.; Hauser, R.; Legler, J.; et al. Estimating burden and disease costs of exposure to endocrine-disrupting chemicals in the European union. J. Clin. Endocrinol. Metab. 2015, 100, 1245–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barouki, R.; Gluckman, P.D.; Grandjean, P.; Hanson, M.; Heindel, J.J. Developmental origins of non-communicable disease: Implications for research and public health. Environ. Health 2012, 11, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Lobstein, T. Worldwide trends in childhood overweight and obesity. Int. J. Pediatr. Obes. 2006, 1, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Konkel, L. Obesogen holdover: Prenatal exposure predicts cardiometabolic risk factors in childhood. Environ. Health Perspect. 2015. [Google Scholar] [CrossRef] [PubMed]
- Agay-Shay, K.; Martinez, D.; Valvi, D.; Garcia-Esteban, R.; Basagana, X.; Robinson, O.; Casas, M.; Sunyer, J.; Vrijheid, M. Exposure to endocrine-disrupting chemicals during pregnancy and weight at 7 years of age: A multi-pollutant approach. Environ. Health Perspect. 2015, 123, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Mendez, M.A.; Garcia-Esteban, R.; Guxens, M.; Vrijheid, M.; Kogevinas, M.; Goñi, F.; Fochs, S.; Sunyer, J. Prenatal organochlorine compound exposure, rapid weight gain, and overweight in infancy. Environ. Health Perspect. 2011, 119, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, R.; Xiao, J.; Shankar, A. Urinary bisphenol A and obesity in US children. Am. J. Epidemiol. 2013, 177, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Tang-Peronard, J.L.; Andersen, H.R.; Jensen, T.K.; Heitmann, B.L. Endocrine-disrupting chemicals and obesity development in humans: A review. Obes. Rev. 2011, 12, 622–636. [Google Scholar] [CrossRef] [PubMed]
- Iughetti, L.; Lucaccioni, L.; Predieri, B. Childhood obesity and environmental pollutants: A dual relationship. Acta Biomed. 2015, 86, 5–16. [Google Scholar] [PubMed]
- Janesick, A.; Blumberg, B. Obesogens, stem cells and the developmental programming of obesity. Int. J. Androl. 2012, 35, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Kermack, W.O.; McKendrick, A.G.; McKinlay, P.L. Death-rates in Great Britain and Sweden: Expression of specific mortality rates as products of two factors, and some consequences thereof. J. Hyg. (Lond.) 1934, 34, 433–457. [Google Scholar] [CrossRef] [PubMed]
- Neel, J.V. Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? Am. J. Hum. Genet. 1962, 14, 353–362. [Google Scholar] [PubMed]
- Forsdahl, A. Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? Br. J. Prev. Soc. Med. 1977, 31, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Forsdahl, A. Living conditions in childhood and subsequent development of risk factors for arteriosclerotic heart disease. The cardiovascular survey in Finnmark 1974–1975. J. Epidemiol. Commun. Health 1978, 32, 34–37. [Google Scholar] [CrossRef]
- Barker, D.J.P.; Gluckman, P.D.; Robinson, J.S. Conference report: Fetal origins of adult disease—Report of the first international study group, Sydney, 29–30 October 1994. Placenta 1995, 16, 317–320. [Google Scholar] [CrossRef]
- Heindel, J.J.; Balbus, J.; Birnbaum, L.; Brune-Drisse, M.N.; Grandjean, P.; Gray, K.; Landrigan, P.J.; Sly, P.D.; Suk, W.; Slechta, D.C.; et al. Developmental origins of health and disease: Integrating environmental influences. Endocrinology 2015, 156, 3416–3421. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, N.; Fénichel, P. Endocrine disruptors: New players in the pathophysiology of type 2 diabetes? Diabetes Metabo. 2015, 41, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Turyk, M.; Fantuzzi, G.; Persky, V.; Freels, S.; Lambertino, A.; Pini, M.; Rhodes, D.H.; Anderson, H.A. Persistent organic pollutants and biomarkers of diabetes risk in a cohort of Great Lakes sport caught fish consumers. Environ. Res. 2015, 140, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Zama, A.M.; Uzumcu, M. Epigenetic effects of endocrine-disrupting chemicals on female reproduction: An ovarian perspective. Front. Neuroendocrinol. 2010, 31, 420–439. [Google Scholar] [CrossRef] [PubMed]
- Zeliger, H.I. 23—Toxic Infertility. In Human Toxicology of Chemical Mixtures, 2nd ed.; Zeliger, H.I., Ed.; William Andrew Publishing: Oxford, UK, 2011; pp. 323–340. [Google Scholar]
- Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Maisog, J.; Kim, S.; Chen, Z.; Barr, D.B. Persistent environmental pollutants and couple fecundity: The LIFE study. Environ. Health Perspect. 2013, 121, 231–236. [Google Scholar] [PubMed]
- Skakkebaek, N.E.; Meyts, E.R.; Main, K.M. Testicular dysgenesis syndrome: An increasingly common developmental disorder with environmental aspects. Hum. Reprod. 2001, 16, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Nordkap, L.; Joensen, U.N.; Jensen, M.B.; Jørgensen, N. Regional differences and temporal trends in male reproductive health disorders: Semen quality may be a sensitive marker of environmental exposures. Mol. Cell. Endocrinol. 2012, 355, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Kalfa, N.; Paris, F.; Philibert, P.; Orsini, M.; Broussous, S.; Fauconnet-Servant, N.; Audran, F.; Gaspari, L.; Lehors, H.; Haddad, M.; et al. Is hypospadias associated with prenatal exposure to endocrine disruptors? A French collaborative controlled study of a cohort of 300 consecutive children without genetic defect. Eur. Urol. 2015, 68, 1023–1030. [Google Scholar] [CrossRef]
- Michalakis, M.; Tzatzarakis, M.N.; Kovatsi, L.; Alegakis, A.K.; Tsakalof, A.K.; Heretis, I.; Tsatsakis, A. Hypospadias in offspring is associated with chronic exposure of parents to organophosphate and organochlorine pesticides. Toxicol. Lett. 2014, 230, 139–145. [Google Scholar] [CrossRef]
- Virtanen, H.E.; Adamsson, A. Cryptorchidism and endocrine disrupting chemicals. Mol. Cell. Endocrinol. 2012, 355, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Voigt, K.; Brueggemann, R.; Scherb, H.; Shen, H.; Schramm, K.W. Evaluating the relationship between chemical exposure and cryptorchidism. Environ. Model. Softw. 2010, 25, 1801–1812. [Google Scholar] [CrossRef]
- Meeks, J.J.; Sheinfeld, J.; Eggener, S.E. Environmental toxicology of testicular cancer. Urol. Oncol. 2012, 30, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Carlsen, E.; Giwercman, A.; Keiding, N.; Skakkebaek, N.E. Evidence for decreasing quality of semen during past 50 years. Int. J. Gynecol. Obstet. 1993, 41, 112–113. [Google Scholar] [CrossRef]
- Fathi Najafi, T.; Roudsari, R.L.; Namvar, F.; Ghanbarabadi, V.G.; Talasaz, Z.H.; Esmaeli, M. Air pollution and quality of sperm: A meta-analysis. Iran Red Crescent Med. J. 2015. [Google Scholar] [CrossRef]
- Vrooman, L.A.; Oatley, J.M.; Griswold, J.E.; Hassold, T.J.; Hunt, P.A. Estrogenic exposure alters the spermatogonial stem cells in the developing testis, permanently reducing crossover levels in the adult. PLoS Genet. 2015. [Google Scholar] [CrossRef] [PubMed]
- Fowler, P.A.; Bellingham, M.; Sinclair, K.D.; Evans, N.P.; Pocar, P.; Fischer, B.; Schaedlich, K.; Schmidt, J.S.; Amezaga, M.R.; Bhattacharya, S.; et al. Impact of endocrine-disrupting compounds (EDCs) on female reproductive health. Mol. Cell. Endocrinol. 2012, 355, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Genuis, S.J.; Kelln, K.L. Toxicant exposure and bioaccumulation: A common and potentially reversible cause of cognitive dysfunction and dementia. Behav. Neurol. 2015. [Google Scholar] [CrossRef] [PubMed]
- McGwin, G.; Lienert, J.; Kennedy, J.I. Formaldehyde exposure and asthma in children: A systematic review. Environ. Health Perspect. 2010, 118, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.D.; Marty, M.A. Impact of environmental chemicals on lung development. Environ. Health Perspect. 2010, 118, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Heindel, J.J.; vom Saal, F.S. Role of nutrition and environmental endocrine disrupting chemicals during the perinatal period on the aetiology of obesity. Mol. Cell. Endocrinol. 2009, 304, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Newbold, R.R.; Padilla-Banks, E.; Jefferson, W.N. Environmental estrogens and obesity. Mol. Cell. Endocrinol. 2009, 304, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Grün, F.; Blumberg, B. Endocrine disrupters as obesogens. Mol. Cell. Endocrinol. 2009, 304, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Freeman, N.C.; Dailey, A.B.; Ilacqua, V.A.; Kearney, G.D.; Talbott, E.O. Association between exposure to alkylbenzenes and cardiovascular disease among national health and nutrition examination survey (NHANES) participants. Int. J. Occup. Environ. Health 2009, 15, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health 2013. [Google Scholar] [CrossRef] [PubMed]
- Zeliger, H.I. Lipophilic chemical exposure as a cause of cardiovascular disease. Interdiscip. Toxicol. 2013, 6, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Landrigan, P.J. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014, 13, 330–338. [Google Scholar] [CrossRef]
- Grandjean, P.; Landrigan, P.J. Developmental neurotoxicity of industrial chemicals. Lancet 2006, 368, 2167–2178. [Google Scholar] [CrossRef]
- Grandjean, P. Only One Chance. How Environmental Pollution Impairs Brain Development—And How to Protect the Brains of the Next Generation; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Sutcliffe, J.S. Genetics: Insights into the pathogenesis of autism. Science 2008, 321, 208–209. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, C.S. Microbiome disturbances and autism spectrum disorders. Drug Metab. Dispos. 2015, 43, 1557–1571. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.M.; McManus, I.C.; Harrison, V.; Mason, O. Neurobehavioral problems following low-level exposure to organophosphate pesticides: A systematic and meta-analytic review. Crit. Rev. Toxicol. 2012, 43, 21–44. [Google Scholar] [CrossRef]
- Di Renzo, G.C.; Conry, J.A.; Blake, J.; DeFrancesco, M.S.; DeNicola, N.; Martin, J.N., Jr.; McCue, K.A.; Richmond, D.; Shah, A.; Sutton, P.; et al. International federation of gynecology and obstetrics opinion on reproductive health impacts of exposure to toxic environmental chemicals. Int. J. Gynaecol. Obstet. 2015, 131, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, J.; Song, H.J. At-risk and underserved: A proposed role for nutrition in the adult trajectory of Autism. J. Acad. Nutr. Diet 2015, 115, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Van De Sande, M.M.; van Buul, V.J.; Brouns, F.J. Autism and nutrition: The role of the gut-brain axis. Nutr. Res. Rev. 2014, 27, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Yap, I.K.S.; Li, J.V.; Saric, J.; Martin, F.P.; Davies, H.; Wang, Y.; Wilson, I.D.; Nicholson, J.K.; Utzinger, J.; Marchesi, J.R.; et al. Metabonomic and microbiological analysis of the dynamic effect of vancomycin-lnduced gut microbiota modification in the mouse. J. Proteome Res. 2008, 7, 3718–3728. [Google Scholar] [CrossRef] [PubMed]
- Abel, E.L.; DiGiovanni, J. 7—Environmental carcinogenesis. In The Molecular Basis of Cancer, 4th ed.; Saunders: Philadelphia, PA, USA, 2015; pp. 103–128. [Google Scholar]
- Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Yang, C.; Li, J.; Chen, R.; Chen, B.; Gu, D.; Kan, H. Association between long-term exposure to outdoor air pollution and mortality in China: A cohort study. J. Hazard. Mater. 2011, 186, 1594–1600. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; Zhao, H.; Wang, X.; Deng, Q.; Fan, W.Y.; Wang, L. An evidence-based assessment for the association between long-term exposure to outdoor air pollution and the risk of lung cancer. Eur. J. Cancer Prev. 2015. [Google Scholar] [CrossRef] [PubMed]
- Halasova, E.; Matakova, T.; Kavcova, E.; Musak, L.; Letkova, L.; Adamkov, M.; Ondrusova, M.; Bukovska, E.; Singliar, A. Human lung cancer and hexavalent chromium exposure. Neuro Endocrinol. Lett. 2009, 30, 182–185. [Google Scholar] [PubMed]
- Teitelbaum, S.L.; Belpoggi, F.; Reinlib, L. Advancing research on endocrine disrupting chemicals in breast cancer: Expert panel recommendations. Reprod. Toxicol. 2015, 54, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, B.M. Endocrine disrupting chemicals and human cancer. In Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier: Burlington, MA, USA, 2011; pp. 296–305. [Google Scholar]
- WHO. State of the Science of Endocrine Disrupting Chemicals—2012. An Assessment of the State of the Science of Endocrine Disruptors Prepared by a Group of Experts for the United Nations Environment Programme (UNEP) and WHO. 2013. Available online: http://www.who.int/ceh/publications/endocrine/en/ (accessed on 25 June 2015).
- Darbre, P.D.; Williams, G. Chapter 10—Endocrine disruption and cancer of reproductive tissues. In Endocrine Disruption and Human Health; Darbre, P.D., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 177–200. [Google Scholar]
- Le Moal, J.; Sharpe, R.M.; Jvarphirgensen, N.; Levine, H.; Jurewicz, J.; Mendiola, J.; Swan, S.H.; Virtanen, H.; Christin-Maitre, S.; Cordier, S.; et al. Toward a multi-country monitoring system of reproductive health in the context of endocrine disrupting chemical exposure. Eur. J. Public Health 2015. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, C.M.; Fernandez, F.; Malats, N.; Grimalt, J.O.; Kogevinas, M. Meta-analysis of studies on individual consumption of chlorinated drinking water and bladder cancer. J. Epidemiol. Commun. Health 2003, 57, 166–173. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Chatterjee, D.; Singh, K.K.; Giri, A.K. Systems biology approaches to evaluate arsenic toxicity and carcinogenicity: An overview. Int. J. Hyg. Environ. Health 2013, 216, 574–586. [Google Scholar] [CrossRef]
- Dogliotti, E. Molecular mechanisms of carcinogenesis by vinyl chloride. Ann. Ist. Super. Sanita 2006, 42, 163–169. [Google Scholar] [PubMed]
- Andreoli, R.; Spatari, G.; Pigini, D.; Poli, D.; Banda, I.; Goldoni, M.; Riccelli, M.G.; Petyx, M.; Protano, C.; Vitali, M.; et al. Urinary biomarkers of exposure and of oxidative damage in children exposed to low airborne concentrations of benzene. Environ. Res. 2015, 142, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Chang, C.H.; Tao, L.; Lu, C. Residential exposure to pesticide during childhood and childhood cancers: A meta-analysis. Pediatrics 2015. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.C.; Wigle, D.T.; Krewski, D. Residential pesticides and childhood leukemia: A systematic review and meta-analysis. Environ. Health Perspect. 2010, 118, 33–41. [Google Scholar] [PubMed]
- Van Maele-Fabry, G.; Lantin, A.C.; Hoet, P.; Lison, D. Residential exposure to pesticides and childhood leukaemia: A systematic review and meta-analysis. Environ. Int. 2011, 37, 280–291. [Google Scholar] [CrossRef] [PubMed]
- McGuinn, L.A.; Ghazarian, A.A.; Ellison, G.L.; Harvey, C.E.; Kaefer, C.M.; Reid, B.C. Cancer and environment: Definitions and misconceptions. Environ. Res. 2012, 112, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Christiani, D.C. Combating environmental causes of cancer. N. Engl. J. Med. 2011, 364, 791–793. [Google Scholar] [CrossRef]
- WHO. Global health risks: Mortality and burden of disease attributable to selected major risks. World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Straif, K. The burden of occupational cancer. Occup. Environ. Med. 2008, 65, 787–788. [Google Scholar] [CrossRef] [PubMed]
- Goodson, W.H., 3rd; Lowe, L.; Carpenter, D.O.; Gilbertson, M.; Ali, A.M.; Salsamendi, A.L.D.; Lasfar, A.; Carnero, A.; Azqueta, A.; Amedei, A.; et al. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: The challenge ahead. Carcinogenesis 2015, 36, 254–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuben, S. Reducing Environmental Cancer Risk, What We Can Do Now; 2008–2009 Annual Report; US Department of Health and Human Services, National Institutes of Health, National Cancer Institute: Rockville, MD, USA, 2010.
- International Agency for Research on Cancer (IARC). World Cancer Report 2014; World Health Organisation: Lyon, France, 2014. [Google Scholar]
- Genuis, S.J.; Tymchak, M.G. Approach to patients with unexplained multimorbidity with sensitivities. Can. Fam. Physician 2014, 60, 533–538. [Google Scholar] [PubMed]
- Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue. National Institutes of Health, in Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness; National Academies Press: New York, NY, USA, 2015. [Google Scholar]
- Fukuda, K.; Straus, S.E.; Hickie, I.; Sharpe, M.C.; Dobbins, J.G.; Komaroff, A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. Ann. Intern. Med. 1994, 121, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Gugliandolo, A.; Gangemi, C.; Calabrò, C.; Vecchio, M.; Di Mauro, D.; Renis, M.; Ientile, R.; Currò, M.; Caccamo, D. Assessment of glutathione peroxidase-1 polymorphisms, oxidative stress and DNA damage in sensitivity-related illnesses. Life Sci. 2016, 145, 27–33. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.; Scordo, G.; Cesareo, E.; Raskovic, D.; Genovesi, G.; Korkina, L. Idiopathic environmental intolerances (IEI): From molecular epidemiology to molecular medicine. Indian J. Exp. Biol. 2010, 48, 625–635. [Google Scholar] [PubMed]
- McCarthy, J. Myalgias and Myopathies: Fibromyalgia. FP Essent 2016, 440, 11–15. [Google Scholar]
- Belyaev, I.; Dean, A.; Eger, H.; Hubmann, G.; Jandrisovits, R.; Johansson, O.; Kern, M.; Kundi, M.; Lercher, P.; Mosgöller, W.; et al. EUROPAEM EMF Guideline 2015 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses. Rev. Environ. Health 2015, 30, 337–371. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.J.; Khajevandi, A.A.; Mousavi-Najarkola, S.A.; Yekaninejad, M.S.; Pourhoseingholi, M.A.; Omidi, L.; Kalantary, S. Association of sick building syndrome with indoor air parameters. Tanaffos 2015, 14, 55–62. [Google Scholar] [PubMed]
- Rea, W.J. Chemical Sensitivity: Tools of Diagnosis and Methods of Treatment; Lewis Publishers: Boca Raton, FL, USA, 1997; Volume 4. [Google Scholar]
- Fraccaro, P.; Casteleiro, M.A.; Ainsworth, J.; Buchan, I. Adoption of clinical decision support in multimorbidity: A systematic review. JMIR Med. Inform. 2015. [Google Scholar] [CrossRef] [PubMed]
- Herr, C.; Eikmann, T. Environmental health practice: Environmental medicine. In Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier: Burlington, MA, USA, 2011; pp. 419–423. [Google Scholar]
- De Luca, C.; Raskovic, D.; Pacifico, V.; Thai, J.C.S.; Korkina, L. The search for reliable biomarkers of disease in multiple chemical sensitivity and other environmental intolerances. Int. J. Environ. Res. Public Health 2011, 8, 2770–2797. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.; Gugliandolo, A.; Calabro, C.; Curro, M.; Ientile, R.; Raskovic, D.; Korkina, L.; Caccamo, D. Role of polymorphisms of inducible nitric oxide synthase and endothelial nitric oxide synthase in idiopathic environmental intolerances. Mediat. Inflamm. 2015. [Google Scholar] [CrossRef] [PubMed]
- Dantoft, T.M.; Elberling, J.; Brix, S.; Szecsi, P.B.; Vesterhauge, S.; Skovbjerg, S. An elevated pro-inflammatory cytokine profile in multiple chemical sensitivity. Psychoneuroendocrinology 2014, 40, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Ashford, N.A.; Miller, C.S. Chemical Exposures. Low Levels and High Stakes, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Miller, C.S. Toxicant-induced loss of tolerance—An emerging theory of disease? Environ. Health Perspect. 1997, 105, 445–453. [Google Scholar] [PubMed]
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef] [PubMed]
- Pool, R.; Rusch, E. Identifying and Reducing Environmental Health Risks of Chemicals in Our Society: Workshop Summary; National Academies Press: Washington, DC, USA, 2014. [Google Scholar]
- Darbre, P.D. Chapter 16—An introduction to the challenges for risk assessment of endocrine disrupting chemicals. In Endocrine Disruption and Human Health; Darbre, P.D., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 289–300. [Google Scholar]
- Zeliger, H. Human Toxicology of Chemical Mixtures, 2nd ed.; William Andrew: Binghamton, NY, USA, 2011. [Google Scholar]
- Amiard, J.C.; Amiard-Triquet, C. Chapter 2—Conventional risk assessment of environmental contaminants. In Aquatic Ecotoxicology; Mouneyrac, C.A., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 25–49. [Google Scholar]
- National Research Council of The National Academies. Toxicity Testing in the 21st Century: A Vision and a Strategy; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Hill, A.B. The Environment and Disease: Association or Causation? Proc. R. Soc. Med. 1965, 58, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Darbre, P.D. Chapter 7—Nonmonotonic Responses in Endocrine Disruption. In Endocrine Disruption and Human Health; Darbre, P.D. Academic Press: Boston, MA, USA, 2015; pp. 123–140. [Google Scholar]
- Thompson, P.A.; Khatami, M.; Baglole, C.J.; Sun, J.; Harris, S.A.; Moon, E.Y.; Al-Mulla, F.; Al-Temaimi, R.; Brown, D.G.; Colacci, A.; et al. Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis 2015, 36, 232–253. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.F.; Gil, F.; Tsatsakis, A.M. Chapter 38—Biomarkers of chemical mixture toxicity. In Biomarkers in Toxicology; Gupta, R.C., Ed.; Academic Press: Boston, MA, USA, 2014; pp. 655–669. [Google Scholar]
- Mesnage, R.; Defarge, N.; de Vendômois, J.S.; Séralini, G.E. Major pesticides are more toxic to human cells than their declared active principles. BioMed Res. Int. 2014. [Google Scholar] [CrossRef] [PubMed]
- Kortenkamp, A.; Backhaus, T.; Faust, M. State of the Art Review on Mixture Toxicity—Final Report, Executive Summary; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Alexandersson, R.; Kolmodin-Hedman, B.; Hedenstierna, G. Exposure to formaldehyde: Effects on pulmonary function. Arch. Environ. Health Int. J. 1982, 37, 279–284. [Google Scholar] [CrossRef]
- Hansen, M.K.; Larsen, M.; Cohr, K.H. Waterborne paints. A review of their chemistry and toxicology and the results of determinations made during their use. Scand. J. Work Environ. Health 1987, 13, 473–485. [Google Scholar] [CrossRef]
- Rajapakse, N.; Silva, E.; Kortenkamp, A. Combining xenoestrogens at levels below individual no-observed-effect concentrations dramatically enhances steroid hormone action. Environ. Health Perspect. 2002, 110, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Brisson, G.D.; Alves, L.R.; Pombo-de-Oliveira, M.S. Genetic susceptibility in childhood acute leukaemias: A systematic review. Ecancermedicalscience 2015. [Google Scholar] [CrossRef]
- Czarnota, J.; Gennings, C.; Colt, J.S.; de Roos, A.J.; Cerhan, J.R.; Severson, R.K.; Hartge, P.; Ward, M.H.; Wheeler, D.C. Analysis of environmental chemical mixtures and non-hodgkin lymphoma risk in the nci-seer NHL study. Environ. Health Perspect. 2015. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). Arsenic in drinking water. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization (WHO): Geneva, Switzerland, 2012. [Google Scholar]
- Tsuji, J.S.; Alexander, D.D.; Perez, V.; Mink, P.J. Arsenic exposure and bladder cancer: Quantitative assessment of studies in human populations to detect risks at low doses. Toxicology 2014, 317, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Ngamwong, Y.; Tangamornsuksan, W.; Lohitnavy, O.; Chaiyakunapruk, N.; Scholfield, C.N.; Reisfeld, B.; Lohitnavy, M. Additive synergism between asbestos and smoking in lung cancer risk: A systematic review and meta-analysis. PLoS ONE 2015. [Google Scholar] [CrossRef] [PubMed]
- Rea, W.J. Chemical Sensitivity; CRC Press: Boca Raton, FL, USA, 1992; Volume 1. [Google Scholar]
- European Commission Joint Research Centre. Technical Guidance Document on Risk Assessment. Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for Existing Substances—Directive 98/8/EC of the European Parliament and of the Council Concerning the Placing of Biocidal Products on the Market, European Chemicals Bureau (ECB): JRC-Ispra, Italy, 2003. [Google Scholar]
- Wiedersberg, S.; Guy, R.H. Transdermal drug delivery: 30+ years of war and still fighting! J. Control. Release 2014, 190, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delfosse, V.; Dendele, B.; Huet, T.; Grimaldi, M.; Boulahtouf, A.; Gerbal-Chaloin, S.; Beucher, B.; Roecklin, D.; Muller, C.; Rahmani, R.; et al. Synergistic activation of human pregnane X receptor by binary cocktails of pharmaceutical and environmental compounds. Nat. Commun. 2015. [Google Scholar] [CrossRef] [PubMed]
- Futran Fuhrman, V.; Tal, A.; Arnon, S. Why endocrine disrupting chemicals (EDCs) challenge traditional risk assessment and how to respond. J. Hazard. Mater. 2015, 286, 589–611. [Google Scholar] [CrossRef]
- Fox, D.A.; Grandjean, P.; de Groot, D.; Paule, M.G. Developmental origins of adult diseases and neurotoxicity: Epidemiological and experimental studies. Neurotoxicology 2012, 33, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.; Bagby, S.P.; Hanson, M.A. Mechanisms of disease: In utero programming in the pathogenesis of hypertension. Nat. Clin. Pract. Nephrol. 2006, 2, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Delisle, H. Foetal programming of nutrition-related chronic diseases. Sante 2002, 12, 56–63. [Google Scholar] [PubMed]
- Fernandez-Twinn, D.S.; Constancia, M.; Ozanne, S.E. Intergenerational epigenetic inheritance in models of developmental programming of adult disease. Semin. Cell Dev. Biol. 2015, 43, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Rice, D.; Barone, S., Jr. Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environ. Health Perspect. 2000, 108, 511–533. [Google Scholar] [CrossRef]
- Wang, G.; Walker, S.O.; Hong, X.; Bartell, T.R.; Wang, X. Epigenetics and early life origins of chronic noncommunicable diseases. J. Adolesc. Health 2013, 52, 14–21. [Google Scholar] [CrossRef]
- Ravelli, G.P.; Stein, Z.A.; Susser, M.W. Obesity in young men after famine exposure in utero and early infancy. N. Engl. J. Med. 1976, 295, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Herbst, A.L.; Ulfelder, H.; Poskanzer, D.C. Adenocarcinoma of the Vagina. N. Engl. J. Med. 1971, 284, 878–881. [Google Scholar] [CrossRef] [PubMed]
- LaSalle, J.M. Epigenomic strategies at the interface of genetic and environmental risk factors for autism. J. Hum. Genet. 2013, 58, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Barouki, R.; Bellinger, D.C.; Casteleyn, L.; Chadwick, L.H.; Cordier, S.; Etzel, R.A.; Gray, K.A.; Ha, E.H.; Junien, C.; et al. Life-long implications of developmental exposure to environmental stressors: New perspectives. Endocrinology 2015, 156, 3408–3415. [Google Scholar] [CrossRef] [PubMed]
- Clayton, T.A.; Lindon, J.C.; Cloarec, O.; Antti, H.; Charuel, C.; Hanton, G.; Provost, J.P.; le Net, J.L.; Baker, D.; Walley, R.J.; et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 2006, 440, 1073–1077. [Google Scholar] [CrossRef] [PubMed]
- Latham, K.E.; Sapienza, C.; Engel, N. The epigenetic lorax: Gene-environment interactions in human health. Epigenomics 2012, 4, 383–402. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Sanders, S.; Doust, J.; Beller, E.; Glasziou, P. Prevalence of attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. Pediatrics 2015, 135, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Go, Y.M.; Walker, D.I.; Liang, Y.; Uppal, K.; Soltow, Q.A.; Tran, V.; Strobel, F.; Quyyumi, A.A.; Ziegler, T.R.; Pennell, K.D.; et al. Reference standardization for mass spectrometry and high-resolution metabolomics applications to exposome research. Toxicol. Sci. 2015. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, M.; Kina, E.; Hivert, M.F. Maternal/fetal determinants of insulin resistance in women during pregnancy and in offspring over life. Curr. Diab. Rep. 2013, 13, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Fisher, S.J. Why is placentation abnormal in preeclampsia? Am. J. Obstet. Gynecol. 2015, 213, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Kroener, L.; Wang, E.T.; Pisarska, M.D. Predisposing factors to abnormal first trimester placentation and the impact on fetal outcomes. Semin Reprod. Med. 2016, 34, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Rees, S.; Inder, T. Fetal and neonatal origins of altered brain development. Early Hum. Dev. 2005, 81, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.; Thornburg, K.L. Placental programming of chronic diseases, cancer and lifespan: A review. Placenta 2013, 34, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.; Bull, A.R.; Osmond, C.; Simmonds, S.J. Fetal and placental size and risk of hypertension in adult life. BMJ 1990, 301, 259–262. [Google Scholar] [CrossRef]
- Sogorb, M.A.; Estévez, J.; Vilanova, E. Chapter 57—Biomarkers in biomonitoring of xenobiotics. In Biomarkers in Toxicology; Gupta, R.C., Ed.; Academic Press: Boston, MA, USA, 2014; pp. 965–973. [Google Scholar]
- Lioy, P.J.; Rappaport, S.M. Exposure science and the exposome: An opportunity for coherence in the environmental health sciences. Environ. Health Perspect. 2011, 119, 466–467. [Google Scholar] [CrossRef]
- Woodruff, T.J.; Sutton, P. The Navigation Guide systematic review methodology: A rigorous and transparent method for translating environmental health science into better health outcomes. Environ. Health Perspect. 2014, 122, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Rooney, A.A.; Boyles, A.L.; Wolfe, M.S.; Bucher, J.R.; Thayer, K.A. Systematic review and evidence integration for literature-based environmental health science assessments. Environ. Health Perspect. 2014, 122, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, M.C.; Lam, J. Use of systematic review and meta-analysis in environmental health epidemiology: A systematic review and comparison with guidelines. Curr. Environ. Health Rep. 2015, 2, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Whaley, P. Systematic Review and the Future of Evidence in Chemicals Policy (Report); Policy from Science Project (Lancaster University): Lancaster, UK, 2013. [Google Scholar]
- Hoffmann, S.; Hartung, T. Toward an evidence-based toxicology. Hum. Exp. Toxicol. 2006, 25, 497–513. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Tools for Critically Appraising Different Study Designs, Systematic Review and Literature Searches; EFSA: Parma, Italy, 2015. [Google Scholar]
- Attene-Ramos, M.S.; Miller, N.; Huang, R.; Michael, S.; Itkin, M.; Kavlock, R.J.; Austin, C.P.; Shinn, P.; Simeonov, A.; Tice, R.R.; et al. The Tox21 robotic platform for assessment of environmental chemicals—From vision to reality. Drug Discov. Today 2013, 18, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.J.; Huang, R.; Austin, C.P.; Xia, M. The future of toxicity testing: A focus on in vitro methods using a quantitative high-throughput screening platform. Drug Discov. Today 2010, 15, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Schneider, K.; Schwarz, M.; Burkholder, I.; Kopp-Schneider, A.; Edler, L.; Kinsner-Ovaskainen, A.; Hartung, T.; Hoffmann, S. “ToxRTool”, a new tool to assess the reliability of toxicological data. Toxicol. Lett. 2009, 189, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Klimisch, H.J.; Andreae, M.; Tillmann, U. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul. Toxicol. Pharmacol. 1997, 25, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Price, P.S. Applying the maximum cumulative ratio methodology to biomonitoring data on dioxin-like compounds in the general public and two occupationally exposed populations. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Castleman, B.I.; Ziem, G.E. American conference of governmental industrial hygienists: Low threshold of credibility. Am. J. Ind. Med. 1994, 26, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Castleman, B.I.; Ziem, G.E. Corporate influence on threshold limit values. Am. J. Ind. Med. 1988, 13, 531–559. [Google Scholar] [CrossRef] [PubMed]
- Boobis, A.R. Mode of action considerations in the quantitative assessment of tumour responses in the liver. Basic Clin. Pharmacol. Toxicol. 2010, 106, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Sass, J. The Delay Game: How the Chemical Industry Ducks Regulation of hte Most Toxic Substances; Natural Resources Defense Council: New York, NY, USA, 2011. [Google Scholar]
- WHO. WHO Guidelines for Indoor Air Quality. Available online: http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/policy/who-guidelines-for-indoor-air-quality (accessed on 11 October 2015).
- EPA. Indoor Air Quality. Publications about Indoor Air Quality. 2015. Available online: http://www2.epa.gov/indoor-air-quality-iaq/publications-about-indoor-air-quality (accessed on 25 June 2015). [Google Scholar]
- Ames, B.N. Identifying environmental chemicals causing mutations and cancer. Science 1979, 204, 587–593. [Google Scholar] [CrossRef] [PubMed]
- EPA. Essential Principles for Reform of Chemicals Management Legislation. Available online: http://www.epa.gov/oppt/existingchemicals/pubs/principles.pdf (accessed on 25 June 2015).
- American Medical Association House of Delegates. Resolution 427: Encouraging Safer Chemicals Policies and Regulatory Reform of Industrial Chemicals to Protect and Improve Human Health; American Medical Association House of Delegates: Chicago, IL, USA, 2008. [Google Scholar]
- Pediatrics, A.A.O. Policy statement—Chemical-management policy: Prioritising children’s health. Pediatrics 2011, 127, 983–992. [Google Scholar]
- Segal, D.; Makris, S.L.; Kraft, A.D.; Bale, A.S.; Fox, J.; Gilbert, M.; Bergfelt, D.R.; Raffaele, K.C.; Blain, R.B.; Fedak, K.M.; et al. Evaluation of the ToxRTool’s ability to rate the reliability of toxicological data for human health hazard assessments. Regul. Toxicol. Pharmacol. 2015, 72, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Gomez, A.; Balsari, S.; Nusbaum, J.; Heerboth, A.; Lemery, J. Perspective: Environment, biodiversity, and the education of the physician of the future. Acad. Med. 2013, 88, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Pope, A.M.; Rall, D.P. Environmental Medicine: Integrating a Missing Element into Medical Education; National Academies Press (US): Washington, DC, USA, 1995. [Google Scholar]
- Institute of Medicine. Role of the Primary Care Physician in Occupational and Environmental Medicine; National Academies Press (US): Washington, DC, USA, 1988. [Google Scholar]
- Ducatman, A.M. Occupational Physicians and Environmental Medicine. J. Occup. Environ. Med. 1993, 35, 251–259. [Google Scholar]
- Royal Australasian College of Physicians. Environmental Medicine Working Group; Review Paper; Australasian Faculty of Occupational and Environmental Medicine: Sydney, Australia, 2012. [Google Scholar]
- Schwartz, B.S.; Rischitelli, G.; Hu, H. Editorial: The future of environmental medicine in environmental health perspectives: Where should we be headed? Environ. Health Perspect. 2005, 113, A574–A576. [Google Scholar] [CrossRef] [PubMed]
- Politi, B.J.; Arena, V.C.; Schwerha, J.; Sussman, N. Occupational medical history taking: How are today’s physicians doing? A cross-sectional investigation of the frequency of occupational history taking by physicians in a major US teaching center. J. Occup. Environ. Med. 2004, 46, 550–555. [Google Scholar] [CrossRef] [PubMed]
- American College of Physicians. The role of the internist in occupational medicine: A position paper of the American College of Physicians (14 September 1984). Am. J. Ind. Med. 1985, 8, 95–99. [Google Scholar]
- American College of Physicians (ACP). Occupational and environmental medicine: The internist’s role. Ann. Intern. Med. 1990, 113, 974–982. [Google Scholar]
- O’Brien, F. Networking, Technology Centres and Environmental Health: Towards a Science of the Heart. In Proceedings of the European Conference on Cooperation in Environmental Technology, Cologne, Germany, 13–15 November 1991.
- O’Connor, J. Environmental health education: A global perspective. IFEH Mag. Int. Fed. Environ. Health 2013, 14, 48–56. [Google Scholar]
- WHO. Environmental Health and the Role of Medical Professionals: Report on a WHO Consultation; WHO: Geneva, Switzerland, 1996. [Google Scholar]
- Shanahan, E.M.; Lindemann, I.; Ahern, M.J. Engaging medical students in occupational and environmental medicine—A new approach. Occup. Med. (Lond.) 2010, 60, 566–568. [Google Scholar] [CrossRef] [PubMed]
- Hays, E.P., Jr.; Schumacher, C.; Ferrario, C.G.; Vazzana, T.; Erickson, T.; Hryhorczuk, D.O.; Leikin, J.B. Toxicology training in US and Canadian medical schools. Am. J. Emerg. Med. 1992, 10, 121–123. [Google Scholar] [CrossRef]
- Thompson, T.M. Diversity in medical toxicology: Why this is important. J. Med. Toxicol. 2013, 9, 215–216. [Google Scholar] [CrossRef] [PubMed]
- Association of American Medical Colleges. Medical School Graduation Questionnaire. 2013 All Schools Summary Report. Available online: https://www.aamc.org/download/350998/data/2013gqallschoolssummaryreport.pdf (accessed on 25 June 2015).
- WHO. International Conference on Environmental Threats to the Health of Children: Hazards and Vulnerability; WHO: Geneva, Switzerland, 2002. [Google Scholar]
- Tinney, V.A.; Paulson, J.A.; Bathgate, S.L.; Larsen, J.W. Medical education for obstetricians and gynecologists should incorporate environmental health. Am. J. Obstet. Gynecol. 2015, 212, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Schenk, M.; Popp, S.M.; Neale, A.V.; Demers, R.Y. Environmental medicine content in medical school curricula. Acad. Med. 1996, 71, 499–501. [Google Scholar] [CrossRef] [PubMed]
- Association of American Medical Colleges. Teaching Population Health: Innovative Medical School Curricula on Environmental Health. Available online: https://www.aamc.org/initiatives/diversity/portfolios/cdc/431722/envhealthwebinar.html (accessed on 25 June 2015).
- American College of Medical Toxicology (ACMT). ACMT Environmental Medicine Modules; ACMT: Phoenix, AZ, USA, 2015. [Google Scholar]
- Sutton, P.; Woodruff, T. The Navigation Guide. J. San Franc. Med. Soc. 2010, 83, 25–26. [Google Scholar]
- Alam, G.; Jones, B.C. Toxicogenetics: In search of host susceptibility to environmental toxicants. Front. Genet. 2014. [Google Scholar] [CrossRef] [PubMed]
- Biankin, A.V.; Piantadosi, S.; Hollingsworth, S.J. Patient-centric trials for therapeutic development in precision oncology. Nature 2015, 526, 361–370. [Google Scholar] [CrossRef]
- Committee on Quality of Health Care in America. Crossing the Quality Chasm: A New Health System for the 21st Century; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Darbre, P.D. Chapter 2—How could endocrine disrupters affect human health? In Endocrine Disruption and Human Health; Darbre, P.D., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 27–45. [Google Scholar]
- Harremoës, P.; Gee, D.; MacGarvin, M.; Stirling, A.; Keys, J.; Wynne, B.; Vaz, S.G. Late Lessons from Early Warnings: The Precautionary Principle 1896–2000; Office for Official Publications of the European Communities: Luxembourg City, Luxembourg, 2001. [Google Scholar]
- Pott, P. Chirurgical Works of Percival Pott, FRS and Surgeon to St. Bartholomew’s Hospital; Hawes, Clarke, Collins: London, UK, 1775. [Google Scholar]
- Snow, J. On the origin of the recent outbreak of cholera at West Ham. Br. Med. J. 1857, 1, 934–935. [Google Scholar] [CrossRef]
- Harvey, A.; Brand, A.; Holgate, S.T.; Kristiansen, L.V.; Lehrach, H.; Palotie, A.; Prainsack, B. The future of technologies for personalised medicine. N. Biotechnol. 2012, 29, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.C.; Miller, A.B.; Collishaw, N.E.; Palmer, J.R.; Hammond, S.K.; Salmon, A.G.; Cantor, K.P.; Miller, M.D.; Boyd, N.F.; Millar, J. Active smoking and secondhand smoke increase breast cancer risk: The report of the Canadian expert panel on tobacco smoke and breast cancer risk (2009). Tob. Control 2010. [Google Scholar] [CrossRef] [PubMed]
- Hankinson, S.E.; Colditz, G.A.; Willett, W.C. Towards an integrated model for breast cancer etiology: The lifelong interplay of genes, lifestyle, and hormones. Breast Cancer Res. 2004, 6, 213–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerner-Ellis, J.; Khalouei, S.; Sopik, V.; Narod, S.A. Genetic risk assessment and prevention: The role of genetic testing panels in breast cancer. Expert Rev. Anticancer Ther. 2015, 15, 1315–1326. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qiu, L.X.; Wang, Z.H.; Wu, X.H.; Liu, X.J.; Wang, B.Y.; Hu, X.C. MTHFR C677T polymorphism associated with breast cancer susceptibility: A meta-analysis involving 15,260 cases and 20,411 controls. Breast Cancer Res. Treat. 2010, 123, 549–555. [Google Scholar] [CrossRef]
- Ünlü, A.; Ates, N.A.; Tamer, L.; Ates, C. Relation of glutathione S-transferase T1, M1 and P1 genotypes and breast cancer risk. Cell Biochem. Funct. 2008, 26, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Šarmanová, J.; Šůsová, S.; Gut, I.; Mrhalová, M.; Kodet, R.; Adámek, J.; Roth, Z.; Souček, P. Breast cancer: Role of polymorphisms in biotransformation enzymes. Eur. J. Hum. Genet. 2004, 12, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Rodrigues, F.; Santos, R.; Aoki, T.; Rocha, M.; Longui, C.; Melo, M. GSTT1, GSTM1, and GSTP1 polymorphisms and chemotherapy response in locally advanced breast cancer. Genet. Mol. Res. 2010, 9, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Yadav, U.; Rai, V. Methylenetetrahydrofolate reductase gene C677T polymorphism and breast cancer risk: Evidence for genetic susceptibility. Meta Gene 2015, 6, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Meplan, C.; Dragsted, L.O.; Ravn-Haren, G.; Tjonneland, A.; Vogel, U.; Hesketh, J. Association between polymorphisms in glutathione peroxidase and selenoprotein P genes, glutathione peroxidase activity, HRT use and breast cancer risk. PLoS ONE 2013. [Google Scholar] [CrossRef] [PubMed]
- Cerne, J.Z.; Pohar-Perme, M.; Novakovic, S.; Frkovic-Grazio, S.; Stegel, V.; Gersak, K. Combined effect of CYP1B1, COMT, GSTP1, and MnSOD genotypes and risk of postmenopausal breast cancer. J. Gynecol. Oncol. 2011, 22, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Sun, G.; Wang, Y.; Wang, D.; Hu, W.; Zhang, J. Association between manganese superoxide dismutase gene polymorphism and breast cancer risk: A meta-analysis of 17,842 subjects. Mol. Med. Rep. 2012, 6, 797–804. [Google Scholar]
- Lin, W.Y.; Chou, Y.C.; Wu, M.H.; Jeng, Y.L.; Huang, H.B.; You, S.L.; Chu, T.Y.; Chen, C.J.; Sun, C.A. Polymorphic catechol-O-methyltransferase gene, duration of estrogen exposure, and breast cancer risk: A nested case-control study in Taiwan. Cancer Detect. Prev. 2005, 29, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Vogel, U.; Bonefeld-Jørgensen, E.C. Polymorphism and gene-environment interactions in environmental cancer. In Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier: Burlington, MA, USA, 2011; pp. 631–639. [Google Scholar]
- Piacentini, S.; Polimanti, R.; Porreca, F.; Martínez-Labarga, C.; de Stefano, G.F.; Fuciarelli, M. GSTT1 and GSTM1 gene polymorphisms in European and African populations. Mol. Biol. Rep. 2011, 38, 1225–1230. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, R.G.; Hoover, R.N.; Pike, M.C.; Hildesheim, A.; Nomura, A.M.; West, D.W.; Wu-Williams, A.H.; Kolonel, L.N.; Horn-Ross, P.L.; Rosenthal, J.F.; et al. Migration patterns and breast cancer risk in Asian-American women. J. Natl. Cancer Inst. 1993, 85, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Gomez, S.L.; Quach, T.; Horn-Ross, P.L.; Pham, J.T.; Cockburn, M.; Chang, E.T.; Keegan, T.H.M.; Glaser, S.L.; Clarke, C.A. Hidden breast cancer disparities in asian women: Disaggregating incidence rates by ethnicity and migrant status. Am. J. Public Health 2010, 100, 125–131. [Google Scholar] [CrossRef]
- Barrett, J.C.; Vainio, H.; Peakall, D.; Goldstein, B.D. 12th meeting of the Scientific Group on Methodologies for the Safety Evaluation of Chemicals: Susceptibility to environmental hazards. Environ. Health Perspect. 1997, 105, 699–737. [Google Scholar] [CrossRef]
- Garrod, A. The incidence of alkaptonuria: A study in chemical individuality. Lancet 1902, 160, 1616–1620. [Google Scholar] [CrossRef]
- Bland, J. Functional Medicine & “Omics”: A Match Made in Heaven. In Proceedings of the Annual International Conference of The Omics Revolution Nature And Nurture, San Diego, CA, USA, 28 May 2015.
- Neff, G. Why big data won’t cure us. Big Data 2013, 1, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Katsanis, S.H.; Katsanis, N. Molecular genetic testing and the future of clinical genomics. Nat. Rev. Genet. 2013, 14, 415–426. [Google Scholar] [CrossRef] [PubMed]
- National Health and Medical Research Council (NHMRC). Direct-to-Consumer DNA Genetic Testing; NHMRC: Canberra, Australia, 2011. [Google Scholar]
- Sawhney, V.S.R.; O’Brien, B. Genetics to genomics in clinical medicine. Indian J. Med. Res. 2014, 4, 4926–4938. [Google Scholar] [CrossRef] [PubMed]
- Botkin, J.R.; Belmont, J.W.; Berg, J.S.; Berkman, B.E.; Bombard, Y.; Holm, I.A.; Levy, H.P.; Ormond, K.E.; Saal, H.M.; Spinner, N.B.; et al. Points to consider: ethical, legal, and psychosocial implications of genetic testing in children and adolescents. Am. J. Hum. Genet. 2015, 97, 6–21. [Google Scholar] [CrossRef] [PubMed]
- Nys, H. Genetic Testing: Patients’ Rights, Insurance and Employment: A Survey of Regulations in the European Union; Office for the Official Publications of the European Communities: Brussels, Belgium, 2002. [Google Scholar]
- Chow-White, P.A. From the bench to the bedside in the big data age: Ethics and practices of consent and privacy for clinical genomics and personalized medicine. Ethics Informa. Technol. 2015, 17, 189–200. [Google Scholar] [CrossRef]
- Solomon, S. Chapter 24—Ethical Challenges to Next-Generation Sequencing, in Clinical Genomics; Pfeifer, S.K., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 403–434. [Google Scholar]
- Paulos, E.; Honicky, R.; Hooker, B. Citizen science: Enabling participatory urbanism. In Handbook of Research on Urban Informatics: The Practice and Promise of the Real-Time City; Foth, M., Ed.; IGI GLobal: Hershey, PA, USA, 2009; pp. 414–436. [Google Scholar]
- Logan, Y. The Story of the baby tooth survey. Sci. Citiz. 1964, 6, 38–39. [Google Scholar] [CrossRef]
- Aitken, M.; Gauntlett, C. Patient Apps for Improved Healthcare: From Novelty to Mainstream; IMS Institute for Healthcare Informatics: Parsippany, NJ, USA, 2013. [Google Scholar]
- Krebs, P.; Duncan, D.T. Health app use among US mobile phone owners: A national survey. JMIR Mhealth Uhealth 2015. [Google Scholar] [CrossRef] [PubMed]
- Marcus, F. Handbook of Research on Urban Informatics: The Practice and Promise of the Real-Time City; IGI Global: Hershey, PA, USA, 2009; pp. 1–506. [Google Scholar]
- Louv, R.; Fitzpatrick, J.W.; Dickinson, J.L.; Bonney, R. Citizen Science: Public Participation in Environmental Research; Cornell University Press: Ithaca, NY, USA, 2012. [Google Scholar]
- Kurup, V. E-patients-Revolutionizing the Practice of Medicine. Int. Anesthesiol. Clin. 2010, 48, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Payne, P.R.O.; Marsh, C.B. Towards a “4I” approach to personalized healthcare. Clin. Transl. Med. 2012. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bijlsma, N.; Cohen, M.M. Environmental Chemical Assessment in Clinical Practice: Unveiling the Elephant in the Room. Int. J. Environ. Res. Public Health 2016, 13, 181. https://doi.org/10.3390/ijerph13020181
Bijlsma N, Cohen MM. Environmental Chemical Assessment in Clinical Practice: Unveiling the Elephant in the Room. International Journal of Environmental Research and Public Health. 2016; 13(2):181. https://doi.org/10.3390/ijerph13020181
Chicago/Turabian StyleBijlsma, Nicole, and Marc M. Cohen. 2016. "Environmental Chemical Assessment in Clinical Practice: Unveiling the Elephant in the Room" International Journal of Environmental Research and Public Health 13, no. 2: 181. https://doi.org/10.3390/ijerph13020181
APA StyleBijlsma, N., & Cohen, M. M. (2016). Environmental Chemical Assessment in Clinical Practice: Unveiling the Elephant in the Room. International Journal of Environmental Research and Public Health, 13(2), 181. https://doi.org/10.3390/ijerph13020181