Dietary Patterns in Relation to General and Central Obesity among Adults in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Dietary Intake Measurement
2.3. Dietary Patterns
2.4. Anthropometric Measures
2.5. Definition of Other Variables
2.6. Statistical Analysis
3. Results
3.1. Physical Characteristics of Participants
3.2. Dietary Patterns
3.3. Dietary Patterns and Socio-Demographic Characteristics
3.4. Dietary Patterns and Nutrients Adequacy
3.5. Dietary Patterns and Obesity
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Prentice, A.M. The emerging epidemic of obesity in developing countries. Int. J. Epidemiol. 2006, 35, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef]
- Xi, B.; Liang, Y.; He, T.; Reilly, K.H.; Hu, Y.; Wang, Q.; Yan, Y.; Mi, J. Secular trends in the prevalence of general and abdominal obesity among Chinese adults, 1993–2009. Obes. Rev. 2012, 13, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mi, J.; Shan, X.Y.; Wang, Q.J.; Ge, K.Y. Is China facing an obesity epidemic and the consequences? The trends in obesity and chronic disease in China. Int. J. Obes. 2007, 31, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Kopelman, P.G. Obesity as a medical problem. Nature 2000, 404, 635–643. [Google Scholar] [PubMed]
- Azadbakht, L.; Esmaillzadeh, A. Dietary and non-dietary determinants of central adiposity among Tehrani women. Public Health Nutr. 2008, 11, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Lioret, S.; Touvier, M.; Lafay, L.; Volatier, J.L.; Maire, B. Dietary and physical activity patterns in French children are related to overweight and socioeconomic status. J. Nutr. 2008, 138, 101–107. [Google Scholar] [PubMed]
- Schulze, M.B.; Fung, T.T.; Manson, J.E.; Willett, W.C.; Hu, F.B. Dietary patterns and changes in body weight in women. Obesity 2006, 14, 1444–1453. [Google Scholar] [CrossRef] [PubMed]
- Murtaugh, M.A.; Herrick, J.S.; Sweeney, C.; Baumgartner, K.B.; Guiliano, A.R.; Byers, T.; Slattery, M.L. Diet composition and risk of overweight and obesity in women living in the southwestern United States. J. Am. Diet. Assoc. 2007, 107, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Esmaillzadeh, A.; Azadbakht, L. Major dietary patterns in relation to general obesity and central adiposity among Iranian women. J. Nutr. 2008, 138, 358–363. [Google Scholar] [PubMed]
- Woo, J.; Woo, K.S.; Leung, S.S.; Chook, P.; Liu, B.; Ip, R.; Ho, S.C.; Chan, S.W.; Feng, J.Z.; Celermajer, D.S. The Mediterranean score of dietary habits in Chinese populations in four different geographical areas. Eur. J. Clin. Nutr. 2001, 55, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Lu, B.; Zhai, F.; Popkin, B.M. A new stage of the nutrition transition in China. Public Health Nutr. 2002, 5, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Hall, J.; Byles, J.; Shi, Z. Dietary Pattern Is Associated with Obesity in Older People in China: Data from China Health and Nutrition Survey (CHNS). Nutrients 2015, 7, 8170–8188. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, H.; Wang, Y.; Xue, H.; Wang, Z.; Du, W.; Su, C.; Zhang, J.; Jiang, H.; Zhai, F.; et al. Dietary patterns and their associations with childhood obesity in China. Br. J. Nutr. 2015, 113, 1978–1984. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Li, Y.; Liu, A.; Zhang, Q.; Hu, X.; Du, S.; Ma, J.; Xu, G.; Li, Y.; Guo, H.; et al. Dietary pattern and its association with the prevalence of obesity and related cardiometabolic risk factors among Chinese children. PLoS ONE 2012, 7, e43183. [Google Scholar] [CrossRef] [PubMed]
- Zhai, F.; Wang, H.; Du, S.; He, Y.; Wang, Z.; Ge, K.; Popkin, B.M. Prospective study on nutrition transition in China. Nutr. Rev. 2009, 67 (Suppl. 1), S56–S61. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, K.; Li, T. A study on the epidemiological characteristics of obesity in Chinese adults. Zhonghua Liu Xing Bing Xue Za Zhi 2001, 22, 129–132. [Google Scholar] [PubMed]
- Li, X.; Jiang, Y.; Hu, N.; Li, Y.C.; Zhang, M.; Huang, Z.J.; Zhao, W.H. Prevalence and characteristic of overweight and obesity among adults in China, 2010. Chin. J. Prev. Med. 2012, 46, 683–686. [Google Scholar]
- Li, P.; Yang, F.; Xiong, F.; Huo, T.; Tong, Y.; Yang, S.; Mao, M. Nutritional status and risk factors of overweight and obesity for children aged 9–15 years in Chengdu, Southwest China. BMC Public Health 2012, 12, 636. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; He, J.; Song, Y.; Zhao, K.; Cui, W. Association of obesity with socio-economic factors and obesity-related chronic diseases in rural southwest China. Public Health 2013, 127, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Willett, W. Nutritional Epidemiology; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Yang, Y. Chinese Food Composition Table 2004; Peking University Medical Press: Beijing, China, 2005. [Google Scholar]
- Shi, Z.; Yuan, B.; Hu, G.; Dai, Y.; Zuo, H.; Holmboe-Ottesen, G. Dietary pattern and weight change in a 5-year follow-up among Chinese adults: Results from the Jiangsu Nutrition Study. Br. J. Nutr. 2011, 105, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B. Effect of body mass index on all-cause mortality and incidence of cardiovascular diseases--report for meta-analysis of prospective studies open optimal cut-off points of body mass index in Chinese adults. Biomed. Environ. Sci. 2002, 15, 245–252. [Google Scholar] [PubMed]
- Lahti-Koski, M.; Pietinen, P.; Heliovaara, M.; Vartiainen, E. Associations of body mass index and obesity with physical activity, food choices, alcohol intake, and smoking in the 1982–1997 FINRISK Studies. Am. J. Clin. Nutr. 2002, 75, 809–817. [Google Scholar] [PubMed]
- WHO. Guidelines for the Conduct of Tobacco Smoking Surveys of the General Population. Available online: http://apps.who.int/iris/handle/10665/204173 (accessed on 27 June 2016).
- Kim, J. Dairy food consumption is inversely associated with the risk of the metabolic syndrome in Korean adults. J. Hum. Nutr. Diet. 2013, 26 (Suppl. 1), 171–179. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Zhai, F.Y.; Du, S.F.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Popkin, B.M. Dynamics of the Chinese diet and the role of urbanicity, 1991–2011. Obes. Rev. 2014, 15 (Suppl. 1), 16–26. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Zhai, F.Y.; Wang, H.J.; Zhang, J.G.; Du, W.W.; Su, C.; Zhang, J.; Jiang, H.R.; Zhang, B. Secular trends in meat and seafood consumption patterns among Chinese adults, 1991–2011. Eur. J. Clin. Nutr. 2015, 69, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Shi, Z.; Lv, J.; Du, H.; Qi, L.; Guo, Y.; Bian, Z.; Chang, L.; Tang, X.; Jiang, Q.; et al. Major Dietary Patterns in Relation to General and Central Obesity among Chinese Adults. Nutrients 2015, 7, 5834–5849. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.G.; Wang, Z.H.; Wang, H.J.; Du, W.W.; Su, C.; Zhang, J.; Jiang, H.R.; Zhai, F.Y.; Zhang, B. Dietary patterns and their associations with general obesity and abdominal obesity among young Chinese women. Eur. J. Clin. Nutr. 2015, 69, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- DiBello, J.R.; McGarvey, S.T.; Kraft, P.; Goldberg, R.; Campos, H.; Quested, C.; Laumoli, T.S.; Baylin, A. Dietary patterns are associated with metabolic syndrome in adult Samoans. J. Nutr. 2009, 139, 1933–1943. [Google Scholar] [CrossRef] [PubMed]
- Paradis, A.M.; Godin, G.; Perusse, L.; Vohl, M.C. Associations between dietary patterns and obesity phenotypes. Int. J. Obes. 2009, 33, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Hu, X.; Yuan, B.; Hu, G.; Pan, X.; Dai, Y.; Byles, J.E.; Holmboe-Ottesen, G. Vegetable-rich food pattern is related to obesity in China. Int. J. Obes. 2008, 32, 975–984. [Google Scholar] [CrossRef] [PubMed]
- García, O.P.; Ronquillo, D.; Caamaño Mdel, C.; Camacho, M.; Long, K.Z.; Rosado, J.L. Zinc, vitamin A, and vitamin C status are associated with leptin concentrations and obesity in Mexican women: Results from a cross-sectional study. Nutr. Metab. 2012, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Noakes, M.; Keogh, J.B.; Foster, P.R.; Clifton, P.M. Effect of an energy-restricted, high-protein, low-fat diet relative to a conventional high-carbohydrate, low-fat diet on weight loss, body composition, nutritional status, and markers of cardiovascular health in obese women. Am. J. Clin. Nutr. 2005, 81, 1298–1306. [Google Scholar] [PubMed]
- Zhang, J.G.; Zhang, B.; Wang, H.J.; Wang, Z.H.; Du, W.W.; Su, C.; Zhang, J.; Zhai, F.Y. Dietary patterns of Chinese adults in nine provinces. Zhonghua Liu Xing Bing Xue Za Zhi 2013, 34, 37–40. [Google Scholar] [PubMed]
- Shi, Z.; Lien, N.; Kumar, B.N.; Holmboe-Ottesen, G. Socio-demographic differences in food habits and preferences of school adolescents in Jiangsu Province, China. Eur. J. Clin. Nutr. 2005, 59, 1439–1448. [Google Scholar] [CrossRef] [PubMed]
- Doak, C.; Adair, L.; Bentley, M.; Fengying, Z.; Popkin, B. The underweight/overweight household: An exploration of household sociodemographic and dietary factors in China. Public Health Nutr. 2002, 5, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Olinto, M.T.; Willett, W.C.; Gigante, D.P.; Victora, C.G. Sociodemographic and lifestyle characteristics in relation to dietary patterns among young Brazilian adults. Public Health Nutr. 2011, 14, 150–159. [Google Scholar] [CrossRef] [PubMed]
Men | Women | All | |
---|---|---|---|
n (%) | 664 (41.4%) | 940 (58.6%) | 1604 |
Age (Years) | 46.9 ± 12.7 | 45.6 ± 12.4 | 46.1 ± 12.6 |
BMI (kg/m2) | 23.3 ± 3.3 | 23.7 ± 3.8 | 23.5 ± 3.6 |
WC (cm) | 80.7 ± 10.3 | 78.2 ± 10.4 | 79.2 ± 10.4 |
Traditional | Modern | Tuber | |||
---|---|---|---|---|---|
Wheat | 0.69 | Vegetables | 0.63 | Tubers | 0.59 |
Cakes | 0.55 | Milk | 0.49 | Fruits | 0.48 |
Oil | 0.41 | Eggs | 0.44 | Cakes | 0.26 |
Beans | 0.23 | Meat | 0.39 | Other wheat | 0.24 |
Vegetables | 0.22 | Wheat | 0.30 | Vegetables | 0.21 |
Organ meat | 0.20 | Beans | 0.28 | Wheat | 0.17 |
Nuts | 0.11 | Fast food | 0.26 | Beans | 0.16 |
Liquor | 0.14 | Poultry | 0.22 | Poultry | 0.13 |
Poultry | 0.12 | Beer | 0.21 | Nuts | 0.11 |
Fish | 0.11 | Oil | 0.19 | Organ meat | 0.04 |
Other wheat | −0.03 | Cakes | 0.14 | Eggs | −0.01 |
Tubers | −0.06 | Nuts | 0.11 | Meat | −0.02 |
Meat | −0.10 | Fruits | 0.07 | Rice | −0.05 |
Fruits | −0.14 | Fish | −0.02 | Oil | −0.13 |
Beer | −0.15 | Rice | −0.07 | Fast food | −0.18 |
Eggs | −0.20 | Organ meat | −0.14 | Milk | −0.24 |
Fast food | −0.21 | Liquor | −0.20 | Fish | −0.32 |
Milk | −0.24 | Other wheat | −0.21 | Beer | −0.37 |
Rice | −0.65 | Tubers | −0.37 | Liquor | −0.48 |
Variance explained (%) | 9.2 | 7.5 | 6.9 |
Dietary Pattern Quartiles | p for Trend | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
n | 401 | 401 | 401 | 401 | |
Traditional | |||||
Age (years) | 49.3 ± 14.1 | 46.4 ± 14.1 | 46.7 ± 13.1 | 49.3 ± 14.5 | 0.88 |
Male (%) | 37.4 | 44.9 | 44.0 | 38.5 | 0.82 |
Urban (%) | 14.2 | 28.2 | 39.6 | 42.5 | <0.01 |
Low Income (%) | 34.2 | 40.9 | 31.6 | 36.0 | 0.72 |
Low Education (%) | 69.8 | 66.8 | 56.2 | 50.0 | <0.01 |
METs (h/week) | 174.5 ± 140.1 | 177.5 ± 140.9 | 181.4 ± 141.7 | 170.5 ± 138.7 | 0.55 |
Modern | |||||
Age (years) | 45.6 ± 14.5 | 46.6 ± 13.8 | 48.0 ± 13.0 | 51.5 ± 14.0 | <0.01 |
Male (%) | 36.7 | 38.2 | 42.6 | 47.4 | <0.01 |
Urban (%) | 11.5 | 26.4 | 30.2 | 56.4 | <0.01 |
Low Income (%) | 43.4 | 36.9 | 31.4 | 30.9 | <0.01 |
Low Education (%) | 76.3 | 66.1 | 56.9 | 43.6 | <0.01 |
METs (h/week) | 165.7 ± 139.6 | 170.7 ± 139.0 | 177.5 ± 140.3 | 190.0 ± 144.3 | <0.01 |
Tuber | |||||
Age (years) | 46.6 ± 13.9 | 48.6 ± 14.0 | 48.4 ± 14.0 | 47.9 ± 14.2 | 0.22 |
Male (%) | 53.9 | 43.4 | 35.7 | 31.9 | <0.01 |
Urban (%) | 38.9 | 39.7 | 27.4 | 19.0 | <0.01 |
Low Income (%) | 36.2 | 35.7 | 33.9 | 36.9 | 0.96 |
Low Education (%) | 56.1 | 54.9 | 65.1 | 66.8 | <0.01 |
METs (h/week) | 200.2 ± 146.3 | 181.1 ± 141.3 | 164.1 ± 139.0 | 158.5 ± 136.6 | <0.01 |
Dietary Pattern Quartiles | p for Trend | |||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |||
n | 401 | 401 | 401 | 401 | ||
Traditional | ||||||
Energy | (kcal/day) | 2460 ± 535 | 2002 ± 598 | 1878 ± 606 | 2170 ± 678 | <0.01 |
NAR | 1.3 ± 0.3 | 1.0 ± 0.3 | 0.9 ± 0.3 | 1.1 ± 0.3 | <0.01 | |
Fat (% Energy) | 17.5 | 23.2 | 28.4 | 31.2 | <0.01 | |
Protein | (g/day) | 84.5 ± 25.2 | 71.5 ± 24.5 | 65 ± 25.8 | 71.5 ± 28.5 | <0.01 |
NAR | 1.3 ± 0.4 | 1.1 ± 0.4 | 1.0 ± 0.4 | 1.1 ± 0.4 | <0.01 | |
Ca | (mg/day) | 336 ± 125.1 | 312 ± 127.6 | 280 ± 147.0 | 336 ± 189.8 | 0.64 |
NAR | 0.4 ± 0.2 | 0.4 ± 0.2 | 0.3 ± 0.2 | 0.4 ± 0.2 | 0.67 | |
Fe | (mg/day) | 23.5 ± 6.9 | 20.8 ± 8.3 | 22.4 ± 9.0 | 24.6 ± 9.9 | 0.35 |
NAR | 1.5 ± 0.5 | 1.3 ± 0.6 | 1.4 ± 0.6 | 1.5 ± 0.5 | 0.58 | |
Zn | (mg/day) | 15.6 ± 3.7 | 13 ± 4.5 | 12.8 ± 4.5 | 12.3 ± 5.3 | <0.01 |
NAR | 1.3 ± 0.3 | 1.0 ± 0.4 | 1.0 ± 0.3 | 1.0 ± 0.3 | <0.01 | |
Vitamin A | (µg/day) | 532 ± 477.1 | 446 ± 398.2 | 417 ± 343.6 | 388 ± 306.1 | <0.01 |
NAR | 0.7 ± 0.5 | 0.6 ± 0.5 | 0.6 ± 0.5 | 0.5 ± 0.5 | <0.01 | |
Thiamine | (mg/day) | 1.3 ± 0.3 | 1.0 ± 0.4 | 1.1 ± 0.4 | 1.2 ± 0.4 | 0.12 |
NAR | 0.9 ± 0.3 | 0.7 ± 0.4 | 0.8 ± 0.3 | 0.8 ± 0.3 | 0.06 | |
Riboflavin | (mg/day) | 0.8 ± 0.3 | 0.8 ± 0.3 | 0.7 ± 0.3 | 0.9 ± 0.3 | 0.35 |
NAR | 0.6 ± 0.2 | 0.5 ± 0.3 | 0.5 ± 0.3 | 0.6 ± 0.3 | 0.22 | |
Vitamin C | (mg/day) | 87 ± 49.3 | 84 ± 47.9 | 82 ± 52.3 | 92 ± 64.4 | 0.64 |
NAR | 0.9 ± 0.6 | 0.8 ± 0.6 | 0.8 ± 0.7 | 0.9 ± 0.6 | 0.53 | |
Modern | ||||||
Energy | (kcal/day) | 1925 ± 570 | 1971 ± 540 | 2190 ± 526 | 2415 ± 546 | <0.01 |
NAR | 1.0 ± 0.3 | 1.0 ± 0.4 | 1.1 ± 0.3 | 1.2 ± 1.2 | <0.01 | |
Fat (% Energy) | 20.5 | 23.5 | 25.8 | 30.4 | <0.01 | |
Protein | (g/day) | 61.1 ± 21.2 | 66.3 ± 22.9 | 76.7 ± 21.3 | 88.4 ± 27.6 | <0.01 |
NAR | 0.9 ± 0.3 | 1.0 ± 0.3 | 1.2 ± 0.3 | 1.4 ± 0.4 | <0.01 | |
Ca | (mg/day) | 192 ± 75.9 | 256 ± 88.7 | 344 ± 103.2 | 472 ± 92.6 | <0.01 |
NAR | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.4 ± 0.1 | 0.6 ± 0.2 | <0.01 | |
Fe | (mg/day) | 19.2 ± 6.9 | 20.96 ± 7.8 | 21.6 ± 7.9 | 29.6 ± 9.9 | <0.01 |
NAR | 1.2 ± 0.4 | 1.3 ± 0.4 | 1.4 ± 0.5 | 1.9 ± 0.6 | <0.01 | |
Zn | (mg/day) | 11.3 ± 3.9 | 12.3 ± 4.2 | 13.7 ± 4.1 | 16.1 ± 4.9 | <0.01 |
NAR | 0.9 ± 0.3 | 1.0 ± 0.3 | 1.1 ± 0.3 | 1.3 ± 0.38 | <0.01 | |
Vitamin A | (μg/day) | 230 ± 111.3 | 302 ± 156.8 | 453 ± 261.1 | 799 ± 322.5 | <0.01 |
NAR | 0.3 ± 0.3 | 0.4 ± 0.3 | 0.6 ± 0.3 | 1.1 ± 1.0 | <0.01 | |
Thiamine | (mg/day) | 1.0 ± 0.4 | 1.0 ± 0.4 | 1.1 ± 0.4 | 1.4 ± 0.5 | <0.01 |
NAR | 0.7 ± 0.3 | 0.7 ± 0.2 | 0.8 ± 0.3 | 1.0 ± 0.4 | <0.01 | |
Riboflavin | (mg/day) | 0.5 ± 0.2 | 0.7 ± 0.2 | 0.8 ± 0.3 | 1.1 ± 0.4 | <0.01 |
NAR | 0.4 ± 0.2 | 0.5 ± 0.1 | 0.6 ± 0.2 | 0.8 ± 0.3 | <0.01 | |
Vitamin C | (mg/day) | 75 ± 46.8 | 70 ± 46.5 | 80 ± 52.2 | 120 ± 68.3 | <0.01 |
NAR | 0.8 ± 0.5 | 0.7 ± 0.4 | 0.8 ± 0.51 | 1.2 ± 0.7 | <0.01 | |
Tuber | ||||||
Energy | (kcal/day) | 1919 ± 571 | 2055 ± 610 | 2195 ± 626 | 2332 ± 646 | <0.01 |
NAR | 0.9 ± 0.3 | 1.0 ± 0.3 | 1.1 ± 0.3 | 1.2 ± 0.4 | <0.01 | |
Fat (% Energy) | 23 | 25.2 | 26 | 26.1 | <0.01 | |
Protein | (g/day) | 64.3 ± 26.1 | 66.9 ± 19.2 | 78.0 ± 26.0 | 83.2 ± 28.1 | <0.01 |
NAR | 1.0 ± 0.4 | 1.0 ± 0.3 | 1.2 ± 0.3 | 1.3 ± 0.5 | <0.01 | |
Ca | (mg/day) | 272 ± 161.9 | 320 ± 108.8 | 336 ± 116.7 | 336 ± 163.1 | <0.01 |
NAR | 0.3 ± 0.2 | 0.4 ± 0.2 | 0.4 ± 0.2 | 0.4 ± 0.2 | <0.01 | |
Fe | (mg/day) | 20.8 ± 6.6 | 20 ± 6.5 | 23.6 ± 7.8 | 26.8 ± 10.2 | <0.01 |
NAR | 1.3 ± 0.5 | 1.3 ± 0.5 | 1.5 ± 0.5 | 1.7 ± 0.6 | <0.01 | |
Zn | (mg/day) | 11.7 ± 4.1 | 11.8 ± 3.5 | 13.7 ± 4.1 | 16.2 ± 4.9 | <0.01 |
NAR | 0.9 ± 0.3 | 1.0 ± 0.3 | 1.1 ± 0.3 | 1.3 ± 0.5 | <0.01 | |
Vitamin A | (μg/day) | 399 ± 242.6 | 460 ± 236.2 | 463 ± 294.2 | 462 ± 302.6 | 0.1 |
NAR | 0.5 ± 0.4 | 0.6 ± 0.4 | 0.6 ± 0.5 | 0.6 ± 0.5 | 0.2 | |
Thiamine | (mg/day) | 1.0 ± 0.4 | 1.0 ± 0.4 | 1.1 ± 0.4 | 1.4 ± 0.5 | <0.01 |
NAR | 0.7 ± 0.3 | 0.7 ± 0.3 | 0.8 ± 0.3 | 1.0 ± 0.4 | <0.01 | |
Riboflavin | (mg/day) | 0.7 ± 0.3 | 0.7 ± 0.3 | 0.8 ± 0.3 | 1.0 ± 0.4 | <0.01 |
NAR | 0.5 ± 0.2 | 0.5 ± 0.2 | 0.6 ± 0.3 | 0.7 ± 0.2 | <0.01 | |
Vitamin C | (mg/day) | 69 ± 44.1 | 73 ± 41.5 | 93 ± 69.1 | 115 ± 71.4 | <0.01 |
NAR | 0.7 ± 0.5 | 0.7 ± 0.5 | 0.9 ± 0.6 | 1.2 ± 0.6 | <0.01 |
Dietary Pattern Quartiles | ||||
---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |
n | 401 | 401 | 401 | 401 |
Traditional | ||||
Underweight % (n) | 7.2 (29) | 4.7 (19) | 6.5 (26) | 4.3 (17) |
General obesity % (n) | 9.7 (39) | 13.7 (55) | 12.4 (50) | 10.5 (42) |
Central obesity % (n) | 38.7 (155) | 34.9 (140) | 39.6 (159) | 38.5 (154) |
Modern | ||||
Underweight % (n) | 6.2 (25) | 4.5 (18) | 6.0 (24) | 6.0 (24) |
General obesity % (n) | 6.5 (26) | 11.7 (47) | 13.2 (53) | 15.0 (60) |
Central obesity % (n) | 24.7 (99) | 39.7 (159) | 40.7 (163) | 46.6 (187) |
Tuber | ||||
Underweight % (n) | 3.0 (12) | 5.5 (22) | 6.5 (26) | 7.7 (31) |
General obesity % (n) | 11.7 (47) | 14.2 (57) | 13.7 (55) | 6.7 (27) |
Central obesity % (n) | 37.9 (152) | 41.7 (167) | 38.4 (154) | 33.7 (135) |
Dietary Pattern Quartiles | p for Trend | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
n | 401 | 401 | 401 | 401 | |
Traditional | |||||
Underweight | 1.0 | 0.60 (0.28, 1.29) | 0.66 (0.31, 1.41) | 0.65 (0.30, 1.40) | 0.29 |
General obesity | 1.0 | 1.73 (0.99, 3.02) | 1.71 (0.97, 2.99) | 1.0 (0.56, 1.81) | 0.70 |
Central obesity | 1.0 | 1.07 (0.74, 1.56) | 1.36 (0.94, 1.98) | 0.92 (0.063, 1.34) | 0.77 |
Modern | |||||
Underweight | 1.0 | 0.57 (0.24, 1.35) | 1.19 (0.56, 2.50) | 1.31 (0.62, 2.74) | 0.19 |
General obesity | 1.0 | 1.66 (0.90, 3.07) | 1.71 (0.93, 3.13) | 1.95 (1.15, 3.48) | 0.02 |
Central obesity | 1.0 | 1.93 (1.32, 2.83) | 1.69 (1.15, 2.47) | 2.01 (1.37, 2.93) | <0.01 |
Tuber | |||||
Underweight | 1.0 | 1.94 (0.79, 4.77) | 2.06 (0.83, 5.12) | 2.57 (1.20, 6.45) | 0.03 |
General obesity | 1.0 | 1.13 (0.69, 1.86) | 1.21 (0.73, 2.01) | 0.34 (0.15, 0.61) | <0.01 |
Central obesity | 1.0 | 1.02 (0.72, 1.44) | 0.99 (0.68, 1.42) | 0.64 (0.43, 0.95) | 0.02 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Chen, X.; Liu, Z.; Varma, D.S.; Wan, R.; Wan, Q.; Zhao, S. Dietary Patterns in Relation to General and Central Obesity among Adults in Southwest China. Int. J. Environ. Res. Public Health 2016, 13, 1080. https://doi.org/10.3390/ijerph13111080
Zhang Q, Chen X, Liu Z, Varma DS, Wan R, Wan Q, Zhao S. Dietary Patterns in Relation to General and Central Obesity among Adults in Southwest China. International Journal of Environmental Research and Public Health. 2016; 13(11):1080. https://doi.org/10.3390/ijerph13111080
Chicago/Turabian StyleZhang, Qiang, Xinguang Chen, Zhitao Liu, Deepthi S. Varma, Rong Wan, Qingqing Wan, and Shiwen Zhao. 2016. "Dietary Patterns in Relation to General and Central Obesity among Adults in Southwest China" International Journal of Environmental Research and Public Health 13, no. 11: 1080. https://doi.org/10.3390/ijerph13111080