Comparative Assessment of Heavy Metals in Drinking Water Sources in Two Small-Scale Mining Communities in Northern Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Water Sampling
Sampling Site | Meaning of Label | No. of Samples |
---|---|---|
Nangodi | 30 | |
BHN | Borehole in Nangodi | 6 |
HDWA | Hand dug-out well labelled A | 6 |
HDWB | Hand dug-out well labelled B | 6 |
DA | Dug-out labelled A | 6 |
DB | Dug-out labelled B | 6 |
Tinga | 42 | |
BHT1 | Borehole at Tinga labelled 1 | 6 |
BHT2 | Borehole at Tinga labelled 2 | 6 |
BHT3 | Borehole at Tinga labelled 3 | 6 |
BHT4 | Borehole at Tinga labelled 4 | 6 |
BGWP | before Gold Washing Pool in the Stream | 6 |
GWPS | Gold Washing Pool in the Stream | 6 |
AGWP | After Gold Washing Pool in the Stream | 6 |
2.3. Digestion of Samples for the Analyses of Hg, As, Pb, Zn and Cd
2.4. Quality Assurance and Analysis
2.5. Principal Component Analysis
3. Results and Discussion
Study Area | Metal | n | Minimum | Maximum | Mean | SD | WHO Limit a |
---|---|---|---|---|---|---|---|
Nangodi (5 sites) | Mercury | 30 | 0.001 | 0.191 | 0.038 | 0.001 | 0.010 |
Arsenic | 30 | 0.001 | 0.115 | 0.031 | 0.005 | 0.010 | |
Lead | 30 | 0.005 | 0.791 | 0.250 | 0.008 | 0.010 | |
Zinc | 30 | 0.005 | 786.0 | 0.034 | 0.001 | 3.000 | |
Cadmium | 30 | 0.001 | 2.227 | 0.534 | 88.0 | 0.003 | |
Tinga (7 sites) | Mercury | 42 | 0.001 | 0.259 | 0.064 | 0.007 | 0.010 |
Arsenic | 42 | 0.001 | 0.003 | 0.002 | 0.001 | 0.010 | |
Lead | 42 | 0.001 | 0.227 | 0.031 | 0.001 | 0.010 | |
Zinc | 42 | 0.001 | 0.005 | 0.003 | 0.001 | 3.000 | |
Cadmium | 42 | 0.002 | 0.071 | 0.023 | 0.008 | 0.003 |
3.1. Mercury
Sampling Sites | Hg | As | Pb | Zn | Cd | |
---|---|---|---|---|---|---|
Nangodi (5 sites) | ||||||
BHN | Range | 0.001–0.001 | 0.001–0.115 | 0.146–0.791 | 0.005–0.786 | 0.003–0.900 |
Mean ± SD | 0.005 ± 0.001 | 0.044 ± 0.008 | 0.440 ± 0.402 | 0.143 ± 0.008 | 0.335 ± 0.015 | |
HDWA | Range | 0.006–0.180 | 0.002–0.034 | 0.005–0.205 | nd | 0.034–0.786 |
Mean ± SD | 0.063 ± 0.006 | 0.010 ± 0.001 | 0.080 ± 0.010 | nd | 0.223 ± 0.310 | |
HDWB | Range | 0.014–0.070 | 0.007–0.022 | 0.020–0.769 | 0.005–0.018 | 0.001–1.600 |
Mean ± SD | 0.032 ± 0.005 | 0.014 ± 0.004 | 0.251 ± 0.050 | 0.009 ± 0.001 | 0.444 ± 0.970 | |
DA | Range | 0.012–0.191 | 0.047–0.109 | 0.034–0.618 | 0.005–0.020 | 0.121–0.910 |
Mean ± SD | 0.072 ± 0.008 | 0.065 ± 0.004 | 0.222 ± 0.096 | 0.008 ± 0.001 | 0.533 ± 0.020 | |
DB | Range | 0.005–0.051 | 0.002–0.091 | 0.005–0.508 | nd | 0.080–2.227 |
Mean ± SD | 0.020 ± 0.057 | 0.023 ± 0.035 | 0.223 ± 0.212 | nd | 1.090 ± 0.033 | |
Tinga (7 sites) | ||||||
BHT1 | Range | 0.057–0.210 | 0.001–0.003 | 0.001–0.010 | 0.002–0.004 | 0.010–0.070 |
Mean ± SD | 0.127 ± 0.090 | 0.002 ± 0.001 | 0.008 ± 0.004 | 0.003 ± 0.001 | 0.040 ± 0.001 | |
BHT2 | Range | 0.009–0.220 | 0.001–0.003 | 0.001–0.020 | 0.001–0.003 | 0.002–0.070 |
Mean ± SD | 0.070 ± 0.010 | 0.002 ± 0.001 | 0.010 ± 0.001 | 0.002 ± 0.001 | 0.040 ± 0.003 | |
BHT3 | Range | 0.056–0.270 | 0.010–0.002 | 0.001–0.010 | 0.001–0.003 | 0.002–0.060 |
Mean ± SD | 0.127 ± 0.020 | 0.001 ± 0.001 | 0.008 ± 0.004 | 0.002 ± 0.001 | 0.027 ± 0.010 | |
BHT4 | Range | 0.001–0.090 | 0.001–0.003 | 0.001–0.020 | 0.001–0.003 | 0.002–0.060 |
Mean ± SD | 0.040 ± 0.010 | 0.002 ± 0.001 | 0.010 ± 0.002 | 0.002 ± 0.001 | 0.034 ± 0.020 | |
BGWP | Range | 0.003–0.060 | 0.001–0.003 | 0.009–0.060 | 0.001–0.003 | 0.002–0.002 |
Mean ± SD | 0.027 ± 0.020 | 0.001 ± 0.001 | 0.035 ± 0.010 | 0.002 ± 0.001 | 0.011 ± 0.009 | |
GWP | Range | 0.020–0.040 | 0.001–0.002 | 0.024–0.227 | 0.003–0.005 | 0.002–0.010 |
Mean ± SD | 0.027 ± 0.010 | 0.001 ± 0.001 | 0.070 ± 0.027 | 0.004 ± 0.001 | 0.004 ± 0.002 | |
AGWP | Range | 0.001–0.060 | 0.001–0.007 | 0.024–0.227 | 0.002–0.005 | 0.002–0.010 |
Mean ± SD | 0.027 ± 0.002 | 0.003 ± 0.001 | 0.070 ± 0.001 | 0.004 ± 0.001 | 0.004 ± 0.001 | |
WHO Limit a | 0.010 | 0.010 | 0.010 | 3.000 | 0.003 |
3.2. Arsenic
3.3. Lead
3.4. Zinc
3.5. Cadmium
3.6. Principal Component Analysis (PCA)
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- WHO/UNCEF. Progress on Sanitation and Drinking Water; World Health Organization: Geneva, Switzerland, 2010; p. 7. Available online: http//www.unwater.org/downloads/JMP_report_2010.pdf (accessed on 11 July 2014).
- Cobbina, S.J.; Michael, K.; Salifu, L.; Duwiejua, A.B. Rainwater quality assessment in the Tamale municipality. Int. J. Sci. Technol. Res. 2013, 2, 1–10. [Google Scholar]
- Lenntech, R. Water Treatment and Air Purification. 2004. Available online: http//www.excelwater.com/thp/filters/Water-Purification.htm (accessed on 12 September 2014).
- United Nations Environmental Protection/Global Program of Action. Why the Marine Environment Needs Protection From Heavy Metals. 2004. Available online: http://www.oceansatlas.org/unatlas/uses/uneptextsph/wastesph/2102gpa (accessed on 12 December 2014).
- Mason, R.P.; Choi, A.L.; Fitzgerald, W.F.; Hammerschmidt, C.R.; Lamborg, C.H.; Soerensen, A.L.; Sunderland, E.M. Mercury biogeochemistry cycling in the ocean and policy implications. Environ. Res. 2012, 119, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Pan, X.D.; Wu, P.G.; Han, J.L.; Chen, Q. Heavy metals in vegetables and the health risk to population in Zhejiang, China. Food Control. 2014, 36, 248–252. [Google Scholar] [CrossRef]
- Aryee, B.N.A.; Ntibery, B.K.; Atorkui, E. Trends in the small-scale mining of precious minerals in Ghana: A perspective on its environmental impact. J. Clean Prod. 2003, 11, 131–140. [Google Scholar] [CrossRef]
- Hilson, G. A Contextual Review of the Ghanaian Small-scale Mining Industry; International Institute Environment and Development: London, England, 2001; p. 26. [Google Scholar]
- Paruchuri, Y.; Siuniak, A.; Johnson, N.; Levin, E.; Mitchell, K.; Goodrich, J.M.; Renne, E.P.; Basu, N. Occupational and environmental mercury exposure among small-scale gold miners in the Talensi-Nabdam District of Ghana’s Upper East region. Sci. Total Environ. 2010, 408, 6079–6085. [Google Scholar] [CrossRef] [PubMed]
- Kuma, J.S.; Younger, P.L. Water quality trends in the Tarkwa Gold-mining district, Ghana. Bull. Eng. Geol. Environ. 2004, 63, 119–132. [Google Scholar] [CrossRef]
- Manu, A.; Twumasi, Y.A.; Coleman, T.L. Application of remote sensing and GIS technologies to assess the impact of surface mining at Tarkwa, Ghana. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 1, pp. 572–574.
- Obiri, S. Determination of heavy metals in boreholes in Dumasi in the Wassa west district of western region of the Republic of Ghana. Environ. Monit. Assess. 2007, 127, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Rajaee, M.; Obiri, S.; Green, A.; Long, R.; Cobbina, S.J.; Nartey, V.; Buck, D.; Antwi, E.; Basu, N. Integrated assessment of artisanal and small-scale gold mining in Ghana—Part 2: Natural sciences review. Int. J. Environ. Res. Public Health 2015, 12, 8971–9011. [Google Scholar] [CrossRef] [PubMed]
- Essumang, D.K.; Dodoo, D.K.; Obiri, S.; Yaney, J.Y. Arsenic, cadmium, and mercury in cocoyam (Xanthosoma sagititolium) and water cocoyam (Colocasi aesculenta) in Tarkwa, a mining community. Bull. Environ. Contam. Toxicol. 2007, 79, 377–379. [Google Scholar] [CrossRef] [PubMed]
- Hanson, R.; Dodoo, D.K.; Essumang, D.K.; Blay, J., Jr.; Yankson, K. The effect of some selected pesticides on the growth and reproduction of fresh water Oreochromis niloticus, Chrysicthys nigrodigitatus and Clarias gariepinus. Bull. Environ. Contam. Toxicol. 2007, 79, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Koku, J.E.; Balfors, B. Resolving water conflicts in mining areas of Ghana through public participation a communication perspective. J. Creat. Commun. 2007, 2, 361–382. [Google Scholar] [CrossRef]
- Okang’Odumo, B.; Carbonell, G.; Angeyo, H.K.; Patel, J.P.; Torrijos, M.; Martin, J.A.R. Impact of gold mining associated with mercury contamination in soil, biota, sediments and tailings in Kenya. Environ. Sci. Pollut. Res. 2014, 21, 12426–12435. [Google Scholar]
- Koger, S.M.; Schettler, T.; Weiss, B. Environmental toxicants and developmental disabilities: A challenge for psychologists. Am. Psychol. 2005, 60, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Obiri, S.; Dodoo, D.K.; Essumang, D.K.; Armah, F.A. Cancer and non-cancer risk assessment from exposure to arsenic, copper, and cadmium in borehole, tap, and surface water in the Obuasi municipality, Ghana. Hum. Ecol. Risk Assess. 2010, 22, 651–665. [Google Scholar] [CrossRef]
- Arora, M.; Kiran, B.; Rani, S.; Rani, A.; Kaur, B.; Mittal, N. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem. 2008, 111, 811–815. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality: Recommendations; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Obiri, S.; Dodoo, D.K.; Okai-Sam, F.; Essumang, D.K. Cancer health risk assessment ofexposure to arsenic by workers of AngloGold Ashanti-Obuasi gold mine. Bull. Environ. Contam. Toxicol. 2006, 76, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Golow, A.A.; Schlueter, A.; Amihere-Mensah, S.; Granson, H.L.K.; Tetteh, M.S. Distribution of arsenic and sulphate in the vicinity of Ashanti Goldmine at Obuasi, Ghana. Bull. Environ. Contam. Toxicol. 1996, 56, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Asante, K.A.; Agusa, T.; Subramanian, A.; Ansa-Asare, O.D.; Biney, C.A.; Tanabe, S. Contamination status of arsenic and other trace elements in drinking water and residents from Tarkwa, a historic mining township in Ghana. Chemosphere 2007, 66, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Buamah, R.; Petrusevski, B.; Schippers, J.C. Presence of arsenic, iron and manganese ingroundwater within the gold-belt zone of Ghana. Aqua 2008, 57, 519–529. [Google Scholar]
- Kesse, G.O. The Mineral and Rock Resources of Ghana; Balkema: Rotterdam, The Netherlands, 1985; p. 610. [Google Scholar]
- Anum, S. Geology and mineralization in the Bole-Nangodi Belt northern Ghana. In Proceedings of the 33rd International Geological Congress, Oslo, Norway, 6–14 August 2008.
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 20th ed.; APHA: Washington, DC, USA, 1998. [Google Scholar]
- World Health Organisation. Guidelines for Drinking Water Quality; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Cobbina, S.J.; Dagben, J.Z.; Obiri, S.; Tom-Dery, D. Assessment of non-cancerous health risk from exposure to Hg, As and Cd by resident children and adults in Nangodi in the Upper East Region, Ghana. Water Qual. Expo. Health 2012, 3, 225–232. [Google Scholar] [CrossRef]
- Cobbina, S.J.; Myilla, M.; Michael, K. Small scale gold mining and heavy metal pollution: Assessment of drinking water sources in Datuku in the Talensi-Nabdam District. Int. J. Sci. Technol. Res. 2013, 2, 96–100. [Google Scholar]
- Cobbina, S.J.; Nkuah, D.; Tom-Dery, D.; Obiri, S. Non-cancer risk assessment from exposure to mercury (Hg), cadmium (Cd), arsenic (As), copper (Cu) and lead (Pb) in boreholes and surface water in Tinga, in the Bole-Bamboi District, Ghana. J. Toxicol. Environ. Health Sci. 2013, 5, 26–36. [Google Scholar] [CrossRef]
- Asamoah-Boateng, E.K. Physico-chemical and Microbiological Quality of Surface Waters within the Newmont Ghana Gold Mining Concession Areas. Master’s Thesis, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana, 2009; pp. 50–52. [Google Scholar]
- Ravengai, S.; Love, D.; Love, I.; Gratwicke, B.; Mandingaisa, O.; Owen, R. Impact of iron Duke Pyrite mine on water chemistry and aquatic life Mazowe valley, Zimbabwe. Water SA 2005, 31, 219–225. [Google Scholar]
- United States Department of Labor. Occupational Safety and Health Administration (OSHA); Safety and Health Topics: Heavy Metals; USDOL: Washington, DC, USA, 2004. Available online: http//www.osha.gov/SLTC/metalsheavy/index.html (accessed on 19 August 2014).
- Centeno, J.A.; Mullick, F.G.; Martinez, L.; Page, N.P.; Gibb, H.; Longfellow, D.; Thompson, C.; Ladich, E.R. Pathology related to chronic arsenic exposure. Environ. Health Perspect. 2002, 110, 883–886. [Google Scholar] [CrossRef] [PubMed]
- Milton, A.H.; Hasan, Z.; Rahman, A.; Rahman, M. Chronic arsenic poisoning and respiratory effects in Bangladesh. J. Occup. Health 2001, 43, 136–140. [Google Scholar] [CrossRef]
- Safiuddin Karim, M. Ground water arsenic contamination in Bangladesh: Causes, effects and remediation. In Proceedings of the 1st IEB International Conference and 7th Annual Paper Meet, Chittagong, Bangladesh, 2–3 November 2001.
- Rajkovic, M.B.; Lacnjevac, C.M.; Ralevic, N.R.; Stojanovic, M.D.; Toskovic, D.V.; Pantelic, G.K.; Ristic, N.M.; Jovanic, S. Identification of metals (heavy and radioactive) in drinking water by indirect analysis method based on scale tests. Sensors 2008, 8, 2188–2207. [Google Scholar] [CrossRef]
- Ferner, D.J. Toxicity, heavy metals. eMed. J. 2001, 2, 1. [Google Scholar]
- Young, R.A. Toxicity Summary for Cadmium, Risk Assessment Information System (RAIS). 2005. Available online: ais.ornl.gov/tox/profiles/cadmium.shtml (accessed on 19 October 2014). [Google Scholar]
- Armah, F.A.; Obiri, S.; Yawson, D.O.; Pappoe, A.N.M.; Akoto, B. Mining and heavy metal pollution: Assessment of aquatic environments of Tarkwa, Ghana using multivariate statistical analysis. J. Environ. Stat. 2010, 1, 1–13. [Google Scholar]
- Obiri, S.; Armah, F.A.; Asante, E.; Nyieku, F. Human Health Risk Assessment and Epidemiological Studies from Exposure to Toxic Chemicals in Tarkwa Nsuaem Municipality, Prestea Huni Valley District and Cape Coast Metropolis; ISBN 978-9988-1-5724-1. Center for Environmental Impact Analysis: Cape Coast, Ghana, 2010; pp. 1–142. [Google Scholar]
- Krebs, N.; Langkammer, C.; Goessler, W.; Ropele, S.; Fazekas, F.; Yen, K.; Scheurer, E. Assessment of trace elements inhuman brain using inductively coupled plasma mass spectrometry. J. Trace Elem. Med. Biol. 2014, 28, 1–7. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cobbina, S.J.; Duwiejuah, A.B.; Quansah, R.; Obiri, S.; Bakobie, N. Comparative Assessment of Heavy Metals in Drinking Water Sources in Two Small-Scale Mining Communities in Northern Ghana. Int. J. Environ. Res. Public Health 2015, 12, 10620-10634. https://doi.org/10.3390/ijerph120910620
Cobbina SJ, Duwiejuah AB, Quansah R, Obiri S, Bakobie N. Comparative Assessment of Heavy Metals in Drinking Water Sources in Two Small-Scale Mining Communities in Northern Ghana. International Journal of Environmental Research and Public Health. 2015; 12(9):10620-10634. https://doi.org/10.3390/ijerph120910620
Chicago/Turabian StyleCobbina, Samuel J., Abudu B. Duwiejuah, Reginald Quansah, Samuel Obiri, and Noel Bakobie. 2015. "Comparative Assessment of Heavy Metals in Drinking Water Sources in Two Small-Scale Mining Communities in Northern Ghana" International Journal of Environmental Research and Public Health 12, no. 9: 10620-10634. https://doi.org/10.3390/ijerph120910620
APA StyleCobbina, S. J., Duwiejuah, A. B., Quansah, R., Obiri, S., & Bakobie, N. (2015). Comparative Assessment of Heavy Metals in Drinking Water Sources in Two Small-Scale Mining Communities in Northern Ghana. International Journal of Environmental Research and Public Health, 12(9), 10620-10634. https://doi.org/10.3390/ijerph120910620