# The Pattern of Variation between Diarrhea and Malaria Coexistence with Corresponding Risk Factors in, Chikhwawa, Malawi: A Bivariate Multilevel Analysis

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

^{2}and an elevation of only 100 m above sea level. Chikhwawa is faced with a number of environmental and socioeconomic problems that are responsible for infectious diseases. Malaria and diarrhea are amongst the most common causes of illness and death in the district [13]. Estimated morbidity due to malaria and diarrhea are at 53% and 24.4% respectively [14]. This is statistically higher than the national averages 41.7% for malaria and 18% for diarrhea [7,15].

## 2. Methods

#### 2.1. Sample

#### 2.2. Measures

**Table 1.**Descriptive estimates of risk factors of malaria and diarrhea in Chikhwawa, Southern Malawi, 2007.

Discrete variables | |||||
---|---|---|---|---|---|

Risk factor | Description | value | Number at risk | % infected | |

malaria | diarrhea | ||||

Individual level | |||||

Age | 0–5 yrs | 1 | 1444 | 62.3 | 35.7 |

6–10 yrs | 2 | 1102 | 50.3 | 18.8 | |

11–20 yrs | 3 | 1344 | 42.4 | 17.1 | |

21–40 yrs | 4 | 2027 | 55.1 | 26.9 | |

41–60 yrs | 5 | 573 | 59.9 | 29.0 | |

> 60 yrs | 6 | 237 | 62.0 | 26.6 | |

School | No school | 1 | 2552 | 58.2 | 31.4 |

Primary school | 2 | 3576 | 50.6 | 22.9 | |

≥ Secondary | 3 | 599 | 53.6 | 17.9 | |

Sex | Male | 1 | 3318 | 51.9 | 24.5 |

female | 2 | 3409 | 55.5 | 26.8 | |

Expectant Woman | Yes | 1 | 144 | 68.8 | 35.4 |

No | 0 | 6583 | 54.4 | 25.5 | |

Household level | |||||

OHH | No job | 0 | 429 | 59.4 | 34.5 |

Has a job | 1 | 6298 | 53.4 | 25.1 | |

Distance to river | 1 km or less | 1 | 2463 | - | 22.8 |

1 km to 2 km | 2 | 2871 | - | 25.8 | |

> 2 km | 3 | 1393 | - | 30.4 | |

Drinking water source | Public tap | 1 | 1041 | - | 28.2 |

Private tap | 2 | 419 | - | 21.0 | |

OSDWS | 3 | 4593 | - | 24.5 | |

UDWS | 4 | 674 | - | 32.3 | |

Continuous variables | |||||

Risk factor | Description | Mean | Std. dev. | Median | Range |

Household level | |||||

Maternal age (years) | - | 35 | 13 | 31 | 74 |

Household size | - | 6 | 2 | 5 | 12 |

Community level | |||||

CDE | - | 0.46 | 0.16 | 0.46 | 0.62 |

CME | - | 1.10 | 0.24 | 1.05 | 1.02 |

#### 2.3. Analysis and Estimation

_{ijkq}is the response of ML disease ($q=1$) and diarrhea illness ($q=2$) for individual i$(\text{i}=1,\mathrm{....},6727)$ in household j $(j=1,\mathrm{.....1380})$ and community k $(\text{k}=1,\mathrm{...},33)$ such that

## 3. Results

**Figure 1.**Curves showing the relationship between malaria and diarrheal illnesses with respect to age groups.

#### 3.1. Fixed Effects of Malaria and Diarrhea Morbidities

**Table 2.**Fixed effects estimates from the bivariate model of malaria and diarrhea coexistence in Chikhwawa 2007.

Fixed effects | Malaria | Diarrhea | |||
---|---|---|---|---|---|

β | 95% CI | β | 95% CI | ||

Individual age | 0 to 5 years | Reference category | |||

6 to 10 years | −0.257 | (−0.398, −0.116) | −0.576 | (−0.733, −0.419) | |

11 to 20 years | −0.498 | (−0.647, −0.349) | −0.582 | (−0.752, −0.411) | |

21 to 40 years | −0.201 | (−0.328, −0.074) | −0.243 | (−0.382, −0.104) | |

41 to 60 years | 0.177 | (0.001, 0.353) | 0.001 | (−0.187, 0.189) | |

60 years above | 0.474 | (0.225, 0.723) | −0.038 | (−0.314, 0.238) | |

School level | None | Reference category | |||

Primary | −0.092 | (−0.200, 0.016) | −0.142 | (−0.260, −0.024) | |

≥ Secondary | −0.021 | (−0.193, 0.151) | −0.472 | (−0.674, −0.270) | |

Sex | Male | Reference category | |||

Female | 0.103 | (0.027, 0.179) | 0.04 | (−0.046, 0.126) | |

Expectant woman | No | ||||

Yes | 0.437 | (0.143, 0.731) | 0.212 | (-0.068, 0.492) | |

OHH | No job | Reference category | |||

Has a job | −0.13 | (−0.408, 0.148) | −0.380 | (−0.668, −0.092) | |

Maternal age | −0.011 | (−0.017, −0.005) | −0.010 | (−0.016, −0.004) | |

Household size | X | −0.052 | (−0.087, −0.017) | −0.294 | (−0.417, −0.170) |

X^{2} | - | - | 0.022 | (0.012, 0.032) | |

CDE | 0.977 | (0.328, 1.626) | 1.737 | (1.098, 2.376) | |

CME | 1.369 | (1.0613, 1.677) | 0.551 | (0.184, 0.917) | |

Distance to river | < 1 km | Reference category | |||

1 to 2 km | - | - | 0.013 | (−0.021, 0.285) | |

> 2 km | - | - | 0.180 | (−0.002, 0.362) | |

Drinking water source | Public piped water | Reference category | |||

Private piped water | - | - | 0.178 | (−0.149, 0.505) | |

Other safe water sources | - | - | 0.257 | (−0.104, 0.618) | |

Unsafe water sources | - | - | 0.491 | (0.056, 0.926) |

#### 3.2. Random Effects of ML and Diarrhea Morbidities

**Table 3.**Covariance structure from the bivariate model of malaria and diarrhea coexistence in Chikhwawa 2007

^{§}.

Hierarchy | Malaria (95% CI) | Diarrhea (95% CI) |
---|---|---|

Individual level | ||

Malaria | ${\sigma}_{e1}^{2}=1$ | ${r}_{e}^{(1,2)}=0.241$ |

Diarrhea | ${\sigma}_{e}^{(1,2)}=0.241;(0.180,0.302)$ | ${\sigma}_{e2}^{2}=1$ |

Household level | ||

Malaria | ${\sigma}_{u1}^{2}=0.901;(0.746,1.056)$ | ${r}_{u}^{(1,2)}=0.565$ |

Diarrhea | ${\sigma}_{u}^{(1,2)}=0.539;(0.441,0.637)$ | ${\sigma}_{u2}^{2}=1.009;(0.860,1,158)$ |

Community level | ||

Malaria | ${\sigma}_{v1}^{2}=0.053;(0.018,0.088)$ | ${r}_{v}^{(1,2)}=0.124$ |

Diarrhea | ${\sigma}_{v}^{(1,2)}=0.009;(-0.026,0.044)$ | ${\sigma}_{v2}^{2}=0.099;(0.030,0.168)$ |

^{§}95% confidence intervals in parentheses and correlation coefficients in the upper triangle of each level.

**Figure 2.**Caterpillar plot of household residuals for malaria and diarrhea prevalence. The dotted line is the mean of the estimated (shrunken) residuals, which is equal to zero (estimated or shrunken residual for group j is the residual obtained by multiplying the mean of the residuals of subjects in group j by a shrinkage factor. Shrinkage factor shrinks an observed group mean towards the centre of the population mean). The brushes represent 95% CI to the estimated residuals.

**Figure 3.**Caterpillar plot of community residuals for malaria and diarrhea prevalence. The triangles indicate estimated (shrunken) community residuals.

## 4. Discussion and Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- RBM. Global Strategic Plan: Roll Back Malaria 2005–2015; Roll Back Malaria Partnership, World Health Organization: Geneva, Switzerland, 2005; Available Online http://www.rollbackmalaria.org/forumV/docs/gsp_en.pdf (accessed on 15 July 2015).
- UNICEF. Progress for Children: A Report Card on Water and Sanitation, Number 5; New York, NY, USA, 2006. Available Online www.unicef.org/progressforchildren/6006n5/ (accessed on 3 August 2012).
- Tulloch, J. Integrated approach to child health in developing countries. Lancet
**1999**, 354 (Suppl 2), SII16–SII20. [Google Scholar] [CrossRef] - Victora, C.G.; Adam, T.; Bryce, J.; Evans, D.B. Integrated Management of the Sick; Child Disease Control Priorities Project: Washington, DC, USA, 2006; Available Online http://www.dcp2.org/pubs/DCP/63/Section/9372 (accessed on 15 July 2015).
- Kazembe, L.N.; Muula, A.S.; Appleton, C.C.; Kleinschmidt, I. Modelling the effect of malaria endemicity on spatial variations in childhood fever, diarrhea and pneumonia in Malawi. Int. J. Health Geogr.
**2007**, 6, 33–43. [Google Scholar] [CrossRef] [PubMed] - Fenn, B.; Morris, S.; Black, R.E. Comorbidity in childhood in Ghana: Magnitude, associated factors and impact on mortality. Int. J. Epidemiol.
**2005**, 34, 368–375. [Google Scholar] [CrossRef] [PubMed] - Kazembe, L.N.; Namangale, J.J. A Beyesian multinomial model to analyse spatial patterns of childhood co-morbidity in Malawi. Eur. J. Epidemiol.
**2007**, 22, 545–556. [Google Scholar] [CrossRef] [PubMed] - Langford, I.H.; Leyland, A.; Rasbash, J.; Goldstein, H. Multilevel modelling of the geographical distributions of diseases. Appl. Stat.
**1999**, 48, 253–268. [Google Scholar] [CrossRef] - Leyland, A.; Langford, I.H.; Rasbash, J.; Goldstein, H. Multivariate spatial models for event data. Stat. Med.
**2000**, 19, 2469–2478. [Google Scholar] [CrossRef] - Kim, H.; Sun, D.; Tsutakawa, R.K. A bivariate Bayes method for improving the estimates of mortality rates with a twofold conditional autoregressive model. J. Am. Stat. Assn.
**2001**, 96, 1521. [Google Scholar] [CrossRef] - Downing, A.; Forman, D.; Gilthorpe, M.S.; Edwards, K.L.; Manda, S.O.M. Joint disease mapping using six cancers in the Yorkshire region of England. Int. J. Health Geogr.
**2008**, 7, 41–55. [Google Scholar] [CrossRef] [PubMed] - Manda, S.O.M.; Leyland, A. An empirical comparison of maximum likelihood and Bayesian estimation methods for multivariate spatial disease modelling. S. Afr. Stat. J.
**2007**, 41, 1–21. [Google Scholar] - Masangwi, S.J.; Morse, T.D.; Ferguson, N.; Zawdie, G.; Grimason, A.M. A preliminary analysis of the Scotland-Chikhwawa Health Initiative Project on morbidity. Mag. Int. Fed. Environ. Health.
**2008**, 10, 10–23. [Google Scholar] - Kandala, N.B.; Magadi, M.A.; Madise, N.J. An investigation of district spatial variations of childhood diarrhea and fever morbidity in Malawi. Soc. Sci. Med.
**2006**, 62, 1138–1152. [Google Scholar] [CrossRef] [PubMed] - World Health Statistics. In Country Health System Fact Sheet 2006; World Health Organisation: Lilongwe, Malawi, 2006; Available online http://www.who.int/whosis/en/ (accessed on 15 July 2015).
- National Statistical Office and UNICEF. Malawi Multiple Indicator Cluster Survey 2006, Final Report; National Statistical Office and UNICEF: Lilongwe, Malawi, 2008. [Google Scholar]
- Malaria Policy, Specific Policy Statements; Malawi Government Ministry of Health and Population: Lilongwe, Malawi, 2002.
- Wright, J.A; Gundry, S.W.; Conroy, R.; Wood, D.; Preez, M.; Ferro-Luzzi, A.; Genthe, B.; Kirimi, M.; Moyo, S.; Mutisi, C.; Ndamba, J.; Potgieter, N. J. Health Popul. Nutr.
**2006**, 24, 8–16. [PubMed] - Gwatkin, D.R.; Rustein, S.; Johnson, K.; Pande, R.P.; Wagstaff, A. Socio-economic differences in health, nutrition, and population in Bangladesh, 2000. Available online www1.worldbank.org/prem/poverty/health/data/bangladesh/bangladesh.pdf (accessed on 15 July 2015).
- Masangwi, S.J.; Ferguson, N.; Grimason, A.M.; Morse, T.D.; Zawdie, G.; Kazembe, L.N. Household and Community variations and nested risk factors for diarrhea prevalence in Southern Malawi: A binary logistic multilevel analysis. Int. J. Environ. Health Res.
**2010**, 20, 141–158. [Google Scholar] [CrossRef] [PubMed] - Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; van der Linde, A. Bayesian measures of model complexity and fit. J. Roy. Stat. Soc. Ser. B
**2002**, 64, 583–639. [Google Scholar] [CrossRef] - Leyland, A.H.; Goldstein, H. Multilevel Modelling of Health Statistics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Rabash, R.; Steele, F.; Browne, W.; Prosser, B. A User's Guide to MLwiN (Version 2.10); Centre for Multilevel Modelling, University of Bristol: Bristol, UK, 2004. [Google Scholar]
- Browne, W.J. MCMC Estimation in MLwiN; Centre for Multilevel Modelling Institute of Education, University of London: London, UK, 2003. [Google Scholar]
- Kazembe, L.N.; Muula, A.S.; Appleton, C.C.; Simoonga, C. Joint spatial modelling of common morbidities of childhood fever and diarrhea in Malawi. Health Place
**2009**, 15, 165–172. [Google Scholar] [CrossRef] [PubMed] - Masangwi, S.J. Coexistence between malaria and diarrhea in Southern Malawi: A Bayesian multilevel analysis of prevalence, knowledge, resource distribution and care practices. PhD Thesis, University of Strathclyde, Glasgow, UK, 2009. [Google Scholar]
- Escobar, G.J.; Salazar, E.; Chuy, M. Beliefs regarding the etiology and treatment of infantile diarrhea in Lima, Peru. Soc. Sci. Med.
**1983**, 17, 1257–1269. [Google Scholar] [CrossRef] - Nakao, R.M.; Kennedy, K.I.; Savina, G. Breastfeeding education and infant health in the rural Philippines. Ecol. Food Nutr.
**1992**, 27, 115–126. [Google Scholar] [CrossRef] [PubMed] - Perera, B.J.; Ganesan, S.; Jayarasa, J.; Ranaweera, S. The impact of breastfeeding practices on respiratory and diarrheal disease in infancy: A study from Sri Lanka. J. Trop. Paediatricians
**1999**, 45, 115–118. [Google Scholar] [CrossRef] - Morse, T.D. A public health approach to reducing diarrhea caused by infectious diseases in children less than 5 years of age—The example of childhood cryptosporidiosis in Malawi. PhD Thesis, University of Strathclyde, Glasgow, UK, 2006. [Google Scholar]
- International Monetory Fund (IMF). Malawi: Poverty Reduction Strategy Paper—Growth and Development Strategy; International Monetory Fund (IMF): Washington, DC, USA, 2007; pp. 25–27, IMF Country Report No. 07/55. [Google Scholar]
- Agtini, M.D.; Soeharno, R.; Lesmana, M.; Punjabi, N.H.; Simanjuntak, C.; Wangsasaputra, F.; Nurdin, D.; Pulungsih, P.; Rofiq, A.; Santoso, H.; Pujarwoto, H.; Sjahrurachman, A.; Sudarmono, P.; Seidlein, L.; Deen, J.L.; Ali, M.; Lee, H.; Kim, D.R.; Han, O.; Park, J.K.; Suwandono, A.; Ingerani1; Oyofo, B.A.; Campbell, J.R.; Beecham, H.J.; Corwin, A.L.; Clemens, J.D. The burden of diarrhea, shigellosis, and cholera in North Jakarta, Indonesia: Findings from 24 months surveillance. BMC Infect. Disease.
**2005**, 5, 89–100. [Google Scholar] [CrossRef] [PubMed] - Pebley, A.R.; Stupp, P.W. Reproductive patterns and child mortality in Guatemala. Demography
**1987**, 24, 43–60. [Google Scholar] [CrossRef] [PubMed] - Hobcraft, J. Women’s education, child welfare and child survival: a review of evidence. Health Transit. Rev.
**1993**, 3, 159–175. [Google Scholar] [PubMed] - Pongou, R.; Ezzati, M.; Salomon, J.A. Household and community socioeconomic and environmental determinants of child nutritional status in Cameroon. BMC Public Health
**2006**, 6, 98–117. [Google Scholar] [CrossRef] [PubMed] - Cohen, S.; Williamson, G.M. Stress and infectious disease in humans. Psychol. Bull.
**1991**, 109, 5–24. [Google Scholar] [CrossRef] [PubMed] - Leventhal, H.; Patrick-Miller, L.; Leventhal, E.A. It’s Long-Term Stressors That Take a Toll: Comment on Cohen et al. (1998). Health Psychol.
**1998**, 17, 211–213. [Google Scholar] [CrossRef] [PubMed] - Snow, R.W.; Craig, M.; Deichmann, U.; Marsh, K. Estimating mortality, morbidity and disability due to malaria among Africa's non-pregnant population. Bull. Who.
**1999**, 77, 624–640. [Google Scholar] [PubMed] - Luxemburger, C.; Ricci, F.; Nosten, F.; Raimond, D.; Bathet, S.; White, N.J. The epidemiology of severe malaria in an area of low transmission in Thailand. Trans. Roy. Soc. Trop. Med. Hyg.
**1997**, 91, 256–262. [Google Scholar] [CrossRef] - Connolly, M.A.; Gayer, M.; Ryan, M.J.; Salama, P.; Spiegel, P.; Heymann, D.L. Communicable diseases in complex emergencies: Impact and challenges. Lancet
**2004**, 364, 1974–1983. [Google Scholar] [CrossRef] - Filmer, D. Fever and its treatments among the more poor and less poor in sub-Saharan Africa. Health Policy and Plann.
**2005**, 20, 337–346. [Google Scholar] [CrossRef] [PubMed]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Masangwi, S.; Ferguson, N.; Grimason, A.; Morse, T.; Kazembe, L.
The Pattern of Variation between Diarrhea and Malaria Coexistence with Corresponding Risk Factors in, Chikhwawa, Malawi: A Bivariate Multilevel Analysis. *Int. J. Environ. Res. Public Health* **2015**, *12*, 8526-8541.
https://doi.org/10.3390/ijerph120708526

**AMA Style**

Masangwi S, Ferguson N, Grimason A, Morse T, Kazembe L.
The Pattern of Variation between Diarrhea and Malaria Coexistence with Corresponding Risk Factors in, Chikhwawa, Malawi: A Bivariate Multilevel Analysis. *International Journal of Environmental Research and Public Health*. 2015; 12(7):8526-8541.
https://doi.org/10.3390/ijerph120708526

**Chicago/Turabian Style**

Masangwi, Salule, Neil Ferguson, Anthony Grimason, Tracy Morse, and Lawrence Kazembe.
2015. "The Pattern of Variation between Diarrhea and Malaria Coexistence with Corresponding Risk Factors in, Chikhwawa, Malawi: A Bivariate Multilevel Analysis" *International Journal of Environmental Research and Public Health* 12, no. 7: 8526-8541.
https://doi.org/10.3390/ijerph120708526