Relationship between the Concentrations of Heavy Metals and Bioelements in Aging Men with Metabolic Syndrome
Abstract
:1. Introduction
2. Material and Methods
Material | Element | Measurement (mcg/L) and SD |
---|---|---|
Whole blood | Pb | 310.4 ± 4.3 |
Cd | 5.60 ± 0.34 | |
Hg | 16.7 ± 1.4 | |
As | 15.3 ± 1.1 | |
W | 6.01 ± 0.1 | |
Serum | Mg | 40.8 ± 1.0 |
Fe | 2.18 ± 0.07 | |
Ca | 136.3 ± 3.5 | |
Cu | 3289.0 ± 55.0 | |
Zn | 2351.0 ± 42.0 | |
Se | 156.9 ± 5.1 | |
Mo | 0.89 ± 0.06 | |
Mn | 20.0 ± 1.4 | |
Cr | 4.76 ± 0.38 |
3. Results
Metal | MS (n = 161) | Without MS (n = 152) | p | ||||
---|---|---|---|---|---|---|---|
AM (SD) | Med | Range | AM (SD) | Med | Range | ||
Heavy Metals | |||||||
Pb (mcg/L) | 75.17 (21.4) | 73.00 | 24.3–161.5 | 73.82 (21.7) | 71.05 | 28.0–138.5 | 0.46 |
Cd (mcg/L) | 1.55 (0.32) | 1.59 | 0.59–3.06 | 1.53 (0.34) | 1.53 | 0.62–2.35 | 0.41 |
As (mcg/L) | 7.83 (1.59) | 7.80 | 3.45–15.2 | 7.83 (1.61) | 7.97 | 2.48–12.5 | 0.67 |
Hg (mcg/L) | 4.59 (0.92) | 4.61 | 0.15–9.10 | 4.51 (0.80) | 4.46 | 2.72–7.90 | 0.21 |
W(mcg/L) | 0.62 (0.01) | 0.62 | 0.28–1.11 | 0.62 (0.01) | 0.62 | 0.42–0.83 | 0.67 |
Bioelements | |||||||
Mg (mg/L) | 20.6 (2.05) | 20.6 | 10.0–26.3 | 21.28 (2.37) | 21.15 | 13.8–37.5 | 0.02 |
Ca (mg/L) | 95.06 (6.87) | 95.5 | 53.5–117 | 95.47 (8.06) | 95.25 | 75.5–159.6 | 0.38 |
Fe (mg/L) | 1.19 (0.45) | 1.10 | 0.28–3.40 | 1.23 (0.43) | 1.47 | 0.29–3.0 | 0.35 |
Zn (mg/L) | 0.90 (0.14) | 0,90 | 0.54–1.38 | 0.88 (0.12) | 0.86 | 0.62–1.41 | 0.03 |
Cu (mg/L) | 1.08 (0.18) | 1.06 | 0.46–1.89 | 1.09 (0.18) | 1.07 | 0.53–1.75 | 0.60 |
Cr (mcg/L) | 0.46 (0.18) | 0.44 | 0.26–1.23 | 0.47 (0.25) | 0.41 | 0.01–2.74 | 0.36 |
Mo (mcg/L) | 2.47 (0.72) | 2.41 | 0.44–6.23 | 2.48 (0.55) | 2.34 | 0.10–4.53 | 0.60 |
Mn (mcg/L) | 1.90 (1.17) | 1.67 | 0.12–10.75 | 1.79 (1.14) | 1.11 | 0.42–8.95 | 0.13 |
Se (mcg/L) | 106.0 (13.0) | 106.30 | 49.7–138.1 | 105.2 (11.84) | 104.0 | 74.2–170.0 | 0.21 |
Metal | TIIDM (n = 55) | Without TIIDM (n = 258) | p | ||||
---|---|---|---|---|---|---|---|
AM (SD) | Med | Range | AM (SD) | Med | Range | ||
Heavy Metals | |||||||
Pb (mcg/L) | 72.06 (18.3) | 71.60 | 24.3–112.0 | 75.05 (22.2) | 72.0 | 26.10–161.5 | 0.90 |
Cd (mcg/L) | 1.57 (0.30) | 1.51 | 0.59–2.05 | 1.53 (0.34) | 1.57 | 0.62–3.06 | 0.46 |
As (mcg/L) | 7.82 (1.35) | 7.65 | 5.10–10.8 | 7.83 (1.62) | 7.92 | 2.48–15.2 | 0.98 |
Hg (mcg/L) | 4.47 (0.77) | 4.45 | 0.28–6.60 | 4.57 (0.88) | 4.53 | 0.15–9.1 | 0.63 |
W (mcg/L) | 0.61 (0.1) | 0.61 | 0.39–0.74 | 0.62 (0.1) | 0.62 | 0.28–1.1 | 0.74 |
Bioelements | |||||||
Mg (mg/L) | 19.6 (2.25) | 19.8 | 13.8–26.3 | 21.21 (2.13) | 21.15 | 10.0–37.5 | 0.0001 |
Ca (mg/L) | 96.9 (5.42) | 96.5 | 83.0–117.0 | 94.91 (9.79) | 95.0 | 53.5–159.6 | 0.02 |
Fe (mg/L) | 1.14 (0.41) | 1.06 | 0.53–2.29 | 1.22 (0.44) | 1.45 | 0.28–3.4 | 0.11 |
Zn (mg/L) | 0.91 (0.15) | 0.89 | 0.56–1.38 | 0.88 (0.13) | 0.88 | 0.54–1.41 | 0.30 |
Cu (mg/L) | 1.06 (0.17) | 1.04 | 0.65–1.41 | 1.09 (0.18) | 1.06 | 0.46–1.89 | 0.53 |
Cr (mcg/L) | 0.45 (0.18) | 0.40 | 0.13–1.13 | 0.47 (0.22) | 0.44 | 0.03–2.74 | 0.74 |
Mo (mcg/L) | 2.35 (0.75) | 2.26 | 0.11–4.53 | 2.42 (0.61) | 2.39 | 0.04–6.23 | 0.87 |
Mn (mcg/L) | 1.75 (1.07) | 1.60 | 0.55–7.50 | 1.87 (1.15) | 1.62 | 0.12–10.75 | 0.38 |
Se (mcg/L) | 107.0 (13.5) | 106.6 | 54.1–136.0 | 105.3 (12.16) | 104.5 | 49.7–170.0 | 0.21 |
Metal | Overweight and Obesity (n = 250) | Normal Body Weight (n = 61) | p | ||||
---|---|---|---|---|---|---|---|
AM (SD) | Med | Range | AM (SD) | Med | Range | ||
Heavy Metals | |||||||
Pb (mcg/) | 74.80 (21.94) | 72.15 | 24.2–161,5 | 73.30 (20.0) | 71.81 | 30.77–123.5 | 0.64 |
Cd (mcg/) | 1.56 (0.33) | 1.59 | 0.59–3.05 | 1.48 (0.32) | 1.53 | 0.63–2.22 | 0.56 |
As (mcg/) | 7.79 (1.58) | 7.72 | 3.45–15.2 | 7.70 (1.69) | 7.83 | 2.47–11.21 | 0.69 |
Hg (mcg/) | 4.56 (0.87) | 4.52 | 0.19–9.1 | 4.46 (0.87) | 4.49 | 0.15–6.60 | 0.82 |
W (mcg/) | 0.61 (0.01) | 0.61 | 0.28–0.83 | 0.61 (0.01) | 0.62 | 0.28–1.15 | 0.22 |
Bioelements | |||||||
Mg (mg/L) | 20.7 (1.81) | 20.8 | 15.7–26.3 | 21.12 (1.79) | 21.15 | 14.79–26.15 | 0.41 |
Ca (mg/L) | 96.5 (5.03) | 95.3 | 75.5–109,5 | 95.15 (8.22) | 95.5 | 53.5–159.6 | 0.60 |
Fe (mg/L) | 1.17 (0.45) | 1.09 | 0.48–3.40 | 1.22 (0.43) | 1.44 | 0.28–3.0 | 0.24 |
Zn (mg/L) | 0.90 (0.12) | 0.89 | 0.56–1.31 | 0.88 (0.13) | 0.87 | 0.54–1.41 | 0.14 |
Cu (mg/L) | 1.09 (0.15) | 1.07 | 0.83–1.46 | 1.08 (0.19) | 1.06 | 0.46–1.89 | 0.48 |
Cr (mcg/L) | 0.49 (0.19) | 0.47 | 0.15–1.13 | 0.45 (0.22) | 0.41 | 0.03–2.74 | 0.03 |
Mo (mcg/L) | 2.45 (0.65) | 2.32 | 0.11–4.53 | 2.43 (0.64) | 2.34 | 0.04–6.23 | 0.72 |
Mn (mcg/L) | 2.12 (1.36) | 1.79 | 0.60–8.95 | 1.74 (1.03) | 1.58 | 0.12–10.75 | 0.005 |
Se (mcg/L) | 107.4 (13.2) | 106.0 | 54.1–138.1 | 105.3 (12.1) | 104.5 | 49.7–170.0 | 0.45 |
Metal | HA (n = 171) | Non-HA (n = 142) | p | ||||
---|---|---|---|---|---|---|---|
AM (SD) | Med | Range | AM (SD) | Med | Range | ||
Heavy Metals | |||||||
Pb (mcg/L) | 77.07 (21.90) | 71.11 | 26.10–161.50 | 73.07 (21.30) | 74.05 | 24.30–138.50 | 0.89 |
Cd (mcg/L) | 1.55 (0.34) | 1.57 | 0.63–3.06 | 1.54 (0.32) | 1.53 | 0.59–2.24 | 0.82 |
As (mcg/L) | 7.76 (1.68) | 7.80 | 2.48–15.2 | 7.92 (1.49) | 7.95 | 3.83–12.5 | 0.41 |
Hg (mcg/L) | 4.59 (0.89) | 4.53 | 0.15–9.10 | 4.51 (0.82) | 4.45 | 0.27–7.9 | 0.25 |
W (mcg/L) | 0.62 (0.01) | 0.61 | 0.15–0.91 | 0.62 (0.01) | 0.63 | 0.39–0.83 | 0.11 |
Bioelements | |||||||
Mg (mg/L) | 20.58 (2.59) | 20.5 | 10.0–37.5 | 21.36 (1.61) | 21.3 | 16.6–26.3 | 0.00012 |
Ca (mg/L) | 95.39 (8.93) | 95.0 | 53.5–159.6 | 95.10 (5.19) | 95.5 | 77.0–109.5 | 0.72 |
Fe (mg/L) | 1.21 (0.46) | 1.07 | 0.29–3.40 | 1.21 (0.40) | 1.25 | 0.28–2.38 | 0.79 |
Zn (mg/L) | 0.88 (0.14) | 0.88 | 0.54–1.41 | 0.89 (0.12) | 0.88 | 0.64–1.29 | 0.20 |
Cu (mg/L) | 1.08 (0.19) | 1.06 | 0.46–1.89 | 1.07 (0.16) | 1.06 | 0.53–1.46 | 0.77 |
Cr (mcg/L) | 0.44 (0.18) | 0.42 | 0.26–3.17 | 0.49 (0.25) | 0.44 | 0.02–2.74 | 0.09 |
Mo (mcg/L) | 2.39 (0.64) | 2.32 | 0.44–4.39 | 2.50 (0.63) | 2.43 | 1.35–6.23 | 0.16 |
Mn (mcg/L) | 1.86 (1.12) | 1.62 | 0.12–10.75 | 1.83 (1.06) | 1.63 | 0.42–8.95 | 0.85 |
Se (mcg/L) | 105.6 (13.9) | 104.5 | 49.7–170.0 | 105.7 (10.2) | 105.0 | 74.2–136.0 | 0.86 |
4. Discussion
4.1. Heavy Metals
4.2. Bioelements
Metabolic Features | Pb | Cd | Hg | As | W | Mg | Ca | Fe | Zn | Cu | Mo | Mn | Se | Cr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BMI | 0.02 | 0.06 | 0.57 | −0.03 | 0.01 | −0.13 * | 0.01 | −0.09 | 0.08 | 0.02 | −0.019 | 0.12 * | 0.03 | 0.12 |
AB | 0.04 | 0.06 | 0.01 | −0.03 | −0.04 | −0.15 * | 0.03 | −0.08 | 0.06 | 0.05 | 0.04 | 0.14 * | 0.07 | 0.11 |
WHR | −0.07 | −0.07 | −0.12 * | −0.08 | −0.14 * | −0.16 * | 0.008 | −0.05 | 0.003 | 0.07 | 0.004 | 0.17 * | 0.04 | 0.04 |
BP systolic | 0.06 | 0.04 | −0.02 | 0.07 | −0.06 | −0.15 * | −0.0007 | 0.04 | 0.001 | 0.11 * | 0.06 | −0.019 | 0.07 | −0.004 |
BP diastolic | 0.04 | −0.02 | −0.02 | 0.04 | −0.11 | −0.0004 | 0.04 | 0.04 | 0.08 | 0.10 | 0.1 | 0.03 | 0.11 | 0.02 |
TCh | −0.08 | −0.001 | −0.04 | −0.04 | 0.14 * | 0.25 * | 0.16 * | −0.02 | 0.09 | 0.04 | 0.03 | 0.06 | 0.17 * | 0.19 * |
HDL | −0.07 | −0.03 | −0.09 | 0.04 | 0.9 | 0.009 | 0.02 | 0.09 | −0.07 | −0.05 | 0.05 | −0.16 * | −0.05 | 0.14 * |
LDL | −0.03 | 0.04 | −0.02 | −0.03 | 0.13 * | 0.26 * | 0.11 * | −0.04 | 0.03 | 0.04 | −0.007 | 0.09 | 0.11 * | 0.11 * |
TG | −0.07 | −0.07 | 0.04 | −0.04 | −0.05 | −0.06 | 0.098 | −0.05 | 0.22 * | 0.05 | 0.03 | 0.02 | 0.19 * | 0.18 * |
Insulin | −0.06 | −0.14 * | 0.01 | −0.06 | −0.29 * | −0.019 | 0.14 * | −0.07 | 0.18 * | 0.06 | −0.12 * | 0.16 * | 0.19 * | −0.09 |
HOMA-IR | −0.07 | −0.11 | 0.004 | −0.09 | −0.25 * | −0.056 | 0.13 * | −0.02 | 0.19 * | 0.04 | −0.96 | 0.17 * | 0.20 * | −0.08 |
FPG | −0.05 | 0.02 | 0.04 | −0.05 | 0.06 | −0.11 | −0.4 | 0.09 | 0.04 | −0.08 | 0.05 | 0.05 | −0.005 | −0.05 |
5. Conclusions
Acknowlegments
Author Contributions
Abbreviations
MS | Metabolic syndrome |
TIIDM | Type II diabetes mellitus |
BMI | Body mass index |
AC | Abdominal circumference |
WHR | Waist-to-hip ratio |
TCh | Total cholesterol |
LDL | Low-density lipoprotein |
HDL | High-density lipoprotein |
TG | Triglyceride |
FPG | Fasting plasma glucose |
HOMA-IR | Homeostasis Model Assessment – Insulin resistance |
IR | Insulin resistance |
BP | Blood pressure |
HA | Hypertension |
Pb | Lead |
Hg | Mercury |
As | Arsenic |
Cd | Cadmium |
W | Tungsten |
Mg | Magnesium |
Fe | Iron |
Ca | Calcium |
Zn | Zinc |
Cu | Copper |
Se | Selenium |
Mn | Manganese |
Cr | Chromium |
Mo | Molybdenum |
Conflicts of Interest
References
- Wyrzykowski, B.; Zdrojewski, T.; Bandosz, P. Metabolic syndrome in Poland. Kardiol. Pol. 2005, 62, 30–35. [Google Scholar]
- Stern, M.P.; Williams, K.; Gonzales-Villalpando, C.; Hunt, K.J.; Haffner, S.M. Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care 2004, 27, 2676–2681. [Google Scholar] [CrossRef] [PubMed]
- Zdrojewski, T.; Bandosz, P.; Szpakowski, P.; Konarski, R.; Manikowski, A.; Wolkiewicz, E.; Jakubowski, Z.; Lysiak-Szydlowska, W.; Bautembach, S.; Wyrzykowski, B. The prevalence of major risk factors of diseases of the cardiovascular system in Poland. Results of the study NATPOL PLUS. Kardiol. Pol. 2004, 61, 1–26. [Google Scholar] [PubMed]
- Navas-Acien, A.; Silbergeld, E.K.; Pastor-Barriuso, R.; Guallar, E. Arsenic exposure and prevalence of type 2 diabetes in US adults. J. Amer. Med. Assn. 2008, 300, 814–822. [Google Scholar] [CrossRef]
- Nash, D.; Magder, L.; Lustberg, M.; Sherwin, R.W.; Rubin, R.J.; Kaufmann, R.B.; Silbergeld, E.K. Blood lead, blood pressure, and hypertension in perimenopausal and postmenopausal women. J. Amer. Med. Assn. 2003, 289, 1523–1532. [Google Scholar] [CrossRef]
- Rhee, S.Y.; Hwang, Y.C.; Woo, J.T.; Sinn, D.H.; Chin, S.O.; Chon, S.; Kim, Y.S. Blood lead is significantly associated with metabolic syndrome in Korean adults: An analysis based on the Korea National Health and Nutrition Examination Survey (KNHANES) 2008. Cardiovasc. Diabetol. 2013. [Google Scholar] [CrossRef]
- Lee, B.K.; Kim, Y. Blood cadmium, mercury, and lead and metabolic syndrome in South Korea: 2005–2010 Korean National Health and Nutrition Examination Survey. Amer. J. Ind. Med. 2013, 56, 682–692. [Google Scholar] [CrossRef]
- Byrne, J.V.; Hope, J.K.; Hubbard, N.; Morris, J.H. The nature of thrombosis induced by platinum and tungsten coils in saccular aneurysms. Amer. J. Neuroradiol. 1997, 18, 29–33. [Google Scholar]
- Johnson, J.L.; Waud, W.R.; Cohen, H.J.; Rajagopalan, K.V. Molecular basis of the biological function of molybdenum. Molybdenum-free xanthine oxidase from livers of tungstentreated rats. J. Biol. Chem. 1974, 249, 5056–5061. [Google Scholar] [PubMed]
- Nell, J.A.; Annison, E.F.; Balnave, D. The influence of tungsten on the molybdenum status of poultry. Brit. Poult. Sci. 1980, 21, 193–202. [Google Scholar] [CrossRef]
- Claret, M.; Corominola, M.; Saura, J.; Barcelo-Batllori, S.; Guinovart, J.J.; Gomis, R. Tungstate decreases weight gain and adiposity in obese rats through increased thermogenesis and lipid oxidation. Endocrinology 2005, 146, 4362–4369. [Google Scholar] [CrossRef] [PubMed]
- Ballester, J.; Munoz, M.C.; Domínguez, J.; Palomo, M.J.; Rivera, M.; Rigau, T.; Guinovart, J.J.; Rodríguez-Gil, J.E. Tungstate administration improves the sexual and reproductive function in female rats with streptozotocin-induced diabetes. Hum. Reprod. 2007, 22, 2128–2135. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Romero, F.; Rodriguez-Moran, M. Low serum magnesium levels and metabolic syndrome. Acta. Diabetol. 2002, 39, 209–213. [Google Scholar] [CrossRef]
- Song, Y.; Sesso, H.D.; Manson, J.E.; Cook, N.R.; Buring, J.E.; Liu, S. Dietary magnesium intake and risk of incident hypertension among middle-aged and older US women in a 10-year follow-up study. Amer. J. Cardiol. 2006, 98, 1616–1621. [Google Scholar] [CrossRef]
- Volpe, S.L. Magnesium, the metabolic syndrome, insulin resistance, and type 2 diabetes mellitus. Crit. Rev. Food Sci. Nutr. 2008, 48, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Cosaro, E.; Bonafini, S.; Montagnana, M.; Danese, E.; Trettene, M.S.; Minuz, P.; Delva, P.; Fava, C. Effects of magnesium supplements on blood pressure, endothelial function and metabolic parameters in healthy young men with a family history of metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Romero, F.; Rodriguez-Moran, M. Oral magnesium supplementation: An adjuvant alternative to facing the worldwide challenge of type 2 diabetes? Medigraphic 2014, 82, 282–289. [Google Scholar]
- De Souza E Silva, M.L.L.; Cruz, T.; Rodrigues, L.E.; Ladeia, A.M.; Bomfim, O.; Olivieri, L.; Melo, J.; Correia, R.; Porto, M.; Cedro, A. Magnesium replacement does not improve insulin resistance in patients with metabolic syndrome: A 12-week randomized double-blind study. J. Clin. Med. Res. 2014, 6, 456–462. [Google Scholar] [PubMed]
- Jehn, M.; Clark, J.M.; Guallar, E. Serum ferritin and risk of the metabolic syndrome in U.S. adults. Diabetes Care 2004, 27, 2422–2428. [Google Scholar] [CrossRef] [PubMed]
- Bozzini, C.; Girelli, D.; Olivieri, O.; Martinelli, N.; Bassi, A.; DeMatteis, G.; Tenuti, I.; Lotto, V.; Friso, S.; Pizzolo, F.; Corrocher, R. Prevalence of body iron excess in the metabolic syndrome. Diabetes Care 2005, 28, 2061–2063. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.M.; Lee, K.W.; Kim, H.Y.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Choi, D.S.; Baik, S.H. Association among serum ferritin, alanine aminotransferase levels, and metabolic syndrome in Korean postmenopausal women. Metabolism 2005, 54, 1510–1514. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.S.; Guerrero, D.B.; Soto, M.B.; Diaz, S.P.; Martinez-Olmos, M.; Vidal, O. Metabolic syndrome, insulin resistance and the inflammation markers C-reactive protein and ferritin. Eur. J. Clin. Nutr. 2006, 60, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Franco, O.H.; Hu, F.B.; Cai, L.; Yu, Z.; Li, H.; Ye, X.; Qi, Q.; Wang, J.; Pan, A.; Liu, Y.; Lin, X. Ferritin concentrations, metabolic syndrome, and type 2 diabetes in middle-aged and elderly chinese. J. Clin. Endocrinol. MeTable 2008, 93, 4690–4696. [Google Scholar] [CrossRef]
- Naka, T.; Kaneto, H.; Katakami, N.; Matsuoka, T.; Harada, A.; Yamasaki, Y.; Matsuhisa, M.; Shimomura, I. Association of serum copper levels and glycemic control in patients with type 2 diabetes. Endocr. J. 2013, 60, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Ferdousi, S.; Mia, A.R. Serum levels of copper and zinc in newly diagnosed type-2 diabetic subjects. Mymensingh. Med. J. 2012, 21, 475–478. [Google Scholar] [PubMed]
- Xu, J.; Zhou, Q.; Liu, G.; Tan, Y.; Cai, L. Analysis of serum and urinal copper and zinc in Chinese northeast population with the prediabetes or diabetes with and without complications. Oxid. Med. Cell. Longev. 2013. [Google Scholar] [CrossRef]
- Miao, X.; Sun, W.; Fu, Y.; Miao, L.; Cai, L. Zinc homeostasis in the metabolic syndrome and diabetes. Front. Med. 2013, 7, 31–52. [Google Scholar] [CrossRef] [PubMed]
- Pallauf, K.; Rivas-Gonzalo, J.C.; del Castillo, M.D.; Cano, M.P.; de Pascual-Teresa, S. Characterization of the antioxidant composition of strawberry tree (Arbutus unedo L.) fruits. J. Food Compos. Anal. 2008, 21, 273–281. [Google Scholar] [CrossRef]
- Siddiqui, K.; Bawazeer, N.; Joy, S.S. Variation in macro and trace elements in progression of type 2 diabetes. Scientific World Journal 2014, 2014, 461–591. [Google Scholar]
- Obeid, O.; Elfakhani, M.; Hlais, S.; Iskandar, M.; Batal, M.; Mouneimne, Y.; Adra, N.; Hwalla, N. Plasma copper, zinc, and selenium levels and correlates with metabolic syndrome components of lebanese adults. Biol. Trace Elem. Res. 2008, 123, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yu, Y.; Huang, T.; An, P.; Yu, D.; Yu, Z.; Li, H.; Sheng, H.; Cai, L.; Xue, J.; Jing, M.; Li, Y.; Lin, X.; Wang, F. Associations between ionomic profile and metabolic abnormalities in human population. PLoS One 2012. [Google Scholar] [CrossRef]
- Korc, M. Manganese action on pancreatic protein synthesis in normal and diabetic rats. Amer. J. Physiol. 1983, 245, 628–634. [Google Scholar]
- Pechova, A.; Pavlata, L. Chromium as an essential nutrient: A review. Vet. Med. 2007, 52, 1–18. [Google Scholar]
- Hopps, E.; Noto, D.; Caimi, G.; Averna, M.R. A novel comoponent of the metabolic syndrome: The oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.J. Selective divalent copper chelation for the treatment of diabetes mellitus. Curr. Med. Chem. 2012, 19, 2828–2860. [Google Scholar] [CrossRef] [PubMed]
- Marseglia, L.; Manti, S.; d’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative stress in obesity: A critical component in human diseases. Int. J. Mol. Sci. 2014, 16, 378–400. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Zimmet, P.; Shaw, J. The metabolic syndrome-a new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Strazzullo, P.; Barbato, A.; Siani, A.; Cappuccio, F.P.; Versiero, M.; Schiattarella, P.; Russo, O.; Avallone, S.; della Valle, E.; Farinaro, E. Diagnostic criteria for metabolic syndrome: A comparative analysis in an unselected sample of adult male population. Metabolism 2008, 57, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Zaman, T.; Tuzcu, E.M.; Kapadia, S.R. Heavy metals and cardiovascular disease: Results from the National Health and Nutrition Examination Survey (NHANES) 1999–2006. Angiology. 2011, 62, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Tyrrell, J.; Galloway, T.S.; Abo-Zaid, G.; Melzer, D.; Depledge, M.H.; Osborne, N.J. High urinary tungsten concentration is associated with stroke in the National Health and Nutrition Examination Survey 1999–2010. PLoS One 2013. [Google Scholar] [CrossRef]
- Report on the state of Szczecin city, 2012. Szczecin. Available online: http://bip.um.szczecin.pl/UMSzczecinFiles/file/Raport_o_stanie_miasta_SZCZECIN_2013_pdf (accessed on 3 April 2015).
- Guerrero-Romero, F.; Rascon-Pacheco, R.A.; Rodriguez-Moran, M.; de la Pena, J.E.; Wacher, N. Hypomagnesaemia and risk for metabolic glucose disorders: A 10-year follow-up study. Eur. J. Clin. Invest. 2008, 38, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Romero, F.; Rodriguez-Moran, M. Serum magnesium in the metabolically-obese normal-weight and healthy-obese subjects. Eur. J. Intern. Med. 2013, 24, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Corica, F.; Corsonello, A.; Ientile, R.; Cacinotta, D.; di Benedetto, A.; Perticone, F.; Dominguez, L.J.; Barbagallo, M. Serum ionized magnesium levels in relation to metabolic syndrome in type 2 diabetic patients. J. Amer. Coll. Nutr. 2006, 25, 210–215. [Google Scholar] [CrossRef]
- Choi, M.K.; Bae, Y.J. Relationship between dietary magnesium, manganese, and copper and metabolic syndrome risk in Korean adults: the Korea National Health and Nutrition Examination Survey (2007–2008). Biol. Trace Elem. Res. 2013, 156, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Nasri, H.; Baradaran, H.R. Lipid in association with serum magnesium in diabetes mellitus patients. Bratisl. Lek. Listy. 2008, 109, 302–306. [Google Scholar] [PubMed]
- Mak, I.T.; Kramer, J.H.; Chen, X.; Chmielinska, J.J.; Spurney, C.F.; Weglicki, W.B. Mg supplementation attenuates ritonavir-induced hyperlipidemia, oxidative stress, and cardiac dysfunction in rats. Amer. J Physiol. 2013, 305, 1102–1111. [Google Scholar]
- Park, S.H.; Kim, S.K.; Bae, Y.J. Relationship between serum calcium and magnesium concentrations and metabolic syndrome diagnostic components in middle-aged Korean men. Biol. Trace Elem. Res. 2012, 146, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.A.; Spence, D.M. A perspective on the role of metals in diabetes: Past findings and possible future directions. Metallomics. 2009, 1, 32–41. [Google Scholar] [CrossRef]
- Pushparani, D.S.; Anandan, S.N.; Theagarayan, P. Serum zinc and magnesium concentrations in type 2 diabetes mellitus with periodontitis. J. Indian Soc. Periodontol. 2014, 18, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.A.; Song, S.W.; Han, K.; Lee, K.J.; Kim, H.N. The associations between serum zinc levels and metabolic syndrome in the Korean population: Findings from the 2010 Korean National Health and Nutrition Examination Survey. PLoS One 2014. [Google Scholar] [CrossRef]
- Ghasemi, A.; Zahediasl, S.; Hosseini-Esfahani, F.; Azizi, F. Gender differences in the relationship between serum zinc concentration and metabolic syndrome. Ann. Hum. Biol. 2014, 41, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Ahn, B.I.; Kim, M.J.; Koo, H.S.; Seo, N.; Joo, N.S.; Kim, Y.S. Serum zinc concentration is inversely associated with insulin resistance but not related with metabolic syndrome in nondiabetic Korean adults. Biol. Trace Elem. Res. 2014, 160, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Ghayour-Mobarhan, M.; Shapouri-Moghaddam, A.; Azimi-Nezhad, M.; Esmaeili, H.; Parizadeh, S.M.; Safarian, M.; Kazemi-Bajestani, S.M.; Khodaei, G.H.; Hosseini, S.J.; Parizadeh, S.M.; Ferns, G.A. The relationship between established coronary risk factors and serum copper and zinc concentrations in a large Persian Cohort. J. Trace Elem. Med. Biol. 2009, 23, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Afridi, H.I.; Kazi, T.G.; Kazi, N.; Talpur, F.N.; Naeemullah Arain, S.S.; Brahman, K.D.; Wadhwa, S.K.; Shah, F. Distribution of copper, iron, and zinc in biological samples of Pakistani hypertensive patients and referent subjects of different age groups. Clin. Lab. 2013, 59, 959–967. [Google Scholar] [PubMed]
- Carpenter, W.E.; Lam, D.; Toney, G.M.; Weintraub, N.L.; Qin, Z. Zinc, copper, and blood pressure: Human population studies. Med. Sci. Monit. 2013, 19, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Onakpoya, I.; Posadzki, P.; Ernst, E. Chromium supplementation in overweight and obesity: A systematic review and meta-analysis of randomized clinical trials. Obes. Rev. 2013, 14, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Wiechula, D.; Loska, K.; Ungier, D.; Fischer, A. Chromium, zinc and magnesium concentrations in the pubic hair of obese and overweight women. Biol. Trace Elem. Res. 2012, 148, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Yerlikaya, F.H.; Toker, A.; Arıbas, A. Serum trace elements in obese women with or without diabetes. Indian J. Med. Res. 2013, 137, 339–345. [Google Scholar] [PubMed]
- Kim, H.N.; Song, S.W. Concentrations of chromium, selenium, and copper in the hair of viscerally obese adults are associated with insulin resistance. Biol. Trace Elem. Res. 2014, 158, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.H.; Yum, K.S. Correlation of hair mineral concentrations with insulin resistance in Korean males. Biol. Trace Elem. Res. 2012, 150, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, J.; de Lorgeril, M.; Akbaraly, T.; Salen, P.; Arnout, J.; Cappuccio, F.P.; van Dongen, M.C.; Donati, M.B.; Krogh, V.; Siani, A.; Iacoviello, L.; European Collaborative Group of the IMMIDIET Project. Gender differences in copper, zinc and selenium status in diabetic-free metabolic syndrome European population—The IMMIDIET study. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Al-Sabaawy, O.M. The relationship between serum lipid profile and selected trace elements for adult men in mosul city. Oman Med. J. 2012, 27, 300–303. [Google Scholar] [CrossRef] [PubMed]
- Forte, G.; Bocca, B.; Peruzzu, A.; Tolu, F.; Asara, Y.; Farace, C.; Oggiano, R.; Madeddu, R. Blood metals concentration in type 1 and type 2 diabetics. Biol. Trace Elem. Res. 2013, 156, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Koh, E.S.; Kim, S.J.; Yoon, H.E.; Chung, J.H.; Chung, S.; Park, C.W.; Chang, Y.S.; Shin, S.J. Association of blood manganese level with diabetes and renal dysfunction: A cross-sectional study of the Korean general population. BMC Endocr. Disord. 2014, 8, 14–24. [Google Scholar]
- Rambouskova, J.; Krskova, A.; Slavikova, M.; Cejchanova, M.; Wranova, K.; Prochazka, B.; Cerna, M. Trace elements in the blood of institutionalized elderly in the Czech Republic. Arch. Gerontol. Geriatr. 2013, 56, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Flores, C.R.; Puga, M.P.; Wrobel, K.; Sevilla, M.E.G.; Wrobel, K. Trace elements status in diabetes mellitus type 2: Possible role of the interaction between molybdenum and copper in the progress of typical complications. Diabetes Res. Clin. Pract. 2011, 91, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Czernichow, S.; Vergnaud, A.C.; Galan, P.; Arnaud, J.; Favier, A.; Faure, H.; Huxley, R.; Hercberg, S.; Ahluwalia, N. Effects of long-term antioxidant supplementation and association of serum antioxidant concentrations with risk of metabolic syndrome in adults. Am. J. Clin. Nutr. 2009, 90, 329–335. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotter, I.; Kosik-Bogacka, D.; Dołęgowska, B.; Safranow, K.; Lubkowska, A.; Laszczyńska, M. Relationship between the Concentrations of Heavy Metals and Bioelements in Aging Men with Metabolic Syndrome. Int. J. Environ. Res. Public Health 2015, 12, 3944-3961. https://doi.org/10.3390/ijerph120403944
Rotter I, Kosik-Bogacka D, Dołęgowska B, Safranow K, Lubkowska A, Laszczyńska M. Relationship between the Concentrations of Heavy Metals and Bioelements in Aging Men with Metabolic Syndrome. International Journal of Environmental Research and Public Health. 2015; 12(4):3944-3961. https://doi.org/10.3390/ijerph120403944
Chicago/Turabian StyleRotter, Iwona, Danuta Kosik-Bogacka, Barbara Dołęgowska, Krzysztof Safranow, Anna Lubkowska, and Maria Laszczyńska. 2015. "Relationship between the Concentrations of Heavy Metals and Bioelements in Aging Men with Metabolic Syndrome" International Journal of Environmental Research and Public Health 12, no. 4: 3944-3961. https://doi.org/10.3390/ijerph120403944
APA StyleRotter, I., Kosik-Bogacka, D., Dołęgowska, B., Safranow, K., Lubkowska, A., & Laszczyńska, M. (2015). Relationship between the Concentrations of Heavy Metals and Bioelements in Aging Men with Metabolic Syndrome. International Journal of Environmental Research and Public Health, 12(4), 3944-3961. https://doi.org/10.3390/ijerph120403944