Dietary Exposure of Nigerians to Mutagens and Estrogen-Like Chemicals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microorganisms
2.3. Cell Line
2.4. Sampling and Sample Preparation
2.5. Cytotoxicity Assays
2.6. Mutagenicity Assay
2.6.1. Standard Plate Incorporation Assay
2.6.2. Treat-and-Wash Assay
2.6.3. Methylcellulose Overlay Assay
2.7. Yeast Bioluminescent Assay
2.8. Statistical Analysis/Interpretation of Data
3. Results
3.1. Plate Incorporation Assay: Control Substances
Controls | Number of Revertant Colonies | |||
---|---|---|---|---|
Respective Controls * | Aggregate Controls ** | |||
+S9 | −S9 | +S9 | −S9 | |
Salmonella TA 100 | ||||
Water | 134.3–177.7 | 112.7–134.3 | 161.8 ± 22.4 | 125.2 ± 11.0 |
DMSO | 138.7–166.3 | 111.0–128.3 | 155.3 ± 17.9 | 120.2 ± 11.3 |
Sodium azide | 568.7–651.0 | 432.7–516.3 | 621.6 ± 78.8 | 470.1 ± 42.7 |
Benzo[a]pyrene | 438.0–517.3 | 248.0–270.0 | 471.6 ± 48.5 | 260.7 ± 75.7 |
Salmonella TA 98 | ||||
Water | 32.3–42.7 | 19.0–34.0 | 37.4 ± 3.1 | 25.0 ± 4.8 |
DMSO | 35.7–36.7 | 19.0–24.0 | 36.2 ± 2.8 | 21.5 ± 3.6 |
2-Aminoanthracene | 624.3–837.7 | 55.0–69.3 | 754.2 ± 68.2 | 61.4 ± 11.2 |
Benzo[a]pyrene | 102.0–122.0 | 20.3–29.7 | 116.8 ± 10.4 | 24.0 ± 5.1 |
3.2. Plate Incorporation Assay: Test Substances/Food Samples
Food Products | Revertants per Gram | |||||
---|---|---|---|---|---|---|
Batch 1 | Batch 2 | Batch 3 | ||||
+S9 | −S9 | +S9 | −S9 | +S9 | −S9 | |
Doughnut | 319.0 ± 12.1 †,ф | 254.0 ± 14.0 †,ф | 201.3 ± 07.1 | 198.7 ± 10.0 | 209.7 ± 14.0 | 186.0 ± 13.1 |
Chin-chin | 285.7 ± 15.5 † | 191.3 ± 10.3 | 460.3 ± 28.3 †,ф | 330.7 ± 75.8 †,ф | 469.3 ± 71.9 †,ф | 257.7 ± 26.1 †,ф |
Hamburger | 353.3 ± 43.5 †,ф | 248.3 ± 79.2 †,ф | 469.3 ± 44.4 †,ф | 350.0 ± 45.8 †,ф | 212.3 ± 38.0 | 302.7 ± 72.9 †,ф |
Coconut-candy | 265.7 ± 12.4 | 198.0 ± 06.9 | 245.7 ± 18.9 | 203.0 ± 09.7 | 180.0 ± 28.9 | 137.7 ± 05.8 |
French fries | 255.0 ± 47.8 | 304.3 ± 33.8 †,ф | 208.0 ± 26.9 | 157.7 ± 12.3 | 189.3 ± 19.6 | 308.3 ± 43.0 †,ф |
Potato chips | 159.0 ± 10.8 | 159.3 ± 04.6 | 210.7 ± 15.1 | 193.3 ± 07.0 | 188.7 ± 06.5 | 256.7 ± 11.4 †,ф |
Plantain chips | 124.7 ± 11.8 | 109.3 ± 01.5 | 159.3 ± 27.3 | 192.7 ± 11.1 | 185.7 ± 11.1 | 154.7 ± 06.5 |
Peanut | 293.3 ± 30.6 † | 242.7 ± 04.6 †,ф | 339.0 ± 62.6 †,ф | 272.7 ± 61.6 †,ф | 215.0 ± 26.2 | 175.3 ± 28.4 |
Roasted maize | 252.3 ± 23.0 | 187.3 ± 04.7 | 176.7 ± 29.9 | 154.0 ± 07.0 | 215.7 ± 20.0 | 202.7 ± 18.5 |
Suya | 383.0 ± 20.7 †,ф | 240.7 ± 10.0 †,ф | 401.7 ± 12.1 †,ф | 296.0 ± 06.0 †,ф | 308.7 ± 14.6 | 263.3 ± 05.8 †,ф |
Fried chicken | 138.7 ± 06.0 | 133.0 ± 08.5 | 394.7 ± 14.7 †,ф | 204.3 ± 06.0 | 381.0 ± 35.5 †,ф | 156.0 ± 23.5 |
Bean cake | 312.0 ± 25.4 †,ф | 241.7 ± 36.8 †,ф | 365.0 ± 22.6 †,ф | 159.0 ± 25.9 | 294.7 ± 12.3 | 278.7 ± 09.1 †,ф |
Food Products | Revertants per Gram | |||||
---|---|---|---|---|---|---|
Batch 1 | Batch 2 | Batch 3 | ||||
+S9 | −S9 | +S9 | −S9 | +S9 | −S9 | |
Doughnut | 40.3 ± 8.4 | 22.0 ± 8.2 | 30.7 ± 11.6 | 19.0 ± 4.6 | 28.0 ± 3.0 | 19.0 ± 6.1 |
Chin-chin | 34.0 ± 1.7 | 23.3 ± 2.1 | 31.0 ± 7.9 | 20.0 ± 5.3 | 37.7 ± 6.5 | 27.3 ± 4.2 |
Hamburger | 46.0 ± 14.0 | 26.3 ± 3.1 | 31.7 ± 4.5 | 20.7 ± 3.5 | 43.0 ± 7.0 | 20.7 ± 2.1 |
Coconut-candy | 38.7 ± 4.9 | 24.3 ± 1.6 | 40.7 ± 6.1 | 25.3 ± 5.1 | 34.7 ± 9.3 | 21.3 ± 1.5 |
French fries | 32.3 ± 1.5 | 36.0 ± 6.6 | 30.3 ± 3.5 | 17.0 ± 2.0 | 31.3 ± 4.0 | 18.7 ± 6.4 |
Potato chips | 36.3 ± 5.9 | 26.7 ± 3.8 | 33.0 ± 4.6 | 26.3 ± 4.0 | 31.7 ± 2.1 | 72.7 ± 18.0 †,ф |
Plantain chips | 29.0 ± 5.6 | 29.0 ± 2.6 | 32.3 ± 2.9 | 18.7 ± 5.5 | 38.3 ± 6.1 | 21.0 ± 4.6 |
Peanut | 69.7 ± 5.6 | 34.7 ± 4.0 | 78.0 ± 12.5 †,ф | 37.0 ± 14.9 | 35.0 ± 2.0 | 27.3 ± 5.0 |
Roasted maize | 24.3 ± 2.1 | 20.0 ± 2.0 | 31.7 ± 4.9 | 28.0 ± 5.3 | 27.3 ± 5.0 | 23.7 ± 7.4 |
Suya | 86.7 ± 5.8 †,ф | 27.7 ± 2.5 | 83.0 ± 3.5 †,ф | 19.0 ± 4.6 | 97.3 ± 7.6 †,ф | 20.7 ± 3.5 |
Fried chicken | 32.0 ± 5.0 | 28.3 ± 5.1 | 24.0 ± 4.0 | 19.7 ± 3.8 | 28.3 ± 3.2 | 20.7 ± 2.5 |
Bean cake | 32.0 ± 5.3 | 11.0 ± 1.7 | 28.7 ± 8.5 | 22.3 ± 5.8 | 32.3 ± 3.1 | 21.0 ± 2.0 |
3.3. Modified Ames Tests
3.4. Cytotoxicity Assays
3.5. Estrogenic Activity Assay: Control Substances
Food Product | Batch | Revertants per Gram | |||
---|---|---|---|---|---|
Treat-and-Wash Assay | Methylcellulose Overlay Assay | ||||
+S9 | −S9 | +S9 | −S9 | ||
Doughnut | 1 | 115.0 ± 4.2 | 84.3 ± 8.7 | 215.0 ± 34.6 | 191.3 ± 10.6 |
Chin-chin | 1 | 192.7 ± 17.5 | 58.7 ± 7.8 | 128.3 ± 9.8 | 95.0 ± 11.4 |
Hamburger | 1 | 633.0 ± 23.3 * | 124.7 ± 10.6 | 330.0 ± 10.4 * | 166.7 ± 28.3 |
French fries | 1 | 121.3 ± 11.7 | 103.0 ± 1.4 | 84.3 ± 22.6 | 86.0 ± 4.9 |
Peanut | 1 | 108.0 ± 7.1 | 123.5 ± 13.4 | 182.3 ± 26.2 | 93.0 ± 15.6 |
Suya | 1 | 366.0 ± 22.6 * | 113.0 ± 1.4 | 382.0 ± 17.2 * | 271.7 ± 9.4 * |
Bean cake | 1 | 736.3 ± 85.1 * | 156.0 ± 13.9 * | 401.0 ± 28.4 * | 238.2 ± 12.1 |
Chin-chin | 2 | 618.7 ± 58.7 * | 32.3 ± 12.5 | 126.0 ± 8.5 | 125.7 ± 10.6 |
Hamburger | 2 | 397.7 ± 21.2 * | 408.0 ± 32.5 * | 304.7 ± 19.4 * | 263.3 ± 9.3 * |
Peanut | 2 | 141.3 ± 23.3 | 42.0 ± 11.3 | 344.3 ± 31.8 * | 201.3 ± 2.1 |
Suya | 2 | 181.0 ± 16.9 | 240.0 ± 42.4 * | 165.0 ± 10.6 | 76.0 ± 5.0 |
Fried chicken | 2 | 174.3 ± 12.4 | 150.3 ± 12.8 * | 192.3 ± 13.9 | 138.3 ± 12.4 |
Bean cake | 2 | 470.0 ± 16.3 * | 260.7 ± 33.2 * | 324.7 ± 28.6 * | 271.3 ± 19.4 * |
Chin-chin | 3 | 126.3 ± 12.0 | 131.7 ± 10.6 | 183.3 ± 9.9 | 164.0 ± 16.3 |
Hamburger | 3 | 135.0 ± 18.4 | 126.3 ± 9.2 | 166.7 ± 0.7 | 162.0 ± 22.6 |
French fries | 3 | 139.7 ± 6.8 | 97.0 ± 8.5 | 110.0 ± 3.5 | 95.3 ± 2.1 |
Potato chips | 3 | 194.7 ± 11.6 | 108.3 ± 9.4 | 90.7 ± 10.0 | 106.0 ± 18.2 |
Suya | 3 | 179.0 ± 9.9 | 209.0 ± 19.7 * | 194.3 ± 7.8 | 271.0 ± 14.4 * |
Bean cake | 3 | 371.3 ± 12.1 * | 228.0 ± 23.3 * | 267.7 ± 14.3 | 290.0 ± 21.9 * |
Fried chicken | 3 | 117.7 ± 12.3 | 108.3 ± 11.4 | 158.0 ± 12.8 | 124.3 ± 11.4 |
Food Product | Batch | Revertants per Gram | |||
---|---|---|---|---|---|
Treat-and-Wash Assay | Methylcellulose Overlay Assay | ||||
+S9 | −S9 | +S9 | −S9 | ||
Suya | 1 | 78.0 ± 8.5 * | 17.0 ± 1.4 | 48.0 ± 4.8 | 24.3 ± 2.7 |
Peanut | 2 | 30.0 ± 8.5 | 158.0 ± 51.0 * | 31.3 ± 5.0 | 84.3 ± 9.6 * |
Suya | 2 | 33.3 ± 5.0 | 154.0 ± 0.0 * | 29.3 ± 1.9 | 78.7 ± 6.6 * |
Potato chips | 3 | 48.3 ± 7.2 | 21.7 ± 4.1 | 33.0 ± 2.4 | 19.3 ± 2.1 |
Suya | 3 | 42.0 ± 9.9 | 18.0 ± 3.1 | 39.7 ± 5.2 | 26.7 ± 3.8 |
3.6. Estrogenic Activity of Pure Water Sachets
Sample Code | Water Samples | Sachet/Packaging Material | ||
---|---|---|---|---|
EEQs (ng/L) | BPAEQs (ng/L) | EEQs (pg/L) | BPAEQ (pg/L) | |
W1 | 0.79 | 124.2 | 14.5 | 224.0 |
W2 | 44.0 | 1000.8 | <LOD | <LOD |
W3 | 28.0 | 597.8 | 10.2 | 186.1 |
W4 | 23.0 | 442.8 | <LOD | <LOD |
W5 | 15.0 | 269.7 | <LOD | <LOD |
Median | 23.0 | 443.0 | 12.4 | 205.0 |
Average | 7.0 | 152.0 | 2.0 | 26.0 |
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Omoruyi, I.M.; Kabiersch, G.; Pohjanvirta, R. Commercial processed food may have endocrine disrupting potential: Soy-based ingredients making the difference. Food Addit. Contam. 2013, 30, 1722–1727. [Google Scholar] [CrossRef]
- Omoruyi, I.M.; Pohjanvirta, R. Genotoxicity of processed food items and ready-to-eat snacks in Finland. Food Chem. 2014, 162, 206–214. [Google Scholar] [CrossRef]
- Peters, U.; Sinha, R.; Bell, D.A.; Rothman, N.; Grant, D.J.; Watson, M.A.; Kulldorff, M.; Brooks, L.R.; Warren, S.H.; DeMarini, D.M. Urinary mutagenesis and fried red meat intake: Influence of cooking temperature, phenotype, and genotype of metabolizing enzymes in a controlled feeding study. Environ. Mol. Mutagen. 2004, 43, 53–74. [Google Scholar] [CrossRef]
- Tikkanen, L.M. Sources of mutagenicity in cooked Finnish foods. Food Chem. Toxicol. 1991, 29, 87–92. [Google Scholar] [CrossRef]
- Plotan, M.; Frizzell, C.; Robinson, V.; Elliott, C.T.; Connolly, L. Endocrine disruptor activity in bottled mineral and flavoured water. Food Chem. 2013, 136, 1590–1596. [Google Scholar] [CrossRef]
- Wagner, M.; Oehlmann, J. Endocrine disruptors in bottled mineral water: Total estrogenic burden and migration from plastic bottles. Environ. Sci. Pollut. Res. 2009, 16, 278–286. [Google Scholar] [CrossRef]
- Wagner, M.; Oehlmann, J. Endocrine disruptors in bottled mineral water: Estrogenic activity in the E-Screen. J. Steroid Biochem. Mol. Biol. 2011, 127, 128–135. [Google Scholar] [CrossRef]
- Knize, M.G.; Dolbeare, F.A.; Carroll, K.L.; Moore, D.H.; Felton, J.S. Effects of cooking time and temperature on the heterocyclic amine content of fried beef patties. Food Chem. Toxicol. 1994, 32, 595–603. [Google Scholar] [CrossRef]
- Ferguson, L.R. Meat consumption, cancer risk and population groups within New Zealand. Mutat. Res. 2002, 506, 215–224. [Google Scholar] [CrossRef]
- Cross, A.J.; Sinha, R. Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ. Mol. Mutagen. 2004, 44, 44–55. [Google Scholar] [CrossRef]
- Willet, W. Nutritional Epidemiology, 2nd ed.; Oxford University Press: Oxford, NY, USA, 1998; Chapter 4. [Google Scholar]
- Chung, S.Y.; Yettella, R.R.; Kim, J.S.; Kwon, K.; Kim, M.C.; Min, D.B. Effects of grilling and roasting on the levels of polycyclic aromatic hydrocarbons in beef and pork. Food Chem. 2011, 129, 1420–1426. [Google Scholar] [CrossRef]
- Essumang, D.K.; Dodoo, D.K.; Adjei, J.K. Polycyclic aromatic hydrocarbon (PAH) contamination in smoked-cured fish products. J. Food Compos. Anal. 2012, 27, 128–138. [Google Scholar] [CrossRef]
- Wretling, S.; Eriksson, A.; Eskhult, G.A.; Larsson, B. Polycyclic aromatic hydrocarbons (PAHs) in Swedish smoked meat and fish. J. Food Compos. Anal. 2010, 23, 264–272. [Google Scholar] [CrossRef]
- Sinha, R.; Rothman, N. Role of well-done, grilled red meat, heterocyclic amines (HCAs) in the etiology of human cancer. Cancer Lett. 1999, 143, 189–194. [Google Scholar] [CrossRef]
- Farhadian, A.; Jinap, S.; Hanifah, H.N.; Zaidul, I.S. Effects of meat preheating and wrapping on the levels of polycyclic aromatic hydrocarbons in charcoal-grilled meat. Food Chem. 2011, 124, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Chukuezi, C.O. Food safety and hygienic practices of street food vendors in Owerri, Nigeria. Studies Sociol. Sci. 2010, 1, 50–57. [Google Scholar]
- Muinde, O.K.; Kuria, E. Hygienic and sanitary practices of vendors of street foods in Nairobi, Kenya. Afr. J. Food Agric. Nutr. Dev. 2005, 5, 46–52. [Google Scholar]
- Mensah, P.; Yeboah-Manu, D.; Owusu-Darko, K.; Ablordey, B. Street foods in Accra, Ghana: How safe are they? Bull. WHO. 2002, 80, p. 7. Available online: http://www.who.int/bulletin/archives/80%287%29546.pdf (accessed on 8 August 2014).
- Carmichael, S.L.; Gonzalez-Felicano, A.G.; Chem, M.A.; Shaw, G.M.; Cogswell, M.E. Estimated dietary phytoestrogen intake and major food sources among women during the year before pregnancy. Nutr. J. 2011, 10, 1–9. [Google Scholar] [CrossRef]
- Thompson, L.U.; Boucher, B.A.; Liu, Z.; Cotterchio, M.; Kreiger, N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans and coumestan. Nutr. Cancer 2006, 54, 184–201. [Google Scholar] [CrossRef]
- Behr, M.; Oehlmann, J.; Wagner, M. Estrogens in the daily diet: In vitro analysis indicates that estrogenic activity is omnipresent in foodstuff and infant formula. Food Chem. Toxicol. 2011, 49, 2681–2688. [Google Scholar] [CrossRef]
- Bourguignon, J.P.; Parent, A.S. Early homeostatic disturbances of human growth and maturation by endocrine disrupters. Curr. Opin. Pediatr. 2010, 324, 110–120. [Google Scholar]
- Zama, A.M.; Uzumcu, M. Epigenetic effects of endocrine disrupting chemicals on female reproduction: An ovarian perspective. Front. Neuroendocrinol. 2010, 31, 420–439. [Google Scholar] [CrossRef]
- Fisher, J.S. Environmental anti-androgens and male reproductive health: Focus on phthalates and testicular dysgenesis syndrome. Reproduction 2004, 127, 305–315. [Google Scholar] [CrossRef]
- Li, X.; Ying, G.; Su, H.; Yang, X.; Wang, Y. Simultaneous determination and assessment of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles. Environ. Int. 2010, 36, 557–562. [Google Scholar] [CrossRef]
- Vandenberg, L.N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W.V. Human exposure to bisphenol A (BPA). Reprod. Toxicol. 2007, 24, 139–177. [Google Scholar] [CrossRef]
- Le, H.H.; Carlson, E.M.; Chua, J.P.; Belcher, S.M. Bisphenol A is released from polycarbonate drinking water bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol. Lett. 2008, 176, 149–156. [Google Scholar] [CrossRef]
- Ter Veld, M.G.R.; Schouten, B.; Louisse, J.; van Es, D.S.; van der Saag, P.T.; Rietjens, I.M.C.M.; Murk, A.J. Estrogenic potency of food-packaging-associated plasticizers and antioxidants as detected in ERalpha and ERbeta reporter gene cell lines. J. Agric. Food Chem. 2006, 54, 4407–4416. [Google Scholar] [CrossRef]
- Muncke, J. Exposure to endocrine disrupting compounds via the food chain: Is packaging a relevant source? Sci. Total Environ. 2009, 407, 4549–4559. [Google Scholar] [CrossRef]
- Muncke, J. Endocrine disrupting chemicals and other substances of concern in food contact materials: An updated review of exposure, effects and risk assessment. J. Steroid Biochem. Mol. Biol. 2011, 127, 118–127. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, F.E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocrinol. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef]
- Leskinen, P.; Michelini, E.; Picard, D.; Karp, M.; Virta, M. Bioluminescent yeast assays for detecting estrogenic and androgenic activity in different matrices. Chemosphere 2005, 61, 259–266. [Google Scholar] [CrossRef]
- Barber, L.B.; Brown, G.K.; Zaugg, S.D. Potential endocrine disrupting organic chemicals in treated municipal wastewater and river water. In Analysis of Environmental Endocrine Disruptors; American Chemical Society Symposium Series 747; Keith, L.H., Jones-Lepp, T.L., Needham, L.L., Eds.; American Chemical Society: Washington, DC, USA, 2000; Chapter 7; pp. 97–123. [Google Scholar]
- Maron, D.M.; Ames, B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 1983, 113, 173–215. [Google Scholar] [CrossRef]
- Mortelmans, K.; Zeiger, E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. 2000, 455, 29–60. [Google Scholar] [CrossRef]
- Carrière, V.; de Waziers, I.; Courtois, Y.A.; Leroux, J.P.; Beaune, P.H. Cytochrome P450 induction and mutagenicity of 2-aminoanthracene (2AA) in rat liver and gut. Mutat. Res. 1992, 268, 11–20. [Google Scholar] [CrossRef]
- Gabbani, G.; Nardini, B.; Bordin, A.; Pavanello, S.; Janni, L.; Celotti, L.; Clonfero, E. Urinary mutagenicity on TA98 and YG1024 Salmonella Typhimurium strains after a hamburger meal: Influence of GSTM1 and NAT2 genotypes. Mutagenesis 1998, 13, 187–191. [Google Scholar] [CrossRef]
- Thompson, C.; Morley, P.; Kirkland, D.; Proudlock, R. Modified bacterial mutation test procedures for evaluation of peptides and amino acid-containing material. Mutagenesis 2005, 20, 345–350. [Google Scholar] [CrossRef]
- Rajasärkkä, J.; Virta, M. Miniaturization of a panel of high throughput yeast-cell-based nuclear receptor assays in 384- and 1536- well microplates. Combin. Chem. High Throughput Screen. 2011, 14, 1–8. [Google Scholar] [CrossRef]
- Omemu, A.M..; Aderoju, S.T. Food safety knowledge and practices of street food vendors in the city of Abeokuta, Nigeria. Food Control 2008, 19, 396–402. [Google Scholar] [CrossRef]
- Deep-fying in olive oil: Comparison with other oils. In Olives and Olive Oil in Health and Disease Prevention; Elsevier Inc.: San Diego, CA, USA, 2010; pp. 989–996.
- Isidori, M.; Parrella, A. Genotoxicity of aqueous extract from heated cooking oils and its suppression by Lactobacilli. Food Sci. Technol. Int. 2009, 15, 267–273. [Google Scholar] [CrossRef]
- Srivastava, S.; Singh, M.; George, J; Bhui, K.; Saxena, A.M.; Shukla, Y. Genotoxic and carcinogenic risks associated with the dietary consumption of repeatedly heated coconut oil. Brit. J. Nutr. 2010, 104, 1343–1352. [Google Scholar] [CrossRef]
- Alomirah, H.; Al-Zenki, S.; Husain, A.; Sawaya, W.; Ahmed, N.; Gevao, B.; Kannan, K. Benzo[a]pyrene and total polycyclic aromatic hydrocarbons (PAHs) levels in vegetable oils and fats do not reflect the occurrence of the eight genotoxic PAHs. Food Addit. Contam. 2010, 27, 869–878. [Google Scholar] [CrossRef]
- Iwasaki, M.; Kataoka, H.; Ishihara, J.; Takachi, R.; Hamada, G.S.; Sharma, S.; le Marchand, L.; Tsugane, S. Heterocyclic amines content of meat and fish cooked by Brazilian methods. J. Food Compos. Anal. 2010, 23, 61–69. [Google Scholar] [CrossRef]
- Liao, G.Z.; Wang, G.Y.; Zhang, Y.J.; Xu, X.L.; Zhou, G.H. Formation of heterocyclic amines during cooking of duck meat. Food Addit. Contam. Part A. 2012, 29, 1668–1678. [Google Scholar] [CrossRef]
- Laio, G.Z.; Wang, G.Y.; Zhang, Y.J.; Xu, X.L.; Zhou, G.H. Effect of cooking methods on the formation of heterocyclic aromatic amines in chicken and duck breast. Meat Sci. 2010, 85, 149–154. [Google Scholar] [CrossRef]
- Jägerstad, M.; Skog, K.; Arvidsson, O.; Solyakov, A. Chemistry, formation and occurrence of genotoxic heterocyclic amines identified in model systems and cooked foods. Z. Lebensm. Unters. Forsch. 1998, 207, 419–427. [Google Scholar] [CrossRef]
- Anderson, K.E.; Sinha, R.; Kulldorff, M.; Gross, M.; Lang, N.P.; Barber, C.; Harnack, L.; DiMagno, E.; Bliss, R.; Kadlubar, F.F. Meat intake and cooking techniques: Associations with pancreatic cancer. Mutat. Res. 2002, 506, 225–231. [Google Scholar]
- John, E.M.; Stern, M.C.; Sinha, R.; Koo, J. Meat consumption, cooking practices, meat mutagens, and risk of prostate cancer. Nutr. Cancer 2011, 63, 525–537. [Google Scholar] [CrossRef]
- Kobayashi, M.; Otani, T.; Iwasaki, M.; Natsukawa, S.; Shaura, K.; Koizumi, Y; Kasuga, Y; Sakamoto, H.; Yoshida, T.; Tsugane, S. Association between dietary heterocyclic amine levels, genetic polymorphisms of NAT2, CYP1A1, and CYP1A2 and risk of stomach cancer: A hospital-based case control study in Japan. Gastric Cancer 2009, 12, 198–205. [Google Scholar] [CrossRef]
- Matos, E.; Brandani, A. Review on meat consumption and cancer in South America. Mutat. Res. 2002, 506, 243–249. [Google Scholar] [CrossRef]
- Navarro, A.; Munoz, S.E.; Lantieri, M.J.; Diaz, M.D.P.; Cristaldo, P.E.; Fabro, S.P.; Eynard, A.R. Meat cooking habit and risk of colorectal cancer in Cordoba, Argentina. Appl. Nutr. Investig. 2004, 20, 873–877. [Google Scholar]
- Marchand, L.L.; Hankin, J.H.; Pierce, L.M.; Sinha, R.; Nerurkar, P.V.; Franke, A.A.; Wilkens, L.R.; Kolonel, L.N.; Donlon, T.; Seifried, A.; et al. Well-done red meat, metabolic phenotypes and colorectal cancer in Hawaii. Mutat. Res. 2002, 506, 205–214. [Google Scholar]
- Voskuil, D.W.; Kampman, E.; Grubben, M.J.A.L.; Kok, F.J.; Nagengast, F.M.; Vasen, H.F.A.; Veer, P. Meat consumption and meat preparation in relation to colorectal adenomas among sporadic and HNPCC family patients in the Netherlands. Eur. J. Cancer 2002, 38, 2300–2308. [Google Scholar] [CrossRef]
- Djinovic, J.; Popovic, A.; Jira, W. Polycyclic aromatic hydrocarbons (PAHs) in different types of smoked meat products from Serbia. Meat Sci. 2008, 80, 449–456. [Google Scholar] [CrossRef]
- Stumpe-Viksna, I.; Bartkevis, V.; Kukare, A.; Morozovs, A. Polycyclic aromatic hydrocarbons in meat smoked with different types of wood. Food Chem. 2008, 110, 794–797. [Google Scholar] [CrossRef]
- Jedy-Agba, E.; Curado, M.P.; Ogunbiyi, O.; Oga, E.; Fabowale, T.; Igbinoba, F.; Osubor, G.; Out, T.; Kumai, H.; Koechlin, A.; et al. Cancer incidence in Nigeria: A report from population-based cancer registries. Cancer Epidemiol. 2012, 36, 271–278. [Google Scholar] [CrossRef]
- Grover, P.L.; Martin, F.L. The initiation of breast and prostate cancer. Carcinogenesis 2002, 1095–1102. [Google Scholar] [CrossRef]
- Stavric, B.; Matula, T.I.; Klassen, R.; Downie, R.H. Evaluation of hamburgers and hot dogs for the presence of mutagens. Food Chem. Toxicol. 1995, 33, 815–820. [Google Scholar] [CrossRef]
- Alli, L.A.; Nwegbu, M.M.; Inyang, B.; Nwachukwu, K.C.; Ogedengbe, J.O.; Onaadepo, O.; Jamda, M.A.; Akintan, G.A.; Ibrahim, S.O.; Onifade, E.A. Determination of potassium bromate in selected bread samples in Gwagwalada, Abuja-Nigeria. Int. J. Health Nutr. 2013, 4, 15–20. [Google Scholar]
- Ojeka, E.O.; Obidiaku, M.L.; Enukorah, C. Spectrophotometric determination of bromate in bread by oxidation of dyes. J. Appl. Sci. Environ. Manage. 2006, 10, 43–46. [Google Scholar]
- Emeje, M.O.; Ofoefule, S.I.; Nnaji, A.C.; Ofoefule, A.U.; Brown, S.A. Assessment of bread safety in Nigeria: Quantitative determination of potassium bromate and lead. Afr. J. Food Sci. 2009, 4, 394–397. [Google Scholar]
- Nigerian Punch. , “Only 47% of Rural Dwellers Have Good Water-UNICEF”. Available online: http://www.punchng.com/news/only-47-of-rural-dwellers-have-good-water-unicef/ (accessed on 7 February 2014).
- Nigerian Punch. “Cholera Kills Eight in Benue”. Available online: http://www.punchng.com/news/cholera-kills-8-in-benue/ (accessed on7 February 2014).
- Nigerian Punch. “Cholera Outbreak in Kano under Control-Official”. Available online: http://www.punchng.com/news/cholera-outbreak-in-kano-under-control-official/ (accessed on 7 February 2014).
- Pinto, B.; Reali, D. Screening of estrogen-like activity of mineral water stored in PET bottles. Int. J. Hyg. Environ. Health 2009, 212, 228–232. [Google Scholar] [CrossRef]
- Roig, B.; Mnif, W.; Hassine, A.I.H.; Zidi, I.; Bayle, S.; Bartegi, A.; Thomas, O. Endocrine disrupting chemicals and human health risk assessment: A critical review. Crit. Rev. Environ. Sci. Technol. 2013, 43, 2297–2351. [Google Scholar] [CrossRef]
- Liu, K.; Lehmann, K.P.; Sar, M.; Young, S.S.; Gaido, K.W. Gene expression profiling following in utero exposure to phthalate esters reveals new gene targets in the etiology of testicular dysgenesis. Biol. Reprod. 2005, 73, 180–192. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Suzuki, T.; Tayama, S. Metabolism and toxicity of benzophenone in isolated rat hepatocytes and estrogenic activity of its metabolites in MCF-7 cells. Toxicology 2000, 156, 27–36. [Google Scholar] [CrossRef]
- Dabrowska, A.; Borcz, A.; Nawrocki, J. Aldehyde contamination of mineral water stored in PET bottles. Food Addit. Contam. 2003, 20, 1170–1177. [Google Scholar] [CrossRef]
- Westerhoff, P.; Prapaipong, P.; Shock, E.; Hillahireau, A. Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water. Water Res. 2008, 42, 552–556. [Google Scholar]
- Hartmann, S.; Lacorn, M.; Steinhart, H. Natural occurrence of steroid hormones in food. Food Chem. 1998, 62, 7–20. [Google Scholar] [CrossRef]
- Howard, G.; Bartram, J. Domestic Water Quantity, Service Level and Health; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Omoruyi, I.M.; Ahamioje, D.; Pohjanvirta, R. Dietary Exposure of Nigerians to Mutagens and Estrogen-Like Chemicals. Int. J. Environ. Res. Public Health 2014, 11, 8347-8367. https://doi.org/10.3390/ijerph110808347
Omoruyi IM, Ahamioje D, Pohjanvirta R. Dietary Exposure of Nigerians to Mutagens and Estrogen-Like Chemicals. International Journal of Environmental Research and Public Health. 2014; 11(8):8347-8367. https://doi.org/10.3390/ijerph110808347
Chicago/Turabian StyleOmoruyi, Iyekhoetin Matthew, Derek Ahamioje, and Raimo Pohjanvirta. 2014. "Dietary Exposure of Nigerians to Mutagens and Estrogen-Like Chemicals" International Journal of Environmental Research and Public Health 11, no. 8: 8347-8367. https://doi.org/10.3390/ijerph110808347
APA StyleOmoruyi, I. M., Ahamioje, D., & Pohjanvirta, R. (2014). Dietary Exposure of Nigerians to Mutagens and Estrogen-Like Chemicals. International Journal of Environmental Research and Public Health, 11(8), 8347-8367. https://doi.org/10.3390/ijerph110808347