Associations of Lipoprotein Lipase Gene rs326 with Changes of Lipid Profiles after a High-Carbohydrate and Low-Fat Diet in Healthy Chinese Han Youth
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Ethics Statement
2.2. Subjects
2.3. Study Design
2.4. Diets
Ingredients | Washout diet | HC/LF diet |
---|---|---|
Protein (% of total energy intake) | 15.8 ± 1.8 | 16.2 ± 1.6 |
Total fatty acids (% of total energy intake) | 30.1 ± 3.6 | 13.8 ± 1.4 |
Saturated fatty acids | 7.5 ± 0.9 | 3.6 ± 0.5 |
Monounsaturated fatty acids | 16.1 ± 1.4 | 7.3 ± 0.8 |
Polyunsaturated fatty acids | 6.4 ± 1.5 | 2.8 ± 0.3 |
Carbohydrate (% of total energy intake) | 54.1 ± 2.4 | 70.1 ± 2.8 |
Polysaccharide | 54.1 ± 2.4 | 65.7 ± 1.3 |
Monosaccharide and disaccharide | 0 | 4.4 ± 1.3 |
Cholesterol (mg/d) | 422.0 ± 79.1 | 179.0 ± 41.1 |
Fiber (g/d) | 11.6 ± 2.3 | 15.4 ± 3.6 |
Fatty acid composition (% of total fatty acids by energy intake) | ||
Palmitic fatty acids (16:0) | 15.9 ± 4.4 | 18.9 ± 5.8 |
Palmitoleic fatty acids (16:1) | 2.1 ± 0.7 | 2.0 ± 0.4 |
Stearic fatty acids (18:0) | 6.9 ± 1.3 | 7.4 ± 0.9 |
Oleic fatty acids (18:1) | 30.7 ± 6.5 | 32.1 ± 3.7 |
Linoleic fatty acids (18:2) | 13.2 ± 3.3 | 17.0 ± 5.1 |
2.5. Blood Collection and Laboratory Analysis
2.6. DNA Extraction and Genotyping
2.7. Statistical Analysis
3. Results and Discussion
3.1. Results
3.1.1. Distribution of the Genotypes and Alleles of LPL rs326
Parameter | Total | Hardy-Weinberg p | Males | Females | p * |
---|---|---|---|---|---|
Genotype frequency n (%) | |||||
AA | 34 (60.7) | 16 (59.3) | 18 (62.1) | ||
AG | 16 (28.6) | 0.075 | 6 (22.2) | 10 (34.5) | 0.171 |
GG | 6 (10.7) | 5 (18.5) | 1 (3.4) | ||
Allele frequency (%) | |||||
A | 75.0 | 70.4 | 79.3 | 0.275 | |
G | 25.0 | 29.6 | 20.7 |
3.1.2. Baseline Anthropometric and Biochemical Characteristics
Variables | AA genotype (n = 34) | G allele carriers (n = 22) |
---|---|---|
Age (years) | 23.29 ± 1.978 | 22.27 ± 1.279 |
Females (n (%)) | 18 (52.94) | 11 (50.00) |
BMI (kg/m2) | 20.95 ± 2.81 | 21.17 ± 4.39 |
WHR (Waist-to-hip ratio) | 0.85 ± 0.06 | 0.87 ± 0.06 |
Heart rate (bpm) | 71.76 ± 8.71 | 75.45 ± 11.23 |
Glucose (mg/dL) | 73.15 ± 9.02 | 70.49 ± 10.34 |
SBP (mmHg) | 110.15 ± 13.00 | 111.36 ± 11.57 |
DBP (mmHg) | 70.15 ± 9.25 | 74.32 ± 12.28 |
TC (mg/dL) | 151.73 ± 23.98 | 150.56 ± 31.10 |
HDL-C (mg/dL) | 65.58 ± 12.10 | 63.59 ± 15.87 |
LDL-C (mg/dL) | 69.76 ± 30.93 | 70.80 ± 45.13 |
TG (mg/dL) | 71.64 ± 33.52 | 83.84 ± 55.19 |
Apo A-I (mg/dL) | 207.78 ± 20.42 | 199.86 ± 27.13 |
Apo B-100 (mg/dL) | 67.28 ± 21.58 | 68.52 ± 18.77 |
3.1.3. Effects of the HC/LF Diet on Lipid Profiles of the Subjects with Different Genotypes of LPL rs326
3.2. Discussion
Variables | Males | Females | ||
---|---|---|---|---|
AA genotype (n = 16) | G allele carriers (n = 11) | AA genotype (n = 18) | G allele carriers (n = 11) | |
Age (years) | 23.50 ± 2.03 | 22.18 ± 1.60 | 23.11 ± 1.97 | 22.36 ± 0.92 |
BMI (kg/m2) | ||||
Baseline | 21.44 ± 3.02 | 22.48 ± 5.47 | 20.53 ± 2.62 | 19.85 ± 2.59 |
Before HC/LF diet | 21.29 ± 3.00 | 22.35 ± 5.47 | 20.33 ± 2.62 | 19.82 ± 2.51 |
After HC/LF diet | 21.17 ± 2.95 ** | 22.23 ± 5.48 | 20.23 ± 2.67 | 19.71 ± 2.33 |
WHR (Waist-to-hip ratio) | ||||
Baseline | 0.88 ± 0.05 | 0.90 ± 0.06 | 0.82 ± 0.05 * | 0.83 ± 0.04 * |
Before HC/LF diet | 0.89 ± 0.04 | 0.91 ± 0.05 | 0.83 ± 0.03 * | 0.83 ± 0.06 * |
After HC/LF diet | 0.90 ± 0.05 | 0.91 ± 0.05 | 0.83 ± 0.03 * | 0.84 ± 0.04 * |
Glucose (mg/dL) | ||||
Baseline | 74.64 ± 8.59 | 68.10 ± 9.90 | 71.83 ± 9.42 | 72.89 ± 10.68 |
Before HC/LF diet | 79.64 ± 10.32 | 83.37 ± 7.17 | 78.00 ± 10.49 | 81.35 ± 7.21 |
After HC/LF diet | 78.27 ± 5.28 | 78.02 ± 8.09 | 77.46 ± 8.42 | 77.45 ± 5.07 ** |
TG (mg/dL) | ||||
Baseline | 80.31 ± 38.91 | 101.14 ± 73.20 | 64.41 ± 27.32 | 66.55 ± 19.52 |
Before HC/LF diet | 78.14 ± 27.82 | 86.42 ± 49.54 | 67.61 ± 16.61 | 62.41 ± 15.20 |
After HC/LF diet | 87.31 ± 36.29 | 88.09 ± 44.03 | 81.52 ± 25.25 ** | 75.48 ± 20.12 ** |
TC (mg/dL) | ||||
Baseline | 147.08 ± 23.97 | 145.14 ± 25.93 | 155.61 ± 23.97 | 155.48 ± 35.67 |
Before HC/LF diet | 149.04 ± 24.01 | 145.15 ± 23.61 | 158.51 ± 29.46 | 162.38 ± 22.98 |
After HC/LF diet | 116.59 ± 18.02 *** | 117.76 ± 21.92 *** | 131.36 ± 19.43 *,*** | 133.38 ± 23.01 *** |
LDL-C (mg/dL) | ||||
Baseline | 70.53 ± 36.53 | 61.70 ± 52.02 | 69.11 ± 26.47 | 79.90 ± 37.26 |
Before HC/LF diet | 63.90 ± 21.65 | 68.84 ± 24.66 | 70.11 ± 21.61 | 71.37 ± 20.67 |
After HC/LF diet | 55.13 ± 11.08 ** | 54.28 ± 10.76 ** | 63.10 ± 14.77 ** | 64.20 ± 10.98 * |
HDL-C (mg/dL) | ||||
Baseline | 60.33 ± 9.37 | 53.95 ± 12.89 | 69.96 ± 12.58 * | 73.23 ± 12.59 * |
Before HC/LF diet | 53.23 ± 11.70 | 46.96 ± 8.26 | 60.71 ± 10.70 | 59.44 ± 9.05 * |
After HC/LF diet | 56.65 ± 9.70 | 51.18 ± 10.61 ** | 63.16 ± 11.08 | 61.09 ± 6.20 * |
Apo A-I (mg/dL) | ||||
Baseline | 199.79 ± 23.59 | 185.00 ± 28.94 | 214.00 ± 15.53 * | 213.36 ± 17.25 * |
Before HC/LF diet | 173.00 ± 28.46 | 159.45 ± 23.57 | 191.61 ± 24.11 * | 193.55 ± 20.26 * |
After HC/LF diet | 173.81 ± 24.06 | 165.64 ± 28.09 ** | 195.33 ± 20.09 * | 197.91 ± 25.50 * |
Apo B-100 (mg/dL) | ||||
Baseline | 66.50 ± 24.85 | 65.00 ± 20.67 | 67.89 ± 19.39 | 71.73 ± 17.23 |
Before HC/LF diet | 56.25 ± 18.11 | 60.55 ± 23.24 | 58.00 ± 17.02 | 61.00 ± 16.08 |
After HC/LF diet | 54.75 ± 19.49 | 60.55 ± 23.98 | 57.78 ± 15.92 | 61.64 ± 18.32 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kones, R. Primary prevention of coronary heart disease: Integration of new data, evolving views, revised goals, and role of rosuvastatin in management. A comprehensive survey. Drug Des. Devel. Ther. 2011, 5, 325–380. [Google Scholar] [CrossRef]
- Driscoll, A.; Beltrame, J.; Beauchamp, A.; Morgan, C.; Weekes, A.; Tonkin, A. Reducing risk in coronary artery disease. Are Australian patients in general practice achieving targets? The CADENCE Study. Intern. Med. J 2013, 43, 526–531. [Google Scholar] [CrossRef]
- Kim, H.K.; Chang, S.A.; Choi, E.K.; Kim, Y.J.; Kim, H.S.; Sohn, D.W.; Oh, B.H.; Lee, M.M.; Park, Y.B.; Choi, Y.S. Association between plasma lipids, and apolipoproteins and coronary artery disease: A cross-sectional study in a low-risk Korean population. Int. J. Cardiol. 2005, 101, 435–440. [Google Scholar] [CrossRef]
- Satoh, H.; Nishino, T.; Tomita, K.; Tsutsui, H. Fasting triglyceride is a significant risk factor for coronary artery disease in middle-aged Japanese men. Circ. J. 2006, 70, 227–231. [Google Scholar] [CrossRef]
- Jacobson, T.A.; Miller, M.; Schaefer, E.J. Hypertriglyceridemia and cardiovascular risk reduction. Clin. Ther. 2007, 29, 763–777. [Google Scholar] [CrossRef]
- Parks, E.J.; Hellerstein, M.K. Carbohydrate-induced hypertriacylglycerolemia: Historical perspective and review of biological mechanisms. Am. J. Clin. Nutr. 2000, 71, 412–433. [Google Scholar]
- Chen, Z.; Shu, X.-O.; Yang, G.; Li, H.; Li, Q.; Gao, Y.-T.; Zheng, W. Nutrient intake among Chinese women living in Shanghai, China. Br. J. Nutr. 2006, 96, 393–399. [Google Scholar] [CrossRef]
- Gaziano, T.A.; Bitton, A.; Anand, S.; Abrahams-Gessel, S.; Murphy, A. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr. Probl. Cardiol. 2010, 35, 72–115. [Google Scholar] [CrossRef]
- Khor, G.L. Cardiovascular epidemiology in the Asia-Pacific region. Asia Pac. J. Clin. Nutr. 2001, 10, 76–80. [Google Scholar] [CrossRef]
- Mead, J.R.; Irvine, S.A.; Ramji, D.P. Lipoprotein lipase: Structure, function, regulation, and role in disease. J. Mol. Med. 2002, 80, 753–769. [Google Scholar] [CrossRef]
- Henderson, H.E.; Kastelein, J.J.; Zwinderman, A.H.; Gagne, E.; Jukema, J.W.; Reymer, P.W.; Groenemeyer, B.E.; Lie, K.I.; Bruschke, A.V.; Hayden, M.R.; et al. Lipoprotein lipase activity is decreased in a large cohort of patients with coronary artery disease and is associated with changes in lipids and lipoproteins. J. Lipid Res. 1999, 40, 735–743. [Google Scholar]
- Rip, J.; Nierman, M.C.; Wareham, N.J.; Luben, R.; Bingham, S.A.; Day, N.E.; van Miert, J.N.; Hutten, B.A.; Kastelein, J.J.; Kuivenhoven, J.A.; et al. Serum lipoprotein lipase concentration and risk for future coronary artery disease: The EPIC-Norfolk prospective population study. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 637–642. [Google Scholar]
- Rebhi, L.; Kchok, K.; Omezzine, A.; Kacem, S.; Rejeb, J.; Ben Hadjmbarek, I.; Belkahla, R.; Boumaiza, I.; Moussa, A.; Ben Rejeb, N.; et al. Six lipoproteinlipase gene polymorphisms, lipid profile and coronary stenosis in a Tunisian population. Mol. Biol. Rep. 2012, 39, 9893–9901. [Google Scholar] [CrossRef]
- Tang, W.; Apostol, G.; Schreiner, P.J.; Jacobs, D.R.J.; Boerwinkle, E.; Fornage, M. Associations of lipoprotein lipase gene polymorphisms with longitudinal plasma lipid trends in young adults: The CARDIA Study. Circ. Cardiovasc. Genet. 2010, 3, 179–186. [Google Scholar]
- Bhanushali, A.A.; Das, B.R. Genetic variants at the APOE, lipoproteinlipase (LpL), cholesteryl ester transfer protein (CETP), and endothelial nitric oxide (eNOS) genes and coronary artery disease (CAD): CETP Taq1 B2B2 associates with lower risk of CAD in Asian Indians. J. Community Genet. 2010, 1, 55–62. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, D.; Zhang, Z.; Song, Y.; Zhang, D.; Zhao, T.; Chen, Z.; Sun, Y.; Zhang, D.; Yang, Y.; et al. Effects of genetic variants on lipid parameters and dyslipidemia in a Chinese population. J. Lipid Res. 2011, 52, 354–360. [Google Scholar] [CrossRef]
- Saleheen, D.; Frossard, P. CAD risk factors and acute myocardial infarction in Pakistan. Acta Cardiol. 2004, 59, 417–424. [Google Scholar] [CrossRef]
- Fonseca, N.; Bernardino, L.; Silvestre, I.; Santos, J.; Seixo, F.; Mendes, L.; Inês, L. Acute myocardial infarction in patients aged under 45 years. Rev. Port. Cardiol. 2004, 23, 1585–1591. [Google Scholar]
- Huang, X.; Gong, R.; Lin, J.; Li, R.; Xiao, L.; Duan, W.; Fang, D. Effects of lipoprotein lipase gene variations, a high-carbohydrate low-fat diet, and gender on serum lipid profiles in healthy Chinese Han youth. Biosci. Trends 2011, 5, 198–204. [Google Scholar]
- Schwarz, J.M.; Linfoot, P.; Dare, D.; Aghajanian, K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am. J. Clin. Nutr. 2003, 77, 43–50. [Google Scholar]
- Leclerc, I.; Davignon, I.; Lopez, D.; Garrel, D.R. No change in glucose tolerance and substrate oxidation after a high-carbohydrate, low-fat diet. Metabolism 1993, 42, 365–370. [Google Scholar] [CrossRef]
- Chen, A.K.; Roberts, C.K.; Barnard, R.J. Effect of a short-term diet and exercise intervention on metabolic syndrome in overweight children. Metabolism 2006, 55, 871–878. [Google Scholar] [CrossRef]
- Andersen, C.J.; Fernandez, M.L. Dietary strategies to reduce metabolic syndrome. Rev. Endocr. Metab. Disord. 2013, 14, 241–254. [Google Scholar] [CrossRef]
- Du, J.; Fang, D.Z.; Lin, J.; Xiao, L.Y.; Zhou, X.D.; Shigdar, S.; Duan, W. TaqIB polymorphism in the CETP gene modulates the impact of HC/LF diet on the HDL profile in healthy Chinese young adults. Nutr. Biochem. 2010, 21, 1114–1119. [Google Scholar] [CrossRef]
- Lichtenstein, A.H. Dietary fat, carbohydrate, and protein: Effects on plasma lipoprotein patterns. J. Lipid Res. 2006, 47, 1661–1667. [Google Scholar] [CrossRef]
- Chen, C.-M.; Zhao, W.; Yang, Z.; Zhai, Y.; Wu, Y.; Kong, L. The role of dietary factors in chronic disease control in China. Obes. Rev. 2008, 9, 100–103. [Google Scholar]
- Marckmann, P.; Raben, A.; Astrup, A. Ad libitum intake of low-fat dietsrich in either starchyfoods or sucrose: Effects on blood lipids, factor VII coagulant activity, and fibrinogen. Metabolism 2000, 49, 731–735. [Google Scholar] [CrossRef]
- Surwit, R.S.; Feinglos, M.N.; McCaskill, C.C; Clay, S.L.; Babyak, M.A.; Brownlow, B.S.; Plaisted, C.S.; Lin, P.H. Metabolic and behavioral effects of a high-sucrose diet during weight loss. Am. J. Clin. Nutr. 1997, 65, 908–915. [Google Scholar]
- Raben, A.; Holst, J.J.; Madsen, J.; Astrup, A. Diurnal metabolic profiles after 14 d of an ad libitum high-starch, high-sucrose, or high-fat diet in normal-weight never-obese and postobese women. Am. J. Clin. Nutr. 2001, 73, 177–189. [Google Scholar]
- Gerhardt, A.L.; Gallo, N.B. Full-fat rice bran and oat bran similarly reduce hypercholesterolemia in humans. J. Nutr. 1998, 128, 865–869. [Google Scholar]
- Rip, J.; Nierman, M.C.; Ross, C.J.; Jukema, J.W.; Hayden, M.R.; Kastelein, J.J.; Stroes, E.S.; Kuivenhoven, J.A. Lipoprotein lipase S447X a naturally occurring gain-of-function mutation. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1236–1245. [Google Scholar] [CrossRef]
- Cai, H.J.; Li, Z.X.; Yang, S.M. Serum high density lipoprotein cholesterol levels in Chinese healthy subjects and patients with certain diseases. Atherosclerosis 1982, 43, 197–207. [Google Scholar]
- McGladdery, S.H.; Pimstone, S.N.; Clee, S.M.; Bowden, J.F.; Hayden, M.R.; Frohlich, J.J. Common mutations in the lipoprotein lipase gene (LPL): Effects on HDL cholesterol levels in a Chinese Canadian population. Atherosclerosis 2001, 156, 401–407. [Google Scholar] [CrossRef]
- Price, T.M.; O’Brien, S.N.; Welter, B.H.; George, R.; Anandjiwala, J.; Kilgore, M. Estrogen regulation of adipose tissue lipoprotein lipase—Possible mechanism of body fat distribution. Am. J. Obstet. Gynecol. 1998, 178, 101–107. [Google Scholar] [CrossRef]
- Kim, J.W.; Cheng, Y.; Liu, W.; Li, T.; Yegnasubramanian, S.; Zheng, S.L.; Xu, J.; Isaacs, W.B.; Chang, B.L. Genetic and epigenetic inactivation of LPL gene in human prostate cancer. Int. J. Cancer. 2009, 124, 734–738. [Google Scholar] [CrossRef]
- Jackson, R.L.; Yates, M.T.; McNerney, C.A.; Kashyap, M.L. Relationship between post-heparin plasma lipases, triglycerides and high density lipoproteins in normal subjects. Horm. Metab. Res. 1990, 22, 289–294. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhu, X.-c.; Lin, J.; Wang, Q.; Liu, H.; Qiu, L.; Fang, D.-z. Associations of Lipoprotein Lipase Gene rs326 with Changes of Lipid Profiles after a High-Carbohydrate and Low-Fat Diet in Healthy Chinese Han Youth. Int. J. Environ. Res. Public Health 2014, 11, 4544-4554. https://doi.org/10.3390/ijerph110404544
Zhu X-c, Lin J, Wang Q, Liu H, Qiu L, Fang D-z. Associations of Lipoprotein Lipase Gene rs326 with Changes of Lipid Profiles after a High-Carbohydrate and Low-Fat Diet in Healthy Chinese Han Youth. International Journal of Environmental Research and Public Health. 2014; 11(4):4544-4554. https://doi.org/10.3390/ijerph110404544
Chicago/Turabian StyleZhu, Xing-chun, Jia Lin, Qian Wang, Hui Liu, Li Qiu, and Ding-zhi Fang. 2014. "Associations of Lipoprotein Lipase Gene rs326 with Changes of Lipid Profiles after a High-Carbohydrate and Low-Fat Diet in Healthy Chinese Han Youth" International Journal of Environmental Research and Public Health 11, no. 4: 4544-4554. https://doi.org/10.3390/ijerph110404544
APA StyleZhu, X.-c., Lin, J., Wang, Q., Liu, H., Qiu, L., & Fang, D.-z. (2014). Associations of Lipoprotein Lipase Gene rs326 with Changes of Lipid Profiles after a High-Carbohydrate and Low-Fat Diet in Healthy Chinese Han Youth. International Journal of Environmental Research and Public Health, 11(4), 4544-4554. https://doi.org/10.3390/ijerph110404544