Food Safety and Bioavailability Evaluations of Four Vegetables Grown in the Highly Arsenic-Contaminated Soils on the Guandu Plain of Northern Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Vegetable Crops
2.2. Soil Sampling
2.3. Artificially Spiked to Change the Bioavailability of As
2.4. Soil Analysis
2.5. Pot Experiments
2.6. Harvest and Plant Analysis
2.7. Statistical Analysis
3. Results
3.1. Effects of Soil As Concentrations on the Yields and As Accumulation
Soil Sample a | Soil As Conc. b | Crop b | |||
---|---|---|---|---|---|
Total Conc. | Bioavailable Conc. c | Yield | Total As Conc. | BCF d | |
mg/kg | g/pot | mg/kg DW | |||
Carrot | |||||
Ck | 20.1 d | 0.41 d | 9.02 a | nd | -- |
L | 121 c | 2.75 c | 9.35 a | 0.078 a | 0.028 |
M | 200 b | 5.13 b | 10.0 a | 0.102 a | 0.020 |
H | 278 a | 6.46 a | 9.63 a | 0.155 a | 0.024 |
Garland Chrysanthemum | |||||
Ck | 21.4 d | 0.35 d | 2.19 a | nd | -- |
L | 124 c | 2.67 c | 2.25 a | 0.374 b | 0.140 |
M | 194 b | 5.10 b | 2.31 a | 0.784 a | 0.154 |
H | 265 a | 6.58 a | 2.97 a | 0.825 a | 0.125 |
Loose Head Lettuce | |||||
Ck | 20.7 d | 0.50 d | 2.11 b | nd | -- |
L | 123 c | 3.26 c | 2.05 b | 0.195 b | 0.060 |
M | 197 b | 5.38 b | 1.30 b | 0.258 b | 0.048 |
2H | 453 a | 8.60 a | 3.74 a | 0.515 a | 0.060 |
3.2. Effects of Changing the Bioavailability of As on Yields and Accumulation of As
Soil Sample a | Soil As Conc. b | Crop b | |||
---|---|---|---|---|---|
Total Conc. | Bioavailable Conc. c | Yield | Total As Conc. | BCF d | |
mg/kg | g/pot | mg/kg DW | |||
Ck2 | 18.9 h | 0.33 g | 3.13 a | 0.077 f | 0.233 |
L2 | 139 de | 3.40 f | 2.98 a | 0.259 e | 0.076 |
M2 | 239 b | 6.60 e | 2.34 a | 0.311 e | 0.047 |
H2 | 475 a | 8.93 d | 3.56 a | 0.362 de | 0.041 |
Ck2+30 | 50.2 g | 4.51 f | 2.66 a | 0.323 e | 0.072 |
Ck2+60 | 87.1 f | 8.60 d | 2.63 a | 0.489 d | 0.057 |
Ck2+90 | 120 e | 13.7 c | 2.53 a | 0.625 c | 0.046 |
Ck2+120 | 151 cd | 16.2 b | 2.82 a | 0.792 b | 0.049 |
Ck2+150 | 172 c | 22.2 a | 2.85 a | 0.970 a | 0.044 |
3.3. Comparison of Different Soil Testing Methods for As Crop Predictions
4. Discussion
Country | Item regulated | Statutory limits a | Reference |
---|---|---|---|
Canada | food crops | 1 mg/kg FW | [33] |
United Kingdom | food in sale | 1 mg/kg FW | [34] |
China | rice | 0.15 mg/kg b | [35] |
Australia | cereals | 1 mg/kg FW | [36] |
New Zealand | cereals | 1 mg/kg FW | [36] |
Germany | cereals | 1 mg/kg FW | [37] |
India | cereals | 1 mg/kg FW | [37] |
The Netherlands | cereals | 1 mg/kg FW | [37] |
Study Area | As Conc. in the Vegetable (mg/kg DW) | Total As Conc. in Soil (mg/kg) | Reference | ||
---|---|---|---|---|---|
Mean | Range | n | |||
Markets | |||||
Europe | 0.0242 | <0.005–0.087 | 24 | -- | [38] |
Europe | 0.0545 | <0.005–0.54 | 68 | -- | [38] |
Canada | 0.007 a | -- | 262 | -- | [39] |
U.K. | 0.005 a | -- | 60 | -- | [40] |
The Netherlands b | 0.001–0.189 a | 0.0001–0.544 | 39–94 | 0.1–110 | [41] |
The Netherlands c | 0.004–0.022 a | 0.005–0.014 | 50–100 | 0.1–110 | [41] |
As-Contaminated Area | |||||
Bangladesh | -- | 0.019–0.489 | >15 | 13.3 | [42] |
Bangladesh | -- | 0.007–1.53 | 11 | 7.3–27 | [14] |
West Bengal | -- | <0.04–0.69 | 142 | 3.3–32 | [13] |
Spain | -- | 0.3–1.25 | 57 | 9–36 | [26] |
Bangladesh | 0.333 | 0.019–2.334 | 39 | -- | [10] |
Bangladesh | 0.34 | <0.04–1.93 | 94 | -- | [31] |
This Study | |||||
Guandu Plain, Taiwan | 0.332 | <0.040–0.873 | 64 | 18–501 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization. Toxicological Evaluation of Certain Food Additives and Contaminants . In WHO Food Additives Series, No. 24; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Sheppard, S.C. Summary of phytotoxic levels of soil arsenic. Water Air Soil Pollut. 1992, 64, 539–550. [Google Scholar] [CrossRef]
- Vaughan, D.J. Arsenic. Elements 2006, 2, 71–75. [Google Scholar] [CrossRef]
- Lou, L.Q.; Ye, Z.H.; Wong, M.H. A comparison of arsenic tolerance, uptake and accumulation between arsenic hyperaccumulator, Pteris vittata L. and non-accumulator, P. semipinnata L.: A hydroponic study. J. Hazard. Mater. 2009, 171, 436–442. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Quaghebeur, M.; Rengel, Z. Arsenic speciation governs arsenic uptake and transport in terrestrial plants. Microchim. Acta 2005, 151, 141–152. [Google Scholar] [CrossRef]
- Sadiq, M.; Zaida, T.H.; Mian, A.A. Environmental behavior of arsenic in soils: Theoretical. Water Air Soil Pollut. 1983, 20, 369–377. [Google Scholar]
- Huang, Y.C. Arsenic Distribution in Soils. In Arsenic in the Environment, Part I: Cycling and Characterization; Nriagu, J.O., Ed.; John Wiley: New York, NY, USA, 1994; pp. 17–49. [Google Scholar]
- Rahman, M.A.; Hasegawa, H.; Rahman, M.M.; Miah, M.A.M.; Tasmin, A. Straighthead disease of rice (Oryza sativa L.) induced by arsenic toxicity. Environ. Exp. Bot. 2008, 62, 54–59. [Google Scholar] [CrossRef]
- Smith, E.; Naidu, R.; Alston, A.M. Arsenic in the soil environment: A review. Adv. Agron. 1998, 64, 149–195. [Google Scholar] [CrossRef]
- Bhumbla, D.K.; Keefer, R.F. Arsenic Mobilization and Bioavailability in Soils. In Arsenic in the Environment, Part I: Cycling and Characterization; Nriagu, J.O., Ed.; John Wiley: New York, NY, USA, 1994; pp. 51–82. [Google Scholar]
- Gulz, P.A.; Gupta, S.K.; Schulin, R. Arsenic accumulation of common plants from contaminated soils. Plant Soil 2005, 272, 337–347. [Google Scholar] [CrossRef]
- Roychowdhury, T.; Uchino, T.; Tokunaga, H.; Ando, M. Survey of arsenic in food composites from an arsenic-affected area of West Bengal, India. Food Chem. Toxicol. 2002, 40, 1611–1621. [Google Scholar] [CrossRef]
- Das, H.K.; Mitra, A.K.; Sengupta, P.K.; Hossain, A.; Islam, F.; Rabbani, G.H. Arsenic concentrations in rice, vegetables, and fish in Bangladesh: A preliminary study. Environ. Int. 2004, 30, 383–387. [Google Scholar]
- Smith, N.M.; Lee, R.; Heitkemper, D.T.; Cafferky, K.D.; Haque, A.; Henderson, A.K. Inorganic arsenic in cooked rice and vegetables from Bangladesh households. Sci. Total Environ. 2006, 370, 294–301. [Google Scholar] [CrossRef]
- Woolson, E.A.; Axley, J.H.; Kearney, P.C. Correlation between available soil arsenic, estimated by six methods, and response of corn (Zea mays L.). Soil Sci. Soc. Am. Proc. 1971, 35, 101–105. [Google Scholar] [CrossRef]
- Peryea, F.J. Evaluation of five soil tests for predicting responses of apple trees planted in lead arsenate-contaminated soil. Commun. Soil Sci. Plant Anal. 2002, 33, 243–257. [Google Scholar] [CrossRef]
- Cheng, W.D.; Zhang, G.P.; Yao, H.G.; Dominy, P.; Wu, W.; Wang, R.Y. Possibility of predicting heavy-metal contents in rice grains based on DTPA-extracted levels in soil. Commun. Soil Sci. Plant Anal. 2004, 35, 2731–2745. [Google Scholar] [CrossRef]
- Huang, R.Q.; Gao, S.F.; Wang, W.L.; Staunton, S.; Wang, G. Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Sci. Total Environ. 2006, 368, 531–541. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Kirchbaumer, N.; Prohaska, T.; Stingeder, G.; Lombi, E.; Adriano, D.C. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 2001, 436, 309–323. [Google Scholar] [CrossRef]
- Song, J.; Zhao, F.J.; McGrath, S.P.; Luo, Y.M. Influence of soil properties and aging on arsenic phytotoxicity. Environ. Toxicol. Chem. 2006, 25, 1663–1670. [Google Scholar]
- Moreno-Jimenez, E.; Manzano, R.; Esteban, E.; Penalosa, J. The fate of arsenic in soils adjacent to an old mine site (Bustarviejo, Spain): Mobility and transfer to native flora. J. Soils Sedim. 2010, 10, 301–312. [Google Scholar] [CrossRef]
- Otones, V.; Alvarez-Ayuso, E.; Garcia-Sanchez, A.; Santa-Regina, I.; Murciego, A. Mobility and phytoavailability of arsenic in an abandoned mining area. Geoderma 2011, 166, 153–161. [Google Scholar] [CrossRef]
- Chang, T.K.; Shyu, G.S.; Chang, W.L.; Huang, W.D.; Huang, J.H.; Lin, J.S.; Lin, S.C. Monitoring and Investigation of Heavy Metal in Soil of Taipei City; Report of DEP-95–056; Department of Environmental Protection, Taipei City Government: Taipei, Taiwan, 2007.
- Chiang, K.Y.; Lin, K.C.; Lin, S.C.; Chang, T.K.; Wang, M.K. Arsenic and lead (beudantite) contamination of agricultural rice soils in the Guandu Plain of northern Taiwan. J. Hazard. Mater. 2010, 181, 1066–1071. [Google Scholar] [CrossRef]
- Moyano, A.; Garcia-Sanchez, A.; Mayorga, P.; Anawar, H.M.; Alvarez-Ayuso, E. Impact of irrigation with arsenic-rich groundwater on soils and crops. J. Environ. Monit. 2009, 11, 498–502. [Google Scholar] [CrossRef]
- Adriano, D.C. Trace Elements in the Terrestrial Environment; Springer-Verlag: New York, NY, USA, 1986. [Google Scholar]
- Thomas, G.W. Soil pH and Soil Acidity. In Methods of Soil Analysis, Part 3, Chemical Methods; Sparks, D.L., Ed.; ASA; SSSA: Madison, WI, USA, 1996; pp. 475–490. [Google Scholar]
- Meharg, A.A.; Rahman, M.M. Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environ. Sci. Technol. 2003, 37, 229–234. [Google Scholar] [CrossRef]
- Munoz, O.; Diaz, O.P.; Leyton, I.; Nunez, N.; Devesa, V.; Suner, M.A.; Velez, D.; Montoro, R. Vegetables collected in the cultivated Andean area of Northern Chile: Total and inorganic arsenic contents in raw vegetables. J. Agric. Food Chem. 2002, 50, 642–647. [Google Scholar] [CrossRef]
- Williams, P.N.; Islam, M.R.; Adomako, E.E.; Raab, A.; Hossain, S.A.; Zhu, Y.G.; Feldmann, J.; Meharg, A.A. Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ. Sci. Technol. 2006, 40, 4903–4908. [Google Scholar] [CrossRef]
- Beni, C.; Marconi, S.; Boccia, P.; Ciampa, A.; Diana, G.; Aromolo, R.; Sturchio, E.; Neri, U.; Sequi, P.; Valentini, M. Use of arsenic contaminated irrigation water for lettuce cropping: Effects on soil, groundwater, and vegetal. Biol. Trace Elem. Res. 2011, 143, 518–529. [Google Scholar] [CrossRef]
- Zandstra, B.H.; de Kryger, T.A. Arsenic and lead residues in carrots from foliar applications of monosodium methanearsonate (MSMA): A comparison between mineral and organic soils, or from soil residues. Food Addit. Contam. 2007, 24, 34–42. [Google Scholar] [CrossRef]
- Warren, G.P.; Alloway, B.J.; Lepp, N.W.; Singh, B.; Bochereau, F.J.M.; Penny, C. Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Sci. Total Environ. 2003, 311, 19–33. [Google Scholar] [CrossRef]
- Ministry of Health of the People’s Republic of China (MHPRC). Hygienic Standard for Grains. GB 2715-2005; Standardization Administration of China: Beijing, China, 2005.
- McLaughlin, M.J.; Hamon, R.E.; McLaren, R.G.; Speir, T.W.; Rogers, S.L. Review: A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust. J. Soil Res. 2000, 38, 1037–1086. [Google Scholar] [CrossRef]
- Norra, S.; Berner, Z.A.; Agarwala, P.; Wagner, F.; Chandrasekharam, D.; Stuben, D. Impact of irrigation with As rich groundwater on soil and crops: A geochemical case study in West Bengal Delta Plain, India. Appl. Geochem. 2005, 20, 1890–1906. [Google Scholar] [CrossRef]
- Al Rmalli, S.W.; Haris, P.I.; Harrington, C.F.; Ayub, M. A survey of arsenic in foodstuffs on sale in the United Kingdom and imported from Bangladesh. Sci. Total Environ. 2005, 337, 23–30. [Google Scholar]
- Dabeka, R.W.; Mckenzie, A.D.; Lacroix, G.M.A.; Cleroux, C.; Bowe, S.; Graham, R.A.; Conacher, H.B.S.; Verdier, P. Survey of arsenic in total diet food composites and estimation of the dietary-intake of arsenic by Canadian adults and children. J. AOAC Int. 1993, 76, 14–25. [Google Scholar]
- Ysart, G.; Miller, P.; Crews, H.; Robb, P.; Baxter, M.; De L’argy, C.; Lofthouse, S.; Sargent, C.; Harrison, N. Dietary exposure estimates of 30 elements from the UK Total Diet Study. Food Addit. Contam. 1999, 16, 391–403. [Google Scholar] [CrossRef]
- Wiersma, D.; van Goor, B.J.; van der Veen, N.G. Cadmium, lead, mercury, and arsenic concentrations in crops and corresponding soils in the Netherlands. J. Agric. Food Chem. 1988, 34, 1067–1074. [Google Scholar]
- Alam, M.G.M.; Snow, E.T.; Tanaka, A. Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Sci. Total Environ. 2003, 308, 83–96. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific opinion on arsenic in food. EFSA J. 2009, 7, 1351. [Google Scholar]
- Rahman, M.M.; Mandal, B.K.; Chowdhury, T.R.; Sengupta, M.K.; Chowdhury, U.K.; Lodh, D.; Chanda, C.R.; Basu, G.K.; Mukherjee, S.C.; Saha, K.C.; Chakraborti, D. Arsenic groundwater contamination and sufferings of people in North 24-Parganas, one of the nine arsenic affected districts of West Bengal, India. J. Environ. Sci. Health Part A. 2003, 38, 25–59. [Google Scholar] [CrossRef]
- Cao, X.; Ma, L.Q. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environ. Pollut. 2004, 132, 435–442. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Su, S.-W.; Tsui, C.-C.; Lai, H.-Y.; Chen, Z.-S. Food Safety and Bioavailability Evaluations of Four Vegetables Grown in the Highly Arsenic-Contaminated Soils on the Guandu Plain of Northern Taiwan. Int. J. Environ. Res. Public Health 2014, 11, 4091-4107. https://doi.org/10.3390/ijerph110404091
Su S-W, Tsui C-C, Lai H-Y, Chen Z-S. Food Safety and Bioavailability Evaluations of Four Vegetables Grown in the Highly Arsenic-Contaminated Soils on the Guandu Plain of Northern Taiwan. International Journal of Environmental Research and Public Health. 2014; 11(4):4091-4107. https://doi.org/10.3390/ijerph110404091
Chicago/Turabian StyleSu, Shaw-Wei, Chun-Chih Tsui, Hung-Yu Lai, and Zueng-Sang Chen. 2014. "Food Safety and Bioavailability Evaluations of Four Vegetables Grown in the Highly Arsenic-Contaminated Soils on the Guandu Plain of Northern Taiwan" International Journal of Environmental Research and Public Health 11, no. 4: 4091-4107. https://doi.org/10.3390/ijerph110404091
APA StyleSu, S.-W., Tsui, C.-C., Lai, H.-Y., & Chen, Z.-S. (2014). Food Safety and Bioavailability Evaluations of Four Vegetables Grown in the Highly Arsenic-Contaminated Soils on the Guandu Plain of Northern Taiwan. International Journal of Environmental Research and Public Health, 11(4), 4091-4107. https://doi.org/10.3390/ijerph110404091