Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Results
2.1.1. Bioluminescence versus CFU of an overnight culture
2.1.2. aPDT recovery study
2.1.3. aPDT resistance study
2.2. Discussion
3. Experimental Section
3.1. Photosensitizer
3.2. Bacterial strains and growth conditions
3.3. Irradiation conditions
3.4. Bioluminescence versus CFU
3.5. aPDT recovery study
3.6. aPDT resistance study
4. Conclusions
Acknowledgements
- Samples Availability: Available from the authors.
References
- Jori, G; Brown, SB. Photosensitized inactivation of microorganisms. Photochem Photobiol Sci 2004, 3, 403–405. [Google Scholar]
- Tunger, O; Dinc, G; Ozbakkaloglu, B; Atman, C; Algun, U. Evaluation of rational antibiotic use. Int J Antimicrob Agents 2000, 15, 131–135. [Google Scholar]
- Hamblin, MR; Hasan, T. Photodynamic therapy: A new antimicrobial approach to infectious disease? Photochem Photobiol Sci 2004, 3, 436–450. [Google Scholar]
- Cunha, BA. Antibiotic resistance. Control strategies. Crit Care Clin 1998, 14, 309–327. [Google Scholar]
- Wainwright, M. Photodynamic antimicrobial chemotherapy (PACT): A review. J Antimicrob Chemother 1998, 42, 13–28. [Google Scholar]
- Malik, Z; Hanania, J; Nitzan, Y. Bactericidal effects of photoactivated porphyrins–an alternative approach to antimicrobial drugs. J Photochem Photobiol B Biol 1990, 5, 281–293. [Google Scholar]
- Caminos, DA; Spesia, MB; Pons, P; Durantini, EN. Mechanisms of Escherichia coli photodynamic inactivation by an amphiphilic tricationic porphyrin and 5,10,15,20-tetra(4-N,N,N-trimethylammoniumphenyl) porphyrin. Photochem Photobiol Sci 2008, 7, 1071–1078. [Google Scholar]
- Taylor, PW; Stapleton, PD; Luzio, JP. New ways to treat bacterial infections. Drug Discovery Today 2002, 7, 1086–1091. [Google Scholar]
- Winckler, KD. Special section: Focus on anti-microbial photodynamic therapy (PDT). J Photochem Photobiol B Biol 2007, 86, 43–44. [Google Scholar]
- Costa, L; Alves, E; Carvalho, CMB; Tomé, JPC; Faustino, MAF; Neves, MGPMS; Tomé, AC; Cavaleiro, JAS; Cunha, Â; Almeida, A. Sewage bacteriophage photoinactivation by cationic porphyrins: A study of charge effect. Photochem Photobiol Sci 2008, 7, 415–422. [Google Scholar]
- Alves, E; Costa, L; Carvalho, C; Tome, J; Faustino, M; Neves, M; Tome, A; Cavaleiro, J; Cunha, A; Almeida, A. Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins. BMC Microbiol 2009, 9, 70–83. [Google Scholar]
- Alves, E; Carvalho, CMB; Tomé, JPC; Faustino, MAF; Neves, M; Tomé, AC; Cavaleiro, JAS; Cunha, A; Mendo, S; Adelaide, A. Photodynamic inactivation of recombinant bioluminescent Escherichia coli by cationic porphyrins under artificial and solar irradiation. J Ind Microbiol Biotechnol 2008, 35, 1447–1454. [Google Scholar]
- Wainwright, W. Photoantimicrobials-a PACT against resistance and infection. Drugs Fut 2004, 29, 85–93. [Google Scholar]
- Jemli, M; Alouini, Z; Sabbahi, S; Gueddari, M. Destruction of fecal bacteria in wastewater by three photosensitizers. J Environ Monit 2002, 4, 511–516. [Google Scholar]
- Merchat, M; Bertoloni, G; Giacomini, P; Villanueva, A; Jori, G. Meso-substituted cationic porphyrins as efficient photosensitizers of Gram-positive and Gram-negative bacteria. J Photochem Photobiol B Biol 1996, 32, 153–157. [Google Scholar]
- Oliveira, A; Almeida, A; Carvalho, CMB; Tomé, JPC; Faustino, MAF; Neves, MGPMS; Tomé, AC; Cavaleiro, JAS; Cunha, Â. Porphyrin derivatives as photosensitizers for the inactivation of Bacillus cereus endospores. J Appl Microbiol 2009, 106, 1986–1995. [Google Scholar]
- Carvalho, CMB; Tomé, JPC; Faustino, MAF; Neves, MGPMS; Tomé, AC; Cavaleiro, JAS; Costa, L; Alves, E; Oliveira, A; Cunha, Â; Almeida, A. Antimicrobial photodynamic activity of porphyrin derivatives: Potential application on medical and water disinfection. J Porphyrins Phthalocyanines 2009, 13, 574–577. [Google Scholar]
- Bonnett, R. Chemical aspects of photodynamic therapy. In Advanced Chemistry Texts; Gordon and Breach Science: Amsterdam, The Netherlands, 2000; Volume 1, p. 324. [Google Scholar]
- Wainwright, M. Methylene blue derivatives-suitable photoantimicrobials for blood product disinfection? Int J Antimicrob Agents 2000, 16, 381–394. [Google Scholar]
- Jori, G; Fabris, C; Soncin, M; Ferro, S; Coppellotti, O; Dei, D; Fantetti, L; Chiti, G; Roncucci, G. Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications. Lasers Surg Med 2006, 38, 468–481. [Google Scholar]
- Calin, MA; Parasca, SV. Light sources for photodynamic inactivation of bacteria. Lasers Med Sci 2009, 24, 453–460. [Google Scholar]
- De Rosa, FS; Bentley, MVLB. Photodynamic therapy of skin cancers: Sensitizers, clinical studies and future directives. Pharm Res 2000, 17, 1447–1455. [Google Scholar]
- Donnelly, RF; McCarron, PA; Tunney, MM. Antifungal photodynamic therapy: A review. Microbiol Res 2008, 163, 1–12. [Google Scholar]
- De Rosa, M; Crutchley, R. Photosensitized singlet oxygen and its applications. Coord Chem Rev 2002, 233, 351–371. [Google Scholar]
- Ergaieg, K; Chevanne, M; Cillard, J; Seux, R. Involvement of both type I and type II mechanisms in Gram-positive and Gram-negative bacteria photosensitization by a meso-substituted cationic porphyrin. Sol Energy 2008, 82, 1107–1117. [Google Scholar]
- Mettath, S; Munson, BR; Pandey, RK. DNA interaction and photocleavage properties of porphyrins containing cationic substituents at the peripheral position. Bioconjug Chem 1999, 10, 94–102. [Google Scholar]
- Li, H; Fedorova, OS; Grachev, AN; Trumble, WR; Bohach, GA; Czuchajowski, L. A series of meso-tris(N-methyl-pyridiniumyl)-(4-alkylamidophenyl) porphyrins: Synthesis, interaction with DNA and antibacterial activity. Biochim Biophys Acta 1997, 1354, 252–260. [Google Scholar]
- Imray, FP; MacPhee, DG. The role of DNA polymerase I and the rec system in survival of bacteria and bacteriophages damaged by the photodynamic action of acridine orange. Mol Gen Genet 1973, 123, 289–298. [Google Scholar]
- Durantini, EN. Photodynamic inactivation of bacteria. Curr Bioact Comp 2006, 2, 127–142. [Google Scholar]
- Schafer, M; Schmitz, C; Horneck, G. High sensitivity of Deinococcus radiodurans to photodynamically-produced singlet oxygen. Int J Radiat Biol 1998, 74, 249–253. [Google Scholar]
- Lambrechts, SAG; Demidova, TN; Aalders, MCG; Hasan, T; Hamblin, MR. Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice. Photochem Photobiol Sci 2005, 4, 503–509. [Google Scholar]
- Gad, F; Zahra, T; Francis, KP; Hasan, T; Hamblin, MR. Targeted photodynamic therapy of established soft-tissue infections in mice. Photochem Photobiol Sci 2004, 3, 451–458. [Google Scholar]
- Orenstein, A; Klein, D; Kopolovic, J; Winkler, E; Malik, Z; Keller, N; Nitzan, Y. The use of porphyrins for eradication of Staphylococcus aureus in burn wound infections. FEMS Immunol Med Microbiol 1997, 19, 307–314. [Google Scholar]
- Bhatti, M; MacRobert, A; Meghji, S; Henderson, B; Wilson, M. A study of the uptake of toluidine blue O by Porphyromonas gingivalis and the mechanism of lethal photosensitisation. Photochem Photobiol 1998, 68, 370–376. [Google Scholar]
- Omar, GS; Wilson, M; Nair, SP. Lethal photosensitization of wound-associated microbes using indocyanine green and near-infrared light. BMC Microbiol 2008, 8, 111–120. [Google Scholar]
- Bagchi, B; Sreeradha, B. Role of dye molecules remaining outside the cell during photodynamic inactivation of Escherichia coli in the presence of acriflavine. Photochem Photobiol 1989, 29, 403–405. [Google Scholar]
- Ehrenberg, B; Gross, E; Nitzan, Y; Malik, Z. Electric depolarization of photosensitized cells: Lipids vs. protein alterations. Biochim Biophys Acta 1993, 1151, 257–264. [Google Scholar]
- Ito, T; Kobayashi, K. In vivo evidence for the photodynamic membrane damage as a determining step of the inactivation of yeast cells sensitized by toluidine blue. Photochem Photobiol 1977, 25, 399–401. [Google Scholar]
- Cassidy, CM; Tunney, MM; McCarron, PA; Donnelly, RF. Drug delivery strategies for photodynamic antimicrobial chemotherapy: From benchtop to clinical practice—A review. J Photochem Photobiol B Biol 2009, 95, 71–80. [Google Scholar]
- Carré, V; Gaud, O; Sylvain, I; Bourdon, O; Spiro, M; Biais, J; Granet, R; Krausz, P; Guilloton, M. Fungicidal properties of meso-arylglycosylporphyrins: Influence of sugar substituents on photoinduced damage in the yeast Saccharomyces cerevisiae. J Photochem Photobiol B Biol 1999, 48, 57–62. [Google Scholar]
- Maisch, T; Szeimies, RM; Jori, G; Abels, C. Antibacterial photodynamic therapy in dermatology. Photochem Photobiol Sci 2004, 3, 907–917. [Google Scholar]
- Lauro, FM; Pretto, P; Covolo, L; Jori, G; Bertoloni, G. Photoinactivation of bacterial strains involved in periodontal diseases sensitized by porphycene-polylysine conjugates. Photochem Photobiol Sci 2002, 1, 468–470. [Google Scholar]
- Pedigo, LA; Gibbs, AJ; Scott, RJ; Street, CN. Absence of bacterial resistance following repeat exposure to photodynamic therapy. Proc SPIE 2009, 7380, 73803H. [Google Scholar] [CrossRef]
- Jori, G; Coppellotti, O. Inactivation of pathogenic microorganisms by photodynamic techniques: Mechanistic aspects and perspective applications. Anti-Infect Agents Med Chem 2007, 6, 119–131. [Google Scholar]
- Hamblin, MR; O’Donnell, DA; Murthy, N; Contag, CH; Hasan, T. Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging. Photochem Photobiol 2002, 75, 51–57. [Google Scholar]
- Francis, KP; Yu, J; Bellinger-Kawahara, C; Joh, D; Hawkinson, MJ; Xiao, G; Purchio, TF; Caparon, MG; Lipsitch, M; Contag, PR. Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect Immun 2001, 69, 3350–3358. [Google Scholar]
- Vesterlund, S; Paltta, J; Laukova, A; Karp, M; Ouwehand, AC. Rapid screening method for the detection of antimicrobial substances. J Microbiol Methods 2004, 57, 23–31. [Google Scholar]
- Beard, SJ; Salisbury, V; Lewis, RJ; Sharpe, JA; MacGowan, AP. Expression of lux genes in a clinical isolate of Streptococcus pneumoniae: Using bioluminescence to monitor gemifloxacin activity. Antimicrob Agents Chemother 2002, 46, 538–542. [Google Scholar]
- Marincs, F. On-line monitoring of growth of Escherichia coli in batch cultures by bioluminescence. Appl Microbiol Biotechnol 2000, 53, 536–541. [Google Scholar]
- Rocchetta, HL; Boylan, CJ; Foley, JW; Iversen, PW; LeTourneau, DL; McMillian, CL; Contag, PR; Jenkins, DE; Parr, TRJ. Validation of a noninvasive, real-time imaging technology using bioluminescent Escherichia coli in the neutropenic mouse thigh model of infection. Antimicrob Agents Chemother 2001, 45, 129–137. [Google Scholar]
- Carvalho, CMB; Gomes, A; Fernandes, SCD; Prata, ACB; Almeida, MA; Cunha, MA; Tome, JPC; Faustino, MAF; Neves, M; Tome, AC. Photoinactivation of bacteria in wastewater by porphyrins: Bacterial beta-galactosidase activity and leucine-uptake as methods to monitor the process. J Photochem Photobiol B Biol 2007, 88, 112–118. [Google Scholar]
- Boyle-Vavra, S; Labischinski, H; Ebert, CC; Ehlert, K; Daum, RS. A spectrum of changes occurs in peptidoglycan composition of glycopeptide-intermediate clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother 2001, 45, 280–287. [Google Scholar]
- Roland, KL; Esther, CR; Spitznagel, JK. Isolation and characterization of a gene, pmrD, from Salmonella typhimurium that confers resistance to polymixin when expressed in multiple copies. J Bacteriol 1994, 176, 3589–3597. [Google Scholar]
- Harder, KJ; Nikaido, H; Matsuhashi, M. Mutants of Escherichia coli that are resistant to certain beta-lactam compounds lack the ompF porin. Antimicrob Agents Chemother 1981, 20, 549–552. [Google Scholar]
- Cassell, GH; Mekalanos, J. Development of antimicrobial agents in the era of new and reemerging infectious diseases and increasing antibiotic resistance. J Am Med Assoc 2001, 285, 601–605. [Google Scholar]
- Nitzan, Y; Shainberg, B; Malik, Z. The mechanism of photodynamic inactivation of Staphylococcus aureus by deuteroporphyrin. Curr Microbiol 1989, 19, 265–269. [Google Scholar]
- Banfi, S; Caruso, E; Buccafurni, L; Battini, V; Zazzaron, S; Barbieri, P; Orlandi, V. Antibacterial activity of tetraaryl-porphyrin photosensitizers: An in vitro study on Gram-negative and Gram-positive bacteria. J Photochem Photobiol B Biol 2006, 85, 28–38. [Google Scholar]
- Gad, F; Zahra, T; Hasan, T; Hamblin, MR. Effects of growth phase and extracellular slime on photodynamic inactivation of gram-positive pathogenic bacteria. Antimicrob Agents Chemother 2004, 48, 2173–2178. [Google Scholar]
- Tomé, JPC; Neves, MGPMS; Tomé, AC; Cavaleiro, JAS; Soncin, M; Magaraggia, M; Ferro, S; Jori, G. Synthesis and antibacterial activity of new poly-S-lysine-porphyrin conjugates. J Med Chem 2004, 47, 6649–6652. [Google Scholar]
- Geske, GD; O’Neill, JC; Blackwell, HE. N-phenylacetanoyl-L-homoserine lactones can strongly antagonize or superagonize quorum sensing in Vibrio fischeri. ACS Chem Biol 2007, 2, 315–320. [Google Scholar]
- Scheerer, S; Gomez, F; Lloyd, D. Bioluminescence of Vibrio fischeri in continuous culture: Optimal conditions for stability and intensity of photoemission. J Microbiol Methods 2006, 67, 321–329. [Google Scholar]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tavares, A.; Carvalho, C.M.B.; Faustino, M.A.; Neves, M.G.P.M.S.; Tomé, J.P.C.; Tomé, A.C.; Cavaleiro, J.A.S.; Cunha, Â.; Gomes, N.C.M.; Alves, E.; et al. Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment. Mar. Drugs 2010, 8, 91-105. https://doi.org/10.3390/md8010091
Tavares A, Carvalho CMB, Faustino MA, Neves MGPMS, Tomé JPC, Tomé AC, Cavaleiro JAS, Cunha Â, Gomes NCM, Alves E, et al. Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment. Marine Drugs. 2010; 8(1):91-105. https://doi.org/10.3390/md8010091
Chicago/Turabian StyleTavares, Anabela, Carla M. B. Carvalho, Maria A. Faustino, Maria G. P. M. S. Neves, João P. C. Tomé, Augusto C. Tomé, José A. S. Cavaleiro, Ângela Cunha, Newton C. M. Gomes, Eliana Alves, and et al. 2010. "Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment" Marine Drugs 8, no. 1: 91-105. https://doi.org/10.3390/md8010091
APA StyleTavares, A., Carvalho, C. M. B., Faustino, M. A., Neves, M. G. P. M. S., Tomé, J. P. C., Tomé, A. C., Cavaleiro, J. A. S., Cunha, Â., Gomes, N. C. M., Alves, E., & Almeida, A. (2010). Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment. Marine Drugs, 8(1), 91-105. https://doi.org/10.3390/md8010091