The Mediterranean Red Alga Asparagopsis: A Source of Compounds against Leishmania
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
4. Conclusions
Acknowledgements
References and Notes
- Lindequist, U; Schweder, T. Rehm, HJ, Reed, G, Eds.; Biotechnology. In Marine Biotechnology; Wiley-VCH: Weinheim, Germany, 2001; p. 441. [Google Scholar]
- Mayer, AMS; Hamann, MT. Marine pharmacology in 2001–2002: Marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action. Comp Biochem Physiol C: Toxicol Pharmacol 2005, 140, 265–286. [Google Scholar]
- Newman, DJ; Cragg, GM; Snader, KM. Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 2003, 66, 1022–1037. [Google Scholar]
- Blunt, JW; Copp, BR; Hu, W-P; Munro, MHG; Northcote, PT; Prinsep, MR. Marine natural products. Nat Prod Rep 2008, 25, 35–94. [Google Scholar]
- Tüney, Ü; Çadirci, BH; Ünal, D; Sukatar, A. Antimicrobial activities of the extracts of marine algae from the coast of Urla (Üzmir, Turkey). Turk J Biol 2006, 30, 171–175. [Google Scholar]
- Fenical, W. Halogenation in the Rhodophyta-a review. J Phycol 1975, 11, 245–259. [Google Scholar]
- Fenical, W. Natural products chemistry in the marine environment. Science 1982, 215, 923–928. [Google Scholar]
- McConnell, O; Fenical, W. Halogen chemistry of the red alga Asparagopsis. Phytochemistry 1977, 16, 367–374. [Google Scholar]
- Woolard, FX; Moore, RE; Roller, PP. Halogenated acetic and acrylic acids from the red alga Asparagopsis taxiformis. Phytochemistry 1979, 18, 617–620. [Google Scholar]
- Feldmann, J; Feldmann, G. Recherches sur les Bonnemaisoniacés et leur alternance de générations. Ann Sci Nat Bot 1942, 11, 75–175. [Google Scholar]
- Andreakis, N; Procaccini, G; Kooistra, W. Asparagopsis taxiformis and Asparagopsis armata (Bonnemaisoniales, Rhodophyta): Genetic and morphological identification of Mediterranean populations. Eur J Phycol 2004, 39, 273–283. [Google Scholar]
- Delile, AR. Anon, Ed.; Florae Aegyptiacae illustratio. In Description de l’Egypte ou recueil des observations et des recherches qui ont été faites en Egypte pendant l’expédition de l’armée française (1798–1801); Histoire naturelle: Paris: France, 1813; Volume 2, pp. 49–82. [Google Scholar]
- Streftaris, NS; Zenetos, A. Alien marine species in the Mediterranean - the 100 ‘Worst Invasives’ and their impact. Mediterr Mar Sci 2006, 7, 87–118. [Google Scholar]
- Burreson, BJ; Moore, RE; Roller, PP. Volatile halogen compounds in the alga Asparagopsis taxiformis (Rhodophyta). J Agric Food Chem 1976, 24, 856–861. [Google Scholar]
- Salvador, N; Garreta, AG; Lavelli, L; Ribera, MA. Antimicrobial activity of Iberian macroalgae. Scientia Marina 2007, 71, 101–113. [Google Scholar]
- Bansemir, A; Blume, M; Schröder, S; Lindequist, U. Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture 2006, 252, 79–84. [Google Scholar]
- McKey, D. Rosenthal, GA, Janzen, DH, Eds.; The distribution of secondary compounds within plant. In Herbivores: Their Interactonion with Secondary Plant Metabolites; Academic Press: San Diego, CA, USA, 1979; pp. 56–133. [Google Scholar]
- Wolk, CP. Role of bromine in the formation of the refractile inclusions of the vesicle cells of the Bonnemaisoniaceae (Rhodophyta). Planta 1968, 78, 371–375. [Google Scholar]
- Young, DN. Comparative Fine Structure and Histochemistry of Vesiculate Cells in Selected Red Algae. In Dissertation; University of California: Berkeley, USA, 1977. [Google Scholar]
- Womersley, HBS. The marine benthic flora of southern Australia. Part IIIB; Australian Biological Resurces Study: Canberra, Australian, 1996; p. 392. [Google Scholar]
- Paul, NA; Cole, L; de Nys, R; Steinberg, PD. Ultrastructure of the gland cells of the red alga Asparagopsis armata (Bonnemaisoniaceae). J Phycol 2006, 42, 637–645. [Google Scholar]
- Knight, FR; Mackenzie, DW; Evans, BG; Porter, K; Barrett, NJ; White, GC. Increasing incidence of Cryptococcosis in the United Kingdom. J Infect 1993, 27, 185–191. [Google Scholar]
- Huston, SM; Mody, CH. Cryptococcosis: An emerging respiratory mycosis. Clin Chest Med 2009, 30, 253–264. [Google Scholar]
- Kauffman, CA. Goldman, L, Ausiello, D, Eds.; Cryptococcosis. In Cecil Medicine, 23rd ed; Saunders Elsevier: Philadelphia, PA, USA, 2007. [Google Scholar]
- Kirandeep, K; Meenakshi, J; Tarandeep, K; Rahul, J. Antimalarials from nature. Bioorg Med Chem 2009, 17, 3229–3256. [Google Scholar]
- Croft, SL; Sundar, S; Fairlamb, AH. Drug resistance in Leishmaniasis. Clin Microbiol Rev 2006, 19, 111–126. [Google Scholar]
- Myler, PJ; Fasel, N. Leishmania: After the Genome; Caister Academic Press: Wymondham, UK, 2008. [Google Scholar]
- Mikus, J; Steverding, D. A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue®. Parasitol Int 2000, 48, 265–269. [Google Scholar]
Species | Crude extract/Fraction | IC50 (μg/mL) | IC90 (μg/mL) |
---|---|---|---|
A. armata | HEX | >40 | >40 |
A. armata | DCM | >40 | >40 |
A. armata | EtOH-Hex:EtOAc | 10 | 30 |
A. armata | EtOH-EtOAc | 19 | 32 |
A. armata | EtOH-EtOAc:MeOH | Inactive | Inactive |
A. armata | EtOH-MeOH | Inactive | Inactive |
A. armata | EtOH-H2O | Inactive | Inactive |
A. taxiformis | HEX | 17 | 33 |
A. taxiformis | DCM | 16 | 32 |
A. taxiformis | EtOH-Hex:EtOAc | 14 | 32 |
A. taxiformis | EtOH-EtOAc | 20 | 34 |
A. taxiformis | EtOH-EtOAc:MeOH | Inactive | Inactive |
A. taxiformis | EtOH-MeOH | Inactive | Inactive |
A. taxiformis | EtOH-H2O | Inactive | Inactive |
Control drug | IC50 (mg/mL) | IC90 (mg/mL) |
---|---|---|
Pentamidine | from 0.9 to 1 | from 1.9 to 4 |
Amphotericin B | from 0.18 to 0.19 | 0.32 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Genovese, G.; Tedone, L.; Hamann, M.T.; Morabito, M. The Mediterranean Red Alga Asparagopsis: A Source of Compounds against Leishmania. Mar. Drugs 2009, 7, 361-366. https://doi.org/10.3390/md7030361
Genovese G, Tedone L, Hamann MT, Morabito M. The Mediterranean Red Alga Asparagopsis: A Source of Compounds against Leishmania. Marine Drugs. 2009; 7(3):361-366. https://doi.org/10.3390/md7030361
Chicago/Turabian StyleGenovese, Giuseppa, Laura Tedone, Mark T. Hamann, and Marina Morabito. 2009. "The Mediterranean Red Alga Asparagopsis: A Source of Compounds against Leishmania" Marine Drugs 7, no. 3: 361-366. https://doi.org/10.3390/md7030361
APA StyleGenovese, G., Tedone, L., Hamann, M. T., & Morabito, M. (2009). The Mediterranean Red Alga Asparagopsis: A Source of Compounds against Leishmania. Marine Drugs, 7(3), 361-366. https://doi.org/10.3390/md7030361