Matrix Metalloproteinase Inhibitors (MMPIs) from Marine Natural Products: the Current Situation and Future Prospects
Abstract
:1. Introduction
2. MMPIs from marine natural products
2.1. Marine saccharoid MMPIs
2.2. Marine flavonoids and polyphenols MMPIs
2.3. Marine fatty acid MMPIs
2.4. Other marine natural products MMPIs
3. Conclusions
Acknowledgements
Reference and Notes
- Sternlicht, MD; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001, 17, 463–516. [Google Scholar] [CrossRef] [PubMed]
- Sang, QX; Jin, Y; Newcomer, RG; Monroe, SC; Fang, XX; Hurst, DR; Lee, S; Cao, Q; Schwartz, MA. Matrix metalloproteinase inhibitors as prospective agents for the prevention and treatment of cardiovascular and neoplastic diseases. Curr Top Med Chem 2006, 6, 289–316. [Google Scholar] [CrossRef] [PubMed]
- Hu, JL; Van den Steen, PE; Sang, QX; Opdenakker, G. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 2007. [Google Scholar] [CrossRef] [PubMed]
- Egeblad, M; Werb, Z. New functions for the matrix metalloproteinase in cancer progression. Nat Rev Cancer 2002, 2, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Overall, CM; Lopez-Otin, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2002, 2, 657–672. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Twiner, MJ; Rehmann, N; Hess, P; Doucette, GJ. Azaspiracid Shellfish poisoning: a review on the chemistry, ecology, and toxicology with an emphasis on human health impacts. Mar Drugs 2008, 6, 39–72. [Google Scholar] [CrossRef] [PubMed]
- Coussens, LM; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Kijjoa, A; Wattanadilok, R; Herz, W; Campos, N; Nascimento, MS; Pinto, M. Anticancer activity evaluation of kuanoniamines A and C isolated from the marine sponge Oceanapia sagittaria, collected from the gulf of Thailand. Mar Drugs 2007, 5, 6–22. [Google Scholar] [CrossRef] [PubMed]
- Murphy, G; Nagase, H. Progress in matrix metalloproteinase research. Mol Asp Med 2008, 29, 290–308. [Google Scholar] [CrossRef]
- Folgueras, AR; Pendas, AM; Sanchez, LM; Lopez-Otin, C. Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol 2004, 48, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Lukacova, V; Zhang, Y; Mackov, M; Baricic, P; Raha, S; Calvo, JA; Balaz, S. Similarity of binding sites of human matrix metalloproteinases. J Biol Chem 2004, 279, 14194–14200. [Google Scholar] [CrossRef] [PubMed]
- Maskos, K. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie 2005, 87, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Baker, AH; Edwards, DR; Murphy, G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 2002, 115, 3719–3727. [Google Scholar] [CrossRef] [PubMed]
- Pavlaki, M; Zucker, S. Matrix metalloproteinase inhibitors (MMPIs): the beginning of phase I or the termination of phase III clinical trials. Cancer Met Rev 2003, 22, 177–203. [Google Scholar] [CrossRef]
- Coussens, LM; Fingleton, B; Matrisian, LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002, 295, 2387–2392. [Google Scholar] [CrossRef] [PubMed]
- Overall, CM; Kleifeld, O. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 2006, 6, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Overall, CM; Blobel, CP. In search of partners: linking extracellular proteases to substrates. Nat Rev Mol Cell Biol 2007, 8, 245–257. [Google Scholar] [PubMed]
- Wasserman, ZR. Making a new turn in matrix metalloprotease inhibition. Chem Biol 2005, 12, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Engel, CK; Pirard, B; Schimanski, S; Kirsch, R; Habermann, J; Klingler, O; Schlotte, V; Weithmann, KU; Wendt, KU. Structural Basis for the Highly Selective Inhibition of MMP-13. Chem Biol 2005, 12, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Dublanchet, AC; Ducrot, P; Andrianjara, C; O’Gara, M; Morales, R; Compere, D; Denis, A; Blais, S; Cluzeau, P; Courte, K; Hamon, J; Moreau, F; Prunet, ML; Tertre, A. Structure-based design and synthesis of novel non-zinc chelating MMP-12 inhibitors. Bioorg Med Chem Lett 2005, 15, 3787–3790. [Google Scholar] [CrossRef] [PubMed]
- Seo, UK; Lee, YJ; Kim, JK; Cha, BY; Kim, DW; Nam, KS; Kim, CH. Large-scale and effective screening of Korean medicinal plants for inhibitory activity on matrix metalloproteinase-9. J Ethnopharmacol 2005, 97, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Ha, KT; Lee, TK; Kwak, KH; Kim, JK; Kim, DI; Choi, DY; Kim, CH. Inhibitory effect of Cho-Deung-San on human aortic smooth muscle cell migration induced by TNF-α through inhibition of matrix metalloproteinase-2 and -9 activity. Vasc Pharmacol 2004, 41, 83–90. [Google Scholar] [CrossRef]
- Ha, KT; Kim, JK; Kang, SK; Kim, DW; Lee, YC; Kim, HM; Kim, CH. Inhibitory effect of Sihoga–Yonggol–Moryo–Tang on matrix metalloproteinase-2 and -9 activities and invasiveness potential of hepatocellular carcinoma. Pharmacol Res 2004, 50, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Kim, MM; Kim, SK. Chitooligosaccharides inhibit activation and expression of matrix metalloproteinase-2 in human dermal fibroblasts. FEBS Lett 2006, 580, 2661–2666. [Google Scholar] [CrossRef] [PubMed]
- Van, TaQ; Kim, MM; Kim, SK. Inhibitory effect of chitooligosaccharides on matrix metalloproteinase-9 in human fibrosarcoma cells (HT1080). Mar. Biotechnol 2006, 8, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Rajapakse, N; Kim, MM; Mendis, E; Huang, RH; Kim, SK. Carboxylated chitooligosaccharides (CCOS) inhibit MMP-9 expression in human fibrosarcoma cells via down-regulation of AP-1. Biochim Biophys Acta 2006, 1760, 1780–1788. [Google Scholar] [CrossRef] [PubMed]
- Brito, AS; Arimatéia, DS; Souza, LR; Lima, MA; Santos, VO; Medeiros, VP; Ferreira, PA; Silva, RA; Ferreira, CV; Justo, GZ; Leite, EL; Andrade, GP; Oliveira, FW; Nader, HB; Chavante, SF. Anti-inflammatory properties of a heparin-like glycosaminoglycan with reduced anti-coagulant activity isolated from a marine shrimp. Bioorg Med Chem 2008, 16, 9588–9595. [Google Scholar] [CrossRef] [PubMed]
- Rajapakse, N; Mendis, E; Kim, MM; Kim, SK. Sulfated glucosamine inhibits MMP-2 and MMP-9 expressions in human fibrosarcoma cells. Bioorg Med Chem 2007, 15, 4891–4896. [Google Scholar] [CrossRef] [PubMed]
- Chen, HM; Yan, XJ; Lin, J; Wang, F; Xu, WF. Depolymerized products of λ-carrageenan as a potent angiogenesis inhibitor. J Agric Food Chem 2007, 55, 6910–6917. [Google Scholar] [CrossRef] [PubMed]
- Wang, SB; Cheng, YN; Wang, FS; Sun, LR; Liu, CH; Chen, GJ; Li, YH; Ward, SG; Qu, XJ. Inhibition activity of sulfated polysaccharide of Sepiella maindroni ink on matrix metalloproteinase (MMP)-2. Biomed Pharmacother 2008, 62, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Ye, J; Li, YP; Teruya, K; Katakura, Y; Ichikawa, A; Eto, H; Hosoi, M; Hosoi, M; Nishimoto, S; Shirahata1, S. Enzyme-digested fucoidan extracts derived from seaweed Mozuku of Cladosiphon novae-caledoniae kylin inhibit invasion and angiogenesis of tumor cells. Cytotechnology 2005, 47, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Kong, CK; Kim, YA; Kim, MM; Park, JS; Kim, JA; Kim, SK; Lee, BJ; Nam, TJ; Seo, YW. Flavonoid glycosides isolated from Salicornia herbacea inhibit matrix metalloproteinase in HT1080 cells. Toxicol Vitro 2008, 22, 1742–1748. [Google Scholar] [CrossRef]
- Kim, MM; Van Ta, Q; Mendis, E; Rajapakse, N; Jung, WK; Byun, HG; Jeon, YJ; Kim, SK. Phlorotannins in Ecklonia cava extract inhibit matrix metalloproteinase activity. Life Sci 2006, 79, 1436–1443. [Google Scholar] [CrossRef] [PubMed]
- Inhee, MJ; Kim, H; Fan, WZ; Tezuka, Y; Kadota, S; Hishijo, H; Jung, MW. Neuroprotective effects of constituents of the oriental crude drugs, Rhodiola sacra, R. sachalinensis and Tokaku-joki-to, against Beta-amyloid toxicity, oxidative stress and apoptosis. Biol Pharm Bull 2002, 25, 1101–1104. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, M; Shimada, H; Shimoda, H; Murakami, N; Yamahara, J; Matsuda, H. Bioactive constituents of Chinese natural medicines. II. Rhodiolae radix. (1). Chemical structures and antiallergic activity of rhodiocyanosides A and B from the underground part of Rhodiola quadrifida (Pall.) Fisch. et Mey. (Crassulaceae). Chem Pharm Bull 1996, 44, 2086–2091. [Google Scholar] [CrossRef] [PubMed]
- Jung, WK; Lee, DY; Kim, JH; Choi, I; Park, SG; Seo, SK; Lee, SW; Lee, CM; Park, YM; Jeon, YJ; Lee, CH; Jeon, BT; Qian, ZJ; Kim, SK; Choi, IW. Anti-inflammatory activity of caffeic acid phenethyl ester (CAPE) extracted from Rhodiola sacra against lipopolysaccharide-induced inflammatory responses in mice. Process Biochem 2008, 43, 783–787. [Google Scholar] [CrossRef]
- Joe, MJ; Kim, SN; Choi, HY; Shin, WS; Park, GM; Kang, DW; Kim, YK. the inhibitory effects of eckol and dieckol from Ecklonia stoloniferaon the expression of matrix metalloproteinase-1 in human dermal fibroblasts. Biol Pharm Bull 2006, 29, 1735–1739. [Google Scholar] [CrossRef] [PubMed]
- Ryu, BM; Qian, ZJ; Kim, MM; Nam, KW; Kim, SK. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract. Radiat Phys Chem 2009, 78, 98–105. [Google Scholar] [CrossRef]
- Kim, SK; Lee, DY; Jung, WK; Kim, JH; Choi, I; Park, SG; Seo, SK; Lee, SW; Lee, CM; Yea, SS; Choi, YH; Choi, IW. Effects of Ecklonia cava ethanolic extracts on airway hyperresponsiveness and inflammation in a murine asthma model: Role of suppressor of cytokine signaling. Biomed Pharmacother 2008, 62, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Ryu, BM; Li, Y; Qian, ZJ; Kim, MM; Kim, SK. Differentiation of human osteosarcoma cells by isolated phlorotannins is subtly linked to COX-2, iNOS, MMPs, and MAPK signaling: Implication for chronic articular disease. Chem-Biol Interact 2009, 179, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Berton, A; Rigot, V; Huet, E; Decarme, M; Eeckhout, Y; Patthy, L; Godeau, G; Hornebeck, W; Bellon, G; Emonard, H. Involvement of fibronectin type II repeats in the efficient inhibition of gelatinases A and B by long-chain unsaturated fatty acids. J Biol Chem 2001, 276, 20458–20465. [Google Scholar] [CrossRef] [PubMed]
- Sang, QX; Jin, YH; Newcomer, RG; Monroe, SC; Fang, XX; Hurst, DR; Lee, SK; Cao, Q; Schwartz, MA. Matrix metalloproteinase inhibitors as prospective agents for the prevention and treatment of cardiovascular and neoplastic diseases. Curr Top Med Chem 2006, 6, 289–316. [Google Scholar] [CrossRef] [PubMed]
- Ashe, BM; Zimmerman, M. Specific inhibition of human granulocyte elastase by cis-unsaturated fatty acids and activation by the corresponding alcohols. Biochem Biophys Res Commun 1977, 75, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, SC; Simon, SR. Parinaric acids as probes of binding domains in neutrophil elastase. J Biol Chem 1991, 266, 15185–15191. [Google Scholar] [PubMed]
- Higazi, AA; Aziza, R; Samara, AA; Mayer, M. Regulation of fibrinolysis by non-esterified fatty acids. Biochem J 1994, 300, 251–255. [Google Scholar] [PubMed]
- Higazi, AA; Finci-Yeheskel, Z; Samara, AA; Aziza, R; Mayer, M. Stimulation of plasmin activity by oleic acid. Biochem J 1992, 282, 863–866. [Google Scholar] [PubMed]
- Judé, S; Roger, S; Martel, E; Besson, P; Richard, S; Bougnoux, P; Champeroux, P; Le Guennec, JY. Dietary long-chain omega-3 fatty acids of marine origin: a comparison of their protective effects on coronary heart disease and breast cancers. Prog Biophys Mol Biol 2006, 90, 299–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, I; Iigo, M; Ishikawa, C; Kuhara, T; Asamoto, M; Kunimoto, T; Moore, MA; Yasawa, K; Araki, E; Tsuda, H. Inhibitory effects of oleic and docosahexaenoic acids on lung metastasis by colon-carcinoma-26 cells are associated with reduced matrix metalloproteinase-2 and -9 activities. Int J Cancer 1997, 73, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Harris, MA; Hansen, RA; Vidsuhiphan, P; Koslo, JL; Thomas, JB; Watkins, BA; Allen, KG. Effects of conjugated linoleic acids and docosahexaenoic acid on rat liver and preorductive tissue fatty acids, prostaglandins and matrix metalloproteinase production. Prostaglandins Leukot Essent Fatty Acids 2001, 65, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Dai, JR; Hallock, YF; Cardellina, JH; Gray, GN; Boyd, MR. Triangulynes A-H and trangulynic acid, new cytotxic polyacetylenes from the marine sponge Pellina triangulata. J Nat Prod 1996, 59, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Li, HY; Matsunaga, S; Fusetani, N. Corticatic acids A-C, antifungal acetylenic acids from the marine sponge Petrosia corticata. J Nat Prod 1994, 57, 1464–1467. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, S; Kato, H; Hirota, H; Fusetani, N. Mauritiamine, a new antifouling oroidin dimer from the marine sponge Agelas mauritiana. J Nat Prod 1997, 60, 126–130. [Google Scholar] [CrossRef]
- Nishimura, S; Matsunaga, S; Shibazaki, M; Suzuki, K; Harada, N; Naoki, H; Fusetani, N. Corticatic acids D and E, polyacetylenic geranylgeranyltransferase type I inhibitors, from the marine sponge Petrosia corticata. J Nat Prod 2002, 65, 1353–1356. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M; Nakao, Y; Matsunaga, S; Nishikawa, T; Fusetani, N. Sodium 1-(12-Hydroxy)octadecanyl sulfate, an MMP2 inhibitor, isolated from a tunicate of the family polyclinidae. Nat Prod 2002, 65, 1936–1938. [Google Scholar] [CrossRef]
- Fujita, M; Nakao, Y; Matsunaga, S; van Soest, RW; Itoh, Y; Seiki, M; Fusetani, N. Callysponginol sulfate A, an MT1-MMP inhibitor isolated from the marine sponge Callyspongia truncata. J Nat Prod 2003, 66, 569–571. [Google Scholar] [CrossRef] [PubMed]
- Cho, J; Kim, Y. Sharks: a potential source of antiangiogenic factors and tumor treatments. Mar Biotechnol 2002, 4, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Dupont, E; Lachance, Y; Lessard, Y; Auger, S. Low molecular weight components of shark cartilage, processes for their preparation and therapeutic uses thereof. US20010001041A1 (2001). Recent Patents on Anti-Cancer Drug Discovery 2006, 1, 135–140. [Google Scholar]
- Gingras, D; Renaud, A; Mousseau, N; Beaulieu, E; Kachra, Z; Beliveau, R. Matrix proteinase inhibition by AE-941, a multifunctional antiangiogenic compound. Anticancer Res 2001, 21, 145–155. [Google Scholar] [PubMed]
- Boivin, D; Gendron, S; Beaulieu, E; Gingras, D; Bèliveau, R. The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis. Mol Cancer Ther 2002, 1, 795–802. [Google Scholar] [PubMed]
- Mannello, F. Natural bio-drugs as matrix metalloproteinase inhibitors: new perspectives on the horizon. Recent Patents Anti-Canc Drug Discov 2006, 1, 91–103. [Google Scholar] [CrossRef]
- Fujita, M; Nakao, Y; Matsunaga, S; Seiki, M; Itoh, Y; Yamashita, J; Van Soest, RW; Fusetani, N. Ageladine A: an antiangiogenic matrixmetalloproteinase inhibitor from the marine sponge Agelas nakamurai. J Am Chem Soc 2003, 125, 15700–15701. [Google Scholar] [CrossRef] [PubMed]
- Lødemel, JB; Egge-Jacobsen, W; Olsen, RL. Detection of TIMP-2-like protein in Atlantic cod (Gadus morhua) muscle using two-dimensional real-time reverse zymography. Comp Biochem Physiol 2004, 139, 253–259. [Google Scholar] [CrossRef]
- Rodríguez-Nieto, S; González-Iriarte, M; Carmona, R; Munoz-Chápuli, R; Medina, MA; Quesada, AR. Antiangiogenic activity of aeroplysinin-1, a brominated compound isolated from a marine sponge. Faseb J 2002, 16, 261–263. [Google Scholar] [PubMed]
- Fahmy, H; Zjawiony, JK; Konoshima, T; Tokuda, H; Khan, S; Khalifa, S. Potent skin cancer chemopreventing activity of some novel semi-synthetic cembranoids from marine sources. mar. drugs 2006, 4, 28–36. [Google Scholar] [CrossRef]
- Cuniasse, P; Devel, L; Makaritis, A; Beau, F; Georgiadis, D; Matziari, M; Yiotakis, A; Dive, V. Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs. Biochimie 2005, 87, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Overall, CM; Kleifeld, O. Towards third generation matrix metalloproteinase inhibitors for cancer therapy. Br J Cancer 2006, 94, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Bao, BQ; Zhang, P; Lee, YM; Hong, JK; Lee, CO; Jung, JH. Monoindole alkaloids from a marine sponge Spongosorites sp. Mar Drugs 2007, 5, 31–39. [Google Scholar] [CrossRef] [PubMed]
Abbreviations
MMPs | matrix metalloproteinases |
ECM | extracellular matrix |
MMPIs | matrix metalloproteinase inhibitors |
TIMPs | tissue inhibitors of metalloproteinase |
RECK | reversion-inducing cysteine-rich protein with kazal motifs |
ADAMs | a disintegrin and metalloproteinases |
SAR | safety analysis report |
COS | chitooligosaccharides |
HDFs | human dermal fibroblasts |
CCOS | carboxylated chitooligosaccharides |
SGlc | sulfated glucosamine |
NF-κB | nuclear factor κB |
AP-1 | activator protein-1 |
λ-CO | λ-carrageenan oligosaccharides |
HUVECs | human umbilical vein endothelial cells |
SIP-SII | sulfated S. maindroni ink polysaccharide |
EC | Ecklonia cava |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhang, C.; Kim, S.-K. Matrix Metalloproteinase Inhibitors (MMPIs) from Marine Natural Products: the Current Situation and Future Prospects. Mar. Drugs 2009, 7, 71-84. https://doi.org/10.3390/md7020071
Zhang C, Kim S-K. Matrix Metalloproteinase Inhibitors (MMPIs) from Marine Natural Products: the Current Situation and Future Prospects. Marine Drugs. 2009; 7(2):71-84. https://doi.org/10.3390/md7020071
Chicago/Turabian StyleZhang, Chen, and Se-Kwon Kim. 2009. "Matrix Metalloproteinase Inhibitors (MMPIs) from Marine Natural Products: the Current Situation and Future Prospects" Marine Drugs 7, no. 2: 71-84. https://doi.org/10.3390/md7020071
APA StyleZhang, C., & Kim, S. -K. (2009). Matrix Metalloproteinase Inhibitors (MMPIs) from Marine Natural Products: the Current Situation and Future Prospects. Marine Drugs, 7(2), 71-84. https://doi.org/10.3390/md7020071