A Novel Cobalt-Activated Halotolerant α-Amylase with High Specific Activity from Priestia sp. W243 in Kuwait Sabkha for Biotechnological Applications
Abstract
1. Introduction
2. Results and Discussion
2.1. Identification of Bacterial Isolates with High Amylase Activity
2.2. Growth and α-Amylase Production of the Seven Selected Isolates at Different Temperatures, pH and Salt Concentrations
2.3. Selection of Best Isolate for Novel α-Amylase Isolation
2.4. Isolation and Purification of α-Amylase with High Specific Activity from Priestia sp. W243
2.5. Characterization of Purified α-Amylase
2.5.1. Optimal Temperature and Thermal Stability
2.5.2. Optimal pH and pH Stability
2.5.3. Optimal Salt Concentration and Salt Stability
2.5.4. Effect of Metal Cations and Metal Chelators on the Purified α-Amylase
2.5.5. Effect of Detergents on the Activity of Purified α-Amylase
2.5.6. Effect of Reducing Agents and Oxidising Agents on the Activity of α-Amylase
3. Materials and Methods
3.1. Bacterial Isolates from Kuwait Sabkha
3.2. Identification of Amylase-Producing Isolates
3.3. Optimal Temperature, pH, and NaCl Concentrations on α-Amylase Production by the Seven Selected Isolates
3.4. Amylase Activity Assay
3.5. Culturing the Most Potent α-Amylase Producer for Enzyme Isolation
3.6. Purification of α-Amylase from Priestia sp. W243
3.7. Protein Content and SDS PAGE Electrophoresis
3.8. Characterization of Purified α-Amylase
3.8.1. Effect of Temperature, pH, and Salt Concentration on the Activity and Stability of the Purified α-Amylase
3.8.2. Effect of Metal Ions on the Activity of Purified α-Amylase
3.8.3. Effect of Detergents, Oxidizing Agents, Chelators, and Reducing Agents on the Activity of Purified α-Amylase
3.9. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Market Research Report. Enzymes Market. 2021. Available online: https://www.fortunebusinessinsights.com/industry-reports/enzymes-market-100595 (accessed on 7 December 2021).
- Singh, R.; Kim, S.W.; Kumari, A.; Mehta, P.K. An overview of microbial α-amylase and recent biotechnological developments. Curr. Biotechnol. 2022, 11, 11–26. [Google Scholar] [CrossRef]
- Varrella, S.; Tangherlini, M.; Corinaldesi, C. Deep hypersaline anoxic basins as untapped reservoir of polyextremophilic prokaryotes of biotechnological interest. Mar. Drugs 2020, 18, 91. [Google Scholar] [CrossRef]
- Donato, P.D.; Buono, A.; Poli, A.; Finore, I.; Abbamondi, G.R.; Nicolaus, B.; Lama, L. Exploring marine environments for the identification of extremophiles and their enzymes for sustainable and green bioprocesses. Sustainability 2018, 11, 149. [Google Scholar] [CrossRef]
- Putri, A.Z.; Nakagawa, T. Microbial α-amylases in the industrial extremozymes. Rev. Agric. Sci. 2020, 8, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martínez, M.; Bargiela, R.; Ferrer, M. Metagenomics and the Search for Industrial Enzymes. In Biotechnology of Microbial Enzymes; Bramachari, G., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 167–184. [Google Scholar]
- Al-Hurban, A.; Gharib, I. Geomorphological and sedimentological characteristics of coastal and inland sabkhas, Southern Kuwait. J. Arid Environ. 2004, 58, 59–85. [Google Scholar] [CrossRef]
- Al-Mailem, D.M.; Eliyas, M.; Khanafer, M.; Radwan, S. Culture-dependent and culture-independent analysis of hydrocarbonoclastic microorganisms indigenous to hypersaline environments in Kuwait. Microb. Ecol. 2014, 67, 857–865. [Google Scholar] [CrossRef]
- Alagarsamy, S.; Habeebullah, S.F.K.; Al-Yamani, F. Bioprospecting potentials of moderately halophilic bacteria and the isolation of squalene producers from Kuwait sabkha. Int. Microbiol. 2021, 24, 373–384. [Google Scholar] [CrossRef]
- Yin, J.; Chen, J.C.; Wu, Q.; Chen, G.Q. Halophiles, coming stars for industrial biotechnology. Biotechnol. Adv. 2015, 33, 1433–1442. [Google Scholar] [CrossRef]
- DasSarma, S.; DasSarma, P. Halophiles and their enzymes: Negativity put to good use. Curr. Opin. Microbiol. 2015, 25, 120–126. [Google Scholar] [CrossRef]
- Al-Mailem, D.M.; Sorkhoh, N.A.; Al-Awadhi, H.; Eliyas, M.; Radwan, S.S. Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 2010, 14, 321–328. [Google Scholar] [CrossRef]
- Al-Mailem, D.M.; Eliyas, M.; Radwan, S.S. Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts. Extremophiles 2013, 17, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Al-Musallam, A.A.; Al-Sammar, H.F.; Al-Sané, N.A. Diversity and dominance of fungi inhabiting the sabkha area in Kuwait. Bot. Mar. 2011, 54, 83–94. [Google Scholar] [CrossRef]
- Dalmaso, G.Z.L.; Ferreira, D.; Vermelho, A.B. Marine extremophiles: A source of hydrolases for biotechnological applications. Mar. Drugs 2015, 13, 1925–1965. [Google Scholar] [CrossRef] [PubMed]
- Cretoiu, M.S.; Berini, F.; Kielak, A.M.; Marinelli, F.; van Elsas, J.D. A novel salt-tolerant chitobiosidase discovered by genetic screening of a metagenomic library derived from chitin-amended agricultural soil. Appl. Microbiol. Biotechnol. 2015, 99, 8199–8215. [Google Scholar] [CrossRef]
- Chathalingath, N.; Kingsly, J.S.; Gunasekar, A. Biosynthesis and biodegradation of poly(3-hydroxybutyrate) from Priestia flexa; A promising mangrove halophyte towards the development of sustainable eco-friendly bioplastics. Microbiol. Res. 2023, 267, 127270. [Google Scholar] [CrossRef]
- Mukhtar, S.; Mehnaz, S.; Mirza, M.S.; Malik, K.A. Isolation and characterization of bacteria associated with the rhizosphere of halophytes (Salsola stocksii and Atriplex amnicola) for production of hydrolytic enzymes. Braz. J. Microbiol. 2019, 50, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.; Deb, A.; Majumdar, S. Optimization of the Medium for the Production of Extracellular Amylase by the Pseudomonas stutzeri ISL B5 Isolated from Municipal Solid Waste. Int. J. Microbiol. 2016, 2016, 4950743. [Google Scholar] [CrossRef]
- Padhiar, A.R.; Kommu, S. Isolation, characterization and optimization of bacteria producing amylase. Int. J. Adv. Res. Biol. Sci. 2016, 3, 1–7. [Google Scholar]
- Abdel-Razik, M.A.; Azmy, A.F.; Khairalla, A.S.; AbdelGhani, S. Metal bioremediation potential of the halophilic bacterium, Halomonas sp. strain WQL9 isolated from Lake Qarun, Egypt. Egypt. J. Aquat. Res. 2020, 46, 19–25. [Google Scholar] [CrossRef]
- Veerakumar, S.; Manian, R. Agarase, Amylase and Xylanase from Halomonas meridiana: A Study on Optimization of Coproduction for Biomass Saccharification. Fermentation 2022, 8, 479. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Some applications of α-amylase produced by Bacillus subtilis NCTC-10400 and Bacillus cereus ATCC 14579 under solid state fermentation. Afr. J. Microbiol. Res. 2013, 7, 3720–3729. [Google Scholar]
- Ubi, D.S.; Ekpenyong, M.G.; Ikharia, E.J.; Akwagiobe, E.A.; Asitok, A.D.; Antai, S.P. Production, characterization, and bio-ethanologenic potential of a novel tripartite raw starch-digesting amylase from Priestia flexa UCCM 00132. Prep. Biochem. Biotechnol. 2023, 54, 597–611. [Google Scholar] [CrossRef]
- Coronado, M.J.; Vargas, C.; Hofemeister, J.; Ventosa, A.; Nieto, J.J. Production and biochemical characterization of an α-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol. Lett. 2000, 183, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Uzyol, K.S.; Akbulut, B.S.; Denizci, A.A.; Kazan, D. Thermostable α-amylase from moderately halophilic Halomonas sp. AAD21. Turk. J. Biol. 2012, 36, 327–338. [Google Scholar] [CrossRef]
- Maalej, H.; Ayed, H.B.; Ghorbel-Bellaaj, O.; Nasri, M.; Hmidet, N. Production and Biochemical Characterization of a High Maltotetraose (G4) Producing Amylase from Pseudomonas stutzeri AS22. Biomed. Res. Int. 2014, 2014, 156438. [Google Scholar] [CrossRef]
- Kizhakedathil, M.P.J.; Devi, C.S. Acid stable α-amylase from Pseudomonas balearica VITPS19—Production, purification and characterization. Biotechnol. Rep. 2021, 30, e00603. [Google Scholar] [CrossRef]
- Abd-Elaziz, A.M.; Karam, E.A.; Ghanem, M.M.; Moharam, M.E.; Kansoh, A.L. Production of a novel α-amylase by Bacillus atrophaeus NRC1 isolated from honey: Purification and characterization. Int. J. Biol. Macromol. 2020, 148, 292–301. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; Tong, B.; Chen, X.; Chen, J. Purification and biochemical characterization of a thermostable and acid-stable alpha-amylase from Bacillus licheniformis B4-423. Int. J. Biol. Macromol. 2018, 109, 329–337. [Google Scholar] [CrossRef]
- Al Farraj, D.A.; Kumar, T.S.J.; Vijayaraghavan, P.; Elshikh, M.S.; Alkufeidy, R.M.; Alkubaisi, N.A.; Alshammari, M.K. Enhanced production, purification and biochemical characterization of therapeutic potential fibrinolytic enzyme from a new Bacillus flexus from marine environment. J. King Saud Univ. Sci. 2020, 32, 3174–3180. [Google Scholar] [CrossRef]
- Kumar, S.; Khare, S.K. Chloride activated halophilic α-amylase from Marinobacter sp. EMB8: Production optimization and nanoimmobilization for efficient starch hydrolysis. Enzyme Res. 2015, 2015, 859485. [Google Scholar] [CrossRef] [PubMed]
- Klinfoong, R.; Thummakasorn, C.; Ungwiwatkul, S.; Boontanom, P.; Chantarasiri, A. Diversity and activity of amylase-producing bacteria isolated from mangrove soil in Thailand. Biodiversitas 2022, 23, 5519–5531. [Google Scholar] [CrossRef]
- Pandey, A.; Nigam, P.; Soccol, C.R.; Soccol, V.T.; Singh, D.; Mohan, R. Advances in microbial amylases. Biotechnol. Appl. Biochem. 2000, 31, 135–152. [Google Scholar] [CrossRef]
- Gupta, R.; Gigras, P.; Mohapatra, H.; Goswami, V.K.; Chauhan, B. Microbial α-amylases: A biotechnological perspective. Process Biochem. 2003, 38, 1599–1616. [Google Scholar] [CrossRef]
- Hadipour, S.; Ghafoori, H.; Sohrabi, N.; Izaddoust, M. Purification and characterization of an extracellular thermostable alkaline α-amylase from the moderately halophilic bacterium, Bacillus persicus. Mol. Biochem. Diagn. 2016, 2, 79–94. [Google Scholar]
- Kaur, P.S.; Kaur, S.; Kaur, H.; Sondhi, S. Purification and Characterization of α-amylase from Bacillus licheniformis. Int. J. Eng. Appl. Manag. Sci. 2019, 54, 363–368. [Google Scholar]
- Zhou, H.X.; Pang, X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem. Rev. 2018, 118, 1691–1741. [Google Scholar] [CrossRef] [PubMed]
- Karan, R.; Capes, M.D.; DasSarma, S. Function and biotechnology of extremophilic enzymes in low water activity. Aquat. Biosyst. 2012, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, N.; Li, N.; Tang, J.W.; Patel, B.K.C.; Swaminathan, K. Crystal structure of AmyA lacks acidic surface and provide insights into protein stability at poly-extreme condition. FEBS Lett. 2006, 580, 2646–2652. [Google Scholar] [CrossRef]
- Altermark, B.; Helland, R.; Moe, E.; Willassen, N.P.; Smalås, A.O. Structural adaptation of endonuclease I from the cold-adapted and halophilic bacterium Vibrio salmonicida. Acta Crystallogr. D Biol. Crystallogr. 2008, 64, 368–376. [Google Scholar] [CrossRef]
- Hutcheon, G.W.; Vasisht, N.; Bolhuis, A. Characterisation of a highly stable αα-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 2005, 9, 487–495. [Google Scholar] [CrossRef]
- Fukuchi, S.; Yoshimune, K.; Wakayama, M.; Moriguchi, M.; Nishikawa, K. Unique amino acid composition of proteins in halophilic bacteria. J. Mol. Biol. 2003, 327, 347–357. [Google Scholar] [CrossRef]
- Paul, S.; Bag, S.K.; Das, S.; Harvill, E.T.; Dutta, C. Molecular signature of hypersaline adaptation: Insights from genome and proteome composition of halophilic prokaryotes. Genome Biol. 2008, 9, R70. [Google Scholar] [CrossRef]
- Madern, D.; Ebel, C.; Zaccai, G. Halophilic adaptation of enzymes. Extremophiles 2000, 4, 91–98. [Google Scholar] [CrossRef]
- Bolhuis, A.; Kwan, D.; Thomas, J.R. Halophilic Adaptations of Proteins. In Protein Adaptation in Extremophiles; Siddiqui, K.S., Thomas, T., Eds.; Nova Science Publishers: New York, NY, USA, 2008; pp. 71–104. [Google Scholar]
- Zaccai, G.; Cendrin, F.; Haik, Y.; Borochov, N.; Eisenberg, H. Stabilization of halophilic malate dehydrogenase. J. Mol. Biol. 1989, 208, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Dym, O.; Mevarech, M.; Sussman, J.L. Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science 1995, 267, 1344–1346. [Google Scholar] [CrossRef]
- Madern, D.; Camacho, M.; Rodríguez-Arnedo, A.; Bonete, M.J.; Zaccai, G. Salt-dependent studies of NADP-dependent isocitrate dehydrogenase from the halophilic archaeon Haloferax volcanii. Extremophiles 2004, 5, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, A.K.; Sonawat, H.M. Salt dependent stability and unfolding of [Fe2-S2] ferredoxin of Halobacterium salinarum: Spectroscopic investigations. Biophys. J. 2000, 79, 501–510. [Google Scholar] [CrossRef]
- Prejanò, M.; Alberto, M.E.; Russo, N.; Toscano, M.; Marino, T. The Effects of the Metal Ion Substitution into the Active Site of Metalloenzymes: A Theoretical Insight on Some Selected Cases. Catalysts 2020, 10, 1038. [Google Scholar] [CrossRef]
- Saboury, A.A. Stability, activity, and binding properties of α-amylase upon interaction with Ca2+ and Co2+. Biol. Trace Elem. Res. 2002, 57, 221–228. [Google Scholar]
- Kumar, S.; Grewal, J.; Sadaf, A.; Hemamalini, R.; Khare, S.K. Halophiles as a source of polyextremophilic α-amylase for industrial applications. AIMS Microbiol. 2016, 2, 1–26. [Google Scholar] [CrossRef]
- Machius, M.; Declerck, N.; Huber, R.; Wiegand, G. Activation of Bacillus licheniformis α-amylase through a disorder→order transition of the substrate-binding site mediated by a calcium–sodium–calcium metal triad. Structure 1998, 6, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, Z.; Shalavi, S.; Jafarzadeh, H. Ethylenediaminetetraacetic acid in endodontics. Eur. J. Dent. 2013, 7, S135–S142. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, D.; Meng, J.; Jun, T. EGTA reduces the inflorescence stem mechanical strength of herbaceous peony by modifying secondary wall biosynthesis. Hortic. Res. 2019, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Boyd, S.; Bryson, A.; Nancollas, G.H.; Torrance, K. 1349. Thermodynamics of ion association. Part XII. EGTA complexes with divalent metal ions. J. Chem. Soc. 1965, 7353–7358. [Google Scholar] [CrossRef]
- Dominguez, K.; Ward, W.S. A Novel Nuclease Activity that is Activated by Ca2+ Chelated to EGTA. Syst. Biol. Reprod. Med. 2009, 55, 193–199. [Google Scholar] [CrossRef]
- Vieille, C.; Zeikus, G.J. Hyperthermophilic Enzymes: Sources, Uses, and Molecular Mechanisms for Thermostability. Microbiol. Mol. Biol. Rev. 2001, 65, 1–43. [Google Scholar] [CrossRef]
- Tanaka, A.; Hoshino, E. Thermodynamic and activation parameters for the hydrolysis of amylose with Bacillus α-amylases in a diluted anionic surfactant solution. J. Biosci. Bioeng. 2002, 93, 485–490. [Google Scholar] [CrossRef]
- Holmberg, K. Interactions between surfactants and hydrolytic enzymes. Colloids Surf. B 2018, 168, 169–177. [Google Scholar] [CrossRef]
- Shoja, M.; Minai-Tehrani, D. Effect of Tween Type Non-Ionic Detergent on the Activity of Lipase of Pseudomonas aeruginosa. Cell Biochem. Biophys. 2021, 79, 87–92. [Google Scholar] [CrossRef]
- John, M. Detergents: Triton X-100, Tween-20, and More. Mater. Methods 2013, 3, 163. [Google Scholar] [CrossRef]
- Guanglei, J.I.; Haiba, Z.; Feng, H.; Xirong, H. Effects of nonionic surfactant Triton X-100 on the laccase-catalyzed conversion of bisphenol A. J. Environ. Sci. 2009, 21, 1486–1490. [Google Scholar] [CrossRef]
- Chou, D.K.; Krishnamurthy, R.; Randolph, T.W.; Carpenter, J.F.; Manning, M.C. Effects of Tween 20® and Tween 80® on the stability of Albutropin during agitation. J. Pharm. Sci. 2005, 94, 1368–1381. [Google Scholar] [CrossRef] [PubMed]
- Vogt, W. Oxidation of methionyl residues in proteins: Tools, targets, and reversal. Free Radic. Biol. Med. 1995, 18, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.L.; Moskovitz, J.; Stadtman, E.R. Oxidation of methionine in proteins: Roles in antioxidant defense and cellular regulation. IUBMB Life 2000, 50, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, L.; Shin, H.D.; Li, J.; Du, G.; Chen, J. Structure-guided systems-level engineering of oxidation-prone methionine residues in catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica for significant improvement of both oxidative stability and catalytic efficiency. PLoS ONE 2013, 8, e57403. [Google Scholar] [CrossRef]
- Krishnan, T.; Chandra, A.K. Purification and characterization of α-amylase from Bacillus licheniformis CUMC305. Appl. Environ. Microbiol. 1983, 46, 430–437. [Google Scholar] [CrossRef]
- Roy, S.K.; Dey, S.K.; Raha, S.K.; Chakrabarty, S.L. Purification and properties of an extracellular endoglucanase from Myceliophthora thermophila D-14 (ATCC 48104). Microbiology 1990, 136, 1967–1971. [Google Scholar] [CrossRef]
- Hogg, P.J. Disulfide bonds as switches for protein function. Trends Biochem. Sci. 2003, 28, 210–214. [Google Scholar] [CrossRef]
- Gilbert, H.F. Redox control of enzyme activities by thiol/disulfide exchange. In Methods in Enzymology; Academic Press: San Diego, CA, USA, 1984; Volume 107, pp. 330–351. [Google Scholar]
- Ulrich, K.; Jakob, U. The role of thiols in antioxidant systems. Free Radic. Biol. Med. 2019, 140, 14–27. [Google Scholar] [CrossRef]
- Cleland, W.W. Dithiothreitol, a new protective reagent for SH groups. Biochemistry 1964, 3, 480–482. [Google Scholar] [CrossRef]
- Hansen, R.E.; Winther, J.R. An introduction to methods for analyzing thiols and disulfides: Reactions, reagents, and practical considerations. Anal. Biochem. 2009, 394, 147–158. [Google Scholar] [CrossRef]
- Gilbert, H.F. Molecular and cellular aspects of thiol–disulfide exchange. Adv. Enzymol. Relat. Areas Mol. Biol. 1990, 63, 69–172. [Google Scholar]
- Connon, S.A.; Giovannoni, S.J. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 2002, 68, 3878–3885. [Google Scholar] [CrossRef]
- Oueriaghli, N.; Castro, D.J.; Llamas, I.; Béjar, V.; Martínez-Checa, F. Study of Bacterial Community Composition and Correlation of Environmental Variables in Rambla Salada, a Hypersaline Environment in South-Eastern Spain. Front. Microbiol. 2018, 9, 1377. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Chun, J. Computer-Assisted Classification and Identification of Actinomycetes. Ph.D. Thesis, University of Newcastle, Newcastle, Australia, 1995. [Google Scholar]
- Felsenstein, J. PHYLIP (Phylogeny Inference Package), Version 3.5c; Department of Genetics, University of Washington: Seattle, WA, USA, 1993.
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]








| Code of Isolate | Source | Accession No. a | Nearest NCBI Match b | Accession No. c | % Similarity d |
|---|---|---|---|---|---|
| W10 | Kuwait: Benaider | OQ777182 | Vibrio nereis | NR_118092.1 | 82.93 |
| W225 | Kuwait:Mina Abdulla | OQ777231 | Bacillus subtilis | OM535929.1 | 89.87 |
| W226 | Kuwait:Mina Abdulla | OQ777232 | Pseudomonas sp. | MF148487.1 | 90.78 |
| W243 | Kuwait:Mina Abdulla | OQ777251 | Priestia flexa | MK012676.1 | 91.97 |
| W293 | Kuwait:Mina Abdulla | OQ777268 | Halomonas ventosae | AB617544.1 | 89.72 |
| W365 | Kuwait:Al-Zour | OQ777306 | Bacillus velezensis | MW494547.1 | 91.19 |
| B28 | Kuwait:Bubiyan | OQ777471 | Marinobacter guineae | NR_042618.1 | 88.42 |
| Purification Steps | Total Activity (U a) | Total Protein (mg) | Specific Activity (U/mg of Protein) | Recovery (%) | Purification Fold |
|---|---|---|---|---|---|
| Crude enzyme | 101,687.4 | 250.8 | 405.5 | 100 | 1 |
| Ultrafiltration | 45,868.9 | 12.2 | 3750.5 | 45.10 | 9.25 |
| Anion Exchange Chromatography | 21,652.3 | 3.43 | 6312.6 | 21.29 | 15.6 |
| Size Exclusion Chromatography | 7219.8 | 0.89 | 8112.1 | 7.1 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Alagarsamy, S.; Habeebullah, S.F.K.; Azad, I.S.; Fakhraldeen, S.A.; Al Said, T.; Al Ghuniam, A.; Al-Yamani, F. A Novel Cobalt-Activated Halotolerant α-Amylase with High Specific Activity from Priestia sp. W243 in Kuwait Sabkha for Biotechnological Applications. Mar. Drugs 2026, 24, 65. https://doi.org/10.3390/md24020065
Alagarsamy S, Habeebullah SFK, Azad IS, Fakhraldeen SA, Al Said T, Al Ghuniam A, Al-Yamani F. A Novel Cobalt-Activated Halotolerant α-Amylase with High Specific Activity from Priestia sp. W243 in Kuwait Sabkha for Biotechnological Applications. Marine Drugs. 2026; 24(2):65. https://doi.org/10.3390/md24020065
Chicago/Turabian StyleAlagarsamy, Surendraraj, Sabeena Farvin Koduvayur Habeebullah, Ismail Saheb Azad, Saja Adel Fakhraldeen, Turki Al Said, Aws Al Ghuniam, and Faiza Al-Yamani. 2026. "A Novel Cobalt-Activated Halotolerant α-Amylase with High Specific Activity from Priestia sp. W243 in Kuwait Sabkha for Biotechnological Applications" Marine Drugs 24, no. 2: 65. https://doi.org/10.3390/md24020065
APA StyleAlagarsamy, S., Habeebullah, S. F. K., Azad, I. S., Fakhraldeen, S. A., Al Said, T., Al Ghuniam, A., & Al-Yamani, F. (2026). A Novel Cobalt-Activated Halotolerant α-Amylase with High Specific Activity from Priestia sp. W243 in Kuwait Sabkha for Biotechnological Applications. Marine Drugs, 24(2), 65. https://doi.org/10.3390/md24020065

