Synthesis and Evaluation of Aquatic Antimicrobial Peptides Derived from Marine Metagenomes Using a High-Throughput Screening Approach
Abstract
:1. Introduction
2. Results
2.1. Prediction and Screening of AMPs in the Macrogenome
2.2. Physicochemical Properties of Candidate AMPs
2.3. The Rapid Synthesis and Screening of AMPs Is Based on Cell-Free Expression
2.4. Inhibition of V. harveyi, V. alginolyticus, V. parahaemolyticus, and A. hydrophila by Three AMPs
2.5. Evaluation of In Vitro Cytotoxicity and Hemolytic Activity
2.6. Effect of Peptide K-5 on V. alginolyticus and V. harvey Ultrastructure via Scanning Electron Microscopy
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Prediction and Screening of Candidate AMPs
4.3. Prediction of Three-Dimensional Structures and Physicochemical Properties of Candidate AMPs
4.4. Construction of a Cell-Free Expression System
4.5. Rapid Synthesis and Screening of AMP Candidates
4.6. Chemical Synthesis of Antimicrobial Peptides K-5, K-58, and K-61
4.7. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration of Synthetic Peptides
4.8. Cytotoxicity Assay
4.9. Hemolysis Assay
4.10. Effects of Antimicrobial Peptide K-5 on Bacterial Morphology and Structure as Observed by Scanning Electron Microscopy
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Liu, H.; Liu, S.; Mao, J. Impact of Bacteriocins on Multidrug-resistant Bacteria and Their Application in Aquaculture Disease Prevention and Control. Rev. Aquac. 2024, 16, 1286–1307. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, Y.; Song, Z.; Tan, Z.; Cheng, J. Recent Advances in Design of Antimicrobial Peptides and Polypeptides toward Clinical Translation. Adv. Drug Deliv. Rev. 2021, 170, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shang, L.; Lan, J.; Chou, S.; Feng, X.; Shi, B.; Wang, J.; Lyu, Y.; Shan, A. Targeted and Intracellular Antibacterial Activity against S. agalactiae of the Chimeric Peptides Based on Pheromone and Cell-Penetrating Peptides. ACS Appl. Mater. Interfaces 2020, 12, 44459–44474. [Google Scholar] [CrossRef] [PubMed]
- Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; et al. The Value of Antimicrobial Peptides in the Age of Resistance. Lancet Infect. Dis. 2020, 20, e216–e230. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jia, Y.; Sun, Y.; Liu, K.; Zhou, C.; Liu, C.; Li, D.; Liu, G.; Zhang, C.; Yang, T.; et al. Global Marine Microbial Diversity and Its Potential in Bioprospecting. Nature 2024, 633, 371–379. [Google Scholar] [CrossRef]
- Erdem Büyükkiraz, M.; Kesmen, Z. Antimicrobial Peptides (AMPs): A Promising Class of Antimicrobial Compounds. J. Appl. Microbiol. 2022, 132, 1573–1596. [Google Scholar] [CrossRef]
- Chen, N.; Jiang, C. Antimicrobial Peptides: Structure, Mechanism, and Modification. Eur. J. Med. Chem. 2023, 255, 115377. [Google Scholar] [CrossRef]
- Al-Omari, A.M.; Akkam, Y.H.; Zyout, A.; Younis, S.; Tawalbeh, S.M.; Al-Sawalmeh, K.; Al Fahoum, A.; Arnold, J. Accelerating Antimicrobial Peptide Design: Leveraging Deep Learning for Rapid Discovery. PLoS ONE 2024, 19, e0315477. [Google Scholar] [CrossRef]
- Kim, H.K.; Min, S.; Song, M.; Jung, S.; Choi, J.W.; Kim, Y.; Lee, S.; Yoon, S.; Kim, H. (Henry) Deep Learning Improves Prediction of CRISPR–Cpf1 Guide RNA Activity. Nat. Biotechnol. 2018, 36, 239–241. [Google Scholar] [CrossRef]
- Lopez, R.; Regier, J.; Cole, M.B.; Jordan, M.I.; Yosef, N. Deep Generative Modeling for Single-Cell Transcriptomics. Nat. Methods 2018, 15, 1053–1058. [Google Scholar] [CrossRef]
- Wu, R.; Ding, F.; Wang, R.; Shen, R.; Zhang, X.; Luo, S.; Su, C.; Wu, Z.; Xie, Q.; Berger, B.; et al. High-Resolution de novo Structure Prediction from Primary Sequence. bioRxiv 2022. [Google Scholar] [CrossRef]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate Prediction of Protein Structures and Interactions Using a 3-Track Network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackermann, Z.; et al. A Deep Learning Approach to Antibiotic Discovery. Cell 2020, 180, 688–702.e13. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Tian, T.; Huang, S.; Wan, F.; Li, J.; Li, S.; Wang, X.; Yang, H.; Hong, L.; Wu, N.; et al. An Integrative Drug Repositioning Framework Discovered a Potential Therapeutic Agent Targeting COVID-19. Signal Transduct. Target. Ther. 2021, 6, 165. [Google Scholar] [CrossRef]
- Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M.; et al. Scalable and Accurate Deep Learning with Electronic Health Records. npj Digit. Med. 2018, 1, 18. [Google Scholar] [CrossRef]
- Fan, S.; Qin, P.; Lu, J.; Wang, S.; Zhang, J.; Wang, Y.; Cheng, A.; Cao, Y.; Ding, W.; Zhang, W. Bioprospecting of Culturable Marine Biofilm Bacteria for Novel Antimicrobial Peptides. iMeta 2024, 3, e244. [Google Scholar] [CrossRef]
- Ji, S.; An, F.; Zhang, T.; Lou, M.; Guo, J.; Liu, K.; Zhu, Y.; Wu, J.; Wu, R. Antimicrobial Peptides: An Alternative to Traditional Antibiotics. Eur. J. Med. Chem. 2024, 265, 116072. [Google Scholar] [CrossRef]
- Deng, T.; Ge, H.; He, H.; Liu, Y.; Zhai, C.; Feng, L.; Yi, L. The Heterologous Expression Strategies of Antimicrobial Peptides in Microbial Systems. Protein Expr. Purif. 2017, 140, 52–59. [Google Scholar] [CrossRef]
- Nirenberg, M.W.; Matthaei, J.H. The Dependence of Cell-Free Protein Synthesis in E. coli upon Naturally Occurring or Synthetic Polyribonucleotides. Proc. Natl. Acad. Sci. USA 1961, 47, 1588–1602. [Google Scholar] [CrossRef]
- Kightlinger, W.; Duncker, K.E.; Ramesh, A.; Thames, A.H.; Natarajan, A.; Stark, J.C.; Yang, A.; Lin, L.; Mrksich, M.; DeLisa, M.P.; et al. A Cell-Free Biosynthesis Platform for Modular Construction of Protein Glycosylation Pathways. Nat. Commun. 2019, 10, 5404. [Google Scholar] [CrossRef]
- Jung, J.K.; Alam, K.K.; Verosloff, M.S.; Capdevila, D.A.; Desmau, M.; Clauer, P.R.; Lee, J.W.; Nguyen, P.Q.; Pastén, P.A.; Matiasek, S.J.; et al. Cell-Free Biosensors for Rapid Detection of Water Contaminants. Nat. Biotechnol. 2020, 38, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Pandi, A.; Adam, D.; Zare, A.; Trinh, V.T.; Schaefer, S.L.; Burt, M.; Klabunde, B.; Bobkova, E.; Kushwaha, M.; Foroughijabbari, Y.; et al. Cell-Free Biosynthesis Combined with Deep Learning Accelerates de Novo-Development of Antimicrobial Peptides. Nat. Commun. 2023, 14, 7197. [Google Scholar] [CrossRef] [PubMed]
- Suyamud, B.; Lohwacharin, J.; Yang, Y.; Sharma, V.K. Antibiotic Resistant Bacteria and Genes in Shrimp Aquaculture Water: Identification and Removal by Ferrate(VI). J. Hazard. Mater. 2021, 420, 126572. [Google Scholar] [CrossRef]
- Järvå, M.; Lay, F.T.; Phan, T.K.; Humble, C.; Poon, I.K.H.; Bleackley, M.R.; Anderson, M.A.; Hulett, M.D.; Kvansakul, M. X-Ray Structure of a Carpet-like Antimicrobial Defensin–Phospholipid Membrane Disruption Complex. Nat. Commun. 2018, 9, 1962. [Google Scholar] [CrossRef]
- Boman, H.G. Antibacterial Peptides: Basic Facts and Emerging Concepts. J. Intern. Med. 2003, 254, 197–215. [Google Scholar] [CrossRef]
- Schmidt, N.W.; Wong, G.C.L. Antimicrobial Peptides and Induced Membrane Curvature: Geometry, Coordination Chemistry, and Molecular Engineering. Curr. Opin. Solid State Mater. Sci. 2013, 17, 151–163. [Google Scholar] [CrossRef]
- Houyvet, B.; Zanuttini, B.; Corre, E.; Le Corguillé, G.; Henry, J.; Zatylny-Gaudin, C. Design of Antimicrobial Peptides from a Cuttlefish Database. Amino Acids 2018, 50, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shi, J.; Tong, Z.; Jia, Y.; Yang, B.; Wang, Z. The Revitalization of Antimicrobial Peptides in the Resistance Era. Pharmacol. Res. 2021, 163, 105276. [Google Scholar] [CrossRef]
- Lou, M.; Ji, S.; Wu, R.; Zhu, Y.; Wu, J.; Zhang, J. Microbial Production Systems and Optimization Strategies of Antimicrobial Peptides: A Review. World J. Microbiol. Biotechnol. 2025, 41, 66. [Google Scholar] [CrossRef]
- Mao, F.; Bao, Y.; Wong, N.-K.; Huang, M.; Liu, K.; Zhang, X.; Yang, Z.; Yi, W.; Shu, X.; Xiang, Z.; et al. Large-Scale Plasma Peptidomic Profiling Reveals a Novel, Nontoxic, Crassostrea Hongkongensis-Derived Antimicrobial Peptide against Foodborne Pathogens. Mar. Drugs 2021, 19, 420. [Google Scholar] [CrossRef]
- Davagnino, J.; Herrero, M.; Furlong, D.; Moreno, F.; Kolter, R. The DNA Replication Inhibitor Microcin B17 Is a Forty-three-amino-acid Protein Containing Sixty Percent Glycine. Proteins 1986, 1, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Wang, G. Post-Translational Modifications of Natural Antimicrobial Peptides and Strategies for Peptide Engineering. Curr. Biotechnol. 2014, 1, 72–79. [Google Scholar]
- De Medeiros, L.N.; Angeli, R.; Sarzedas, C.G.; Barreto-Bergter, E.; Valente, A.P.; Kurtenbach, E.; Almeida, F.C.L. Backbone Dynamics of the Antifungal Psd1 Pea Defensin and Its Correlation with Membrane Interaction by NMR Spectroscopy. Biochim. Biophys. Acta (BBA)—Biomembr. 2010, 1798, 105–113. [Google Scholar] [CrossRef]
- Schreiber, C.; Müller, H.; Birrenbach, O.; Klein, M.; Heerd, D.; Weidner, T.; Salzig, D.; Czermak, P. A High-Throughput Expression Screening Platform to Optimize the Production of Antimicrobial Peptides. Microb. Cell Fact. 2017, 16, 29. [Google Scholar] [CrossRef] [PubMed]
- Pelton, J.M.; Hochuli, J.E.; Sadecki, P.W.; Katoh, T.; Suga, H.; Hicks, L.M.; Muratov, E.N.; Tropsha, A.; Bowers, A.A. Cheminformatics-Guided Cell-Free Exploration of Peptide Natural Products. J. Am. Chem. Soc. 2024, 146, 8016–8030. [Google Scholar] [CrossRef]
- Brahma, B.; Patra, M.C.; Karri, S.; Chopra, M.; Mishra, P.; De, B.C.; Kumar, S.; Mahanty, S.; Thakur, K.; Poluri, K.M.; et al. Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins. PLoS ONE 2015, 10, e0144741. [Google Scholar] [CrossRef] [PubMed]
- Santos-Júnior, C.D.; Pan, S.; Zhao, X.-M.; Coelho, L.P. Macrel: Antimicrobial Peptide Screening in Genomes and Metagenomes. PeerJ 2020, 8, e10555. [Google Scholar] [CrossRef]
- Santos-Júnior, C.D.; Torres, M.D.T.; Duan, Y.; Rodríguez Del Río, Á.; Schmidt, T.S.B.; Chong, H.; Fullam, A.; Kuhn, M.; Zhu, C.; Houseman, A.; et al. Discovery of Antimicrobial Peptides in the Global Microbiome with Machine Learning. Cell 2024, 187, 3761–3778.e16. [Google Scholar] [CrossRef]
- Jhong, J.-H.; Yao, L.; Pang, Y.; Li, Z.; Chung, C.-R.; Wang, R.; Li, S.; Li, W.; Luo, M.; Ma, R.; et al. dbAMP 2.0: Updated Resource for Antimicrobial Peptides with an Enhanced Scanning Method for Genomic and Proteomic Data. Nucleic Acids Res. 2022, 50, D460–D470. [Google Scholar] [CrossRef]
- Han, J.; Kong, T.; Liu, J. PepNet: An Interpretable Neural Network for Anti-Inflammatory and Antimicrobial Peptides Prediction Using a Pre-Trained Protein Language Model. Commun. Biol. 2024, 7, 1198. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef] [PubMed]
- DeLano, W.L.; Scientific, D.; Carlos, S. PyMOL: An Open-Source Molecular Graphics Tool. Available online: https://legacy.ccp4.ac.uk/newsletters/newsletter40/11_pymol.pdf (accessed on 19 March 2025).
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. ISBN 978-1-58829-343-5. [Google Scholar]
- Wang, G.; Li, X.; Wang, Z. APD3: The Antimicrobial Peptide Database as a Tool for Research and Education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Peng, S.; Yang, J.; Zhou, F.; Suo, H. Isolation and Identification of Novel Antibacterial Peptides Produced by Lactobacillus Fermentum SHY10 in Chinese Pickles. Food Chem. 2021, 348, 129097. [Google Scholar] [CrossRef]
- Cai, D.; Chen, S.; Wu, B.; Chen, J.; Tao, D.; Li, Z.; Dong, Q.; Zou, Y.; Chen, Y.; Bi, C.; et al. Construction of Multifunctional Porcine Acellular Dermal Matrix Hydrogel Blended with Vancomycin for Hemorrhage Control, Antibacterial Action, and Tissue Repair in Infected Trauma Wounds. Mater. Today Bio 2021, 12, 100127. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Su, B.; Dai, J.; Li, P.; Wang, R.; Yang, X. Anti-Biofilm and Anti-Hemolysis Activities of 10-Hydroxy-2-Decenoic Acid against Staphylococcus Aureus. Molecules 2022, 27, 1485. [Google Scholar] [CrossRef]
Peptide | Sequence | Structure | Molecular Weight |
---|---|---|---|
K-5 | QPYGSQGFYGQRKWGNGQGVPLSQSNGLGGRGGGGGQRLVSKCL | Rich in Gly | 4494.980 |
K-8 | NSYHIYRCTHCAVKQGGQPPSCNTLICPGKAS | Cys | 3434.949 |
K-17 | AECADLRGRRGGERRGILCGGEKGGSAGSGRVPILGRVG | Rich in Gly | 3881.428 |
K-34 | VLSLRRVALEDKGGLGPGAGFKKGLKVTAPARGQDKTA | helix | 3863.511 |
K-35 | VAVVVVGEVQRKKTGVALKQKQRAGSSGGGGGGRGGAEA | Rich in Gly | 3707.203 |
K-37 | FGIKGLKGEQLPEPKAPKGKYKSIGFGDLKESINDFFTNKK | helix | 4556.257 |
K-54 | ALVSDIIKNAKLDDSYGKNARGIPQTSDKLNGCSEKRAK | helix | 4205.746 |
K-58 | AKGKYCPYCKRPMFAQSEKQFPAGTEVIYTCTCGHKEKVFEDK | Cys | 4948.750 |
K-61 | LGGKKKKVLKAANDYVAKPRDEYEWRIYWRDMGKLLDDAR | helix | 4797.546 |
K-62 | LGLLKDLKARYPDAIIQGHRDFPNVKKSCPRFNAKEEYNF | helix | 4693.403 |
No. | Charge | pI | GRAVY | Aliphatic Index | Boman Index | Hydrophobic Ratio | Similar |
---|---|---|---|---|---|---|---|
K-5 | +5 | 10.45 | −0.816 | 48.64 | 1.56 kcal/mol | 41.67% | 41.67% |
K-8 | +3.5 | 8.89 | −0.453 | 51.88 | 1.40 kcal/mol | 37.14% | 37.14% |
K-17 | +4 | 10.58 | −0.467 | 72.56 | 2.41 kcal/mol | 39.58% | 39.58% |
K-34 | +5 | 10.55 | −0.311 | 87.37 | 1.46 kcal/mol | 40.48% | 40.48% |
K-35 | +5 | 11.07 | −0.284 | 74.87 | 1.38 kcal/mol | 34.00% | 34% |
K-37 | +4 | 9.63 | −0.878 | 59.51 | 1.64 kcal/mol | 37.78% | 37.78% |
K-54 | +3 | 9.36 | −0.848 | 77.69 | 2.60 kcal/mol | 38.10% | 38.1% |
K-58 | +3.25 | 8.78 | −0.783 | 29.53 | 1.84 kcal/mol | 36.36% | 36.36% |
K-61 | +4 | 9.63 | −1.115 | 73.25 | 2.82 kcal/mol | 33.33% | 33.33% |
K-62 | +3.25 | 9.36 | −0.800 | 73.25 | 2.37 kcal/mol | 36.36% | 36.36% |
Salt | 1 × Buffer | Nucleotide Solutions and Other | |||
---|---|---|---|---|---|
HEPES | 50 mM | tRNA | 0.2 mg/mL | GTP | 3 mM |
Potassium glutamate | 90 mM | CoA | 0.26 mM | ATP | 1 mM |
Magnesium glutamate | 15 mM | cAMP | 0.75 mM | UTP | 1 mM |
folinic acid | 0.068 mM | CTP | 1 mM | ||
NAD | 0.33 mM | PEG8000 | 2% | ||
spermidine | 0.66 mM | T7 RNA polymerase | 200 U | ||
3-PGA | 30 mM | 20AA | 1.5 mM each |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Xu, G.; Tian, Y.; Li, G.; Yi, Z.; Tang, X. Synthesis and Evaluation of Aquatic Antimicrobial Peptides Derived from Marine Metagenomes Using a High-Throughput Screening Approach. Mar. Drugs 2025, 23, 178. https://doi.org/10.3390/md23040178
Wu K, Xu G, Tian Y, Li G, Yi Z, Tang X. Synthesis and Evaluation of Aquatic Antimicrobial Peptides Derived from Marine Metagenomes Using a High-Throughput Screening Approach. Marine Drugs. 2025; 23(4):178. https://doi.org/10.3390/md23040178
Chicago/Turabian StyleWu, Kaiyue, Guangxin Xu, Yin Tian, Guizhen Li, Zhiwei Yi, and Xixiang Tang. 2025. "Synthesis and Evaluation of Aquatic Antimicrobial Peptides Derived from Marine Metagenomes Using a High-Throughput Screening Approach" Marine Drugs 23, no. 4: 178. https://doi.org/10.3390/md23040178
APA StyleWu, K., Xu, G., Tian, Y., Li, G., Yi, Z., & Tang, X. (2025). Synthesis and Evaluation of Aquatic Antimicrobial Peptides Derived from Marine Metagenomes Using a High-Throughput Screening Approach. Marine Drugs, 23(4), 178. https://doi.org/10.3390/md23040178