Polyunsaturated Fatty Acids Improved Long Term Prognosis by Reducing Oxidative Stress, Inflammation, and Endothelial Dysfunction in Acute Coronary Syndromes
Abstract
:1. Introduction
2. Results
2.1. Cardiovascular Risk Factors, Demographic Characteristics, and Biomarkers at Baseline
2.2. Pharmacologic and Non-Pharmacologic Treatment
2.3. Results Regarding Oxidative Stress
2.4. Results Regarding Inflammation
2.5. Results Regarding Endothelial Dysfunction
2.6. Long-Term Clinical Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATS ECG OMT | Atherosclerotic Electrocardiogram Optimal Medical Therapy |
BMI | Body Mass Index |
NSTE-ACS Omega-3 PUFAs | group of patients with Non-ST elevation acute coronary syndromes treated with Omega-3 fatty acids (Omacor®) in addition to OMT |
NSTE-ACS | group of patients with Non-ST elevation acute coronary syndromes with OMT without Omega-3 fatty acids (Omacor®) |
STE-ACS Omega-3 PUFAs | group of patients with ST elevation acute coronary syndromes treated with Omega-3 fatty acids (Omacor®) in addition to OMT |
STE-ACS | group of patients with n ST elevation acute coronary syndromes with OMT without Omega-3 fatty acids (Omacor®) |
LDL Cholesterol | Low Density Lipoprotein Cholesterol |
HDL Cholesterol | High Density Lipoprotein Cholesterol |
CK-MB ACEI | Creatine Kinase isoenzymes MB Angiotensin Converting Enzymes Inhibitors |
FMD vWf TAS | Flow-Mediated Dilation von Willebrand factor Total Antioxidant Status |
Ab anti Ox LDL cholesterol | antibodies anti-Oxidated Low Density Lipoprotein Cholesterol |
Ac anti MPO IgG | Antibodies anti-Myeloperoxidase Immunoglobulin G type |
References
- Kotlyarov, S.; Kotlyarova, A. Clinical significance of polyunsaturated fatty acids in the prevention of cardiovascular diseases. Front. Nutr. 2022, 9, 998291. [Google Scholar] [CrossRef]
- Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ. Res. 2016, 118, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- D’oria, R.; Schipani, R.; Leonardini, A.; Natalicchio, A.; Perrini, S.; Cignarelli, A.; Laviola, L.; Giorgino, F. The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. Oxid. Med. Cell Longev. 2020, 2020, 1–29. [Google Scholar] [CrossRef]
- Balan, A.I.; Halațiu, V.B.; Scridon, A. Oxidative Stress, Inflammation, and Mitochondrial Dysfunction: A Link between Obesity and Atrial Fibrillation. Antioxidants 2024, 13, 117. [Google Scholar] [CrossRef]
- Zong, Y.; Li, H.; Liao, P.; Chen, L.; Pan, Y.; Zheng, Y.; Zhang, C.; Liu, D.; Zheng, M.; Gao, J. Mitochondrial dysfunction: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 124. [Google Scholar] [CrossRef]
- Frangie, C.; Daher, J. Role of myeloperoxidase in inflammation and atherosclerosis (Review). Biomed. Rep. 2022, 16, 53. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hong, C.G.; Florida, E.; Li, H.; Parel, P.M.; Mehta, N.N.; Sorokin, A.V. Oxidized low-density lipoprotein associates with cardiovascular disease by a vicious cycle of atherosclerosis and inflammation: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2023, 9, 1023651. [Google Scholar] [CrossRef]
- Munno, M.; Mallia, A.; Greco, A.; Modafferi, G.; Banfi, C.; Eligini, S. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process. Antioxidants 2024, 13, 583. [Google Scholar] [CrossRef]
- Haque, N.; Parveen, S.; Tang, T.; Wei, J.; Huang, Z. Marine Natural Products in Clinical Use. Mar. Drugs 2022, 20, 528. [Google Scholar] [CrossRef]
- Calder, P.C. The role of marine omega-3 (n-3) fatty acids in inflammatory processes, atherosclerosis and plaque stability. Mol. Nutr. Food Res. 2012, 56, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Thies, F.; MC Garry, J.; Yaqoob, P.; Rerkasem, K.; Williams, J.; Shearman, C.P.; Gallagher, P.J.; Calder, P.C.; Grimble, R.F. Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: A randomised controlled trial. Lancet 2003, 361, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Cawood, A.L.; Ding, R.; Napper, F.L.; Young, R.H.; Williams, J.A.; Ward, M.J.; Gudmundsen, O.; Vige, R.; Payne, S.P.; Ye, S.; et al. Eicosapentaenoic acid (EPA) from highly concentrated n−3 fatty acid ethyl esters is incorporated into advanced atherosclerotic plaques and higher plaque EPA is associated with decreased plaque inflammation and increased stability. Atherosclerosis 2010, 212, 252–259. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Liu, K.; Daviglus, M.L.; Mayer-Davis, E.; Jenny, N.S.; Jiang, R.; Ouyang, P.; Steffen, L.M.; Siscovick, D.; Wu, C.; et al. Intakes of long-chain n–3 polyunsaturated fatty acids and fish in relation to measurements of subclinical atherosclerosis. Am. J. Clin. Nutr. 2008, 88, 1111–1118. [Google Scholar] [CrossRef]
- Yokoyama, M.; Origasa, H.; Matsuzaki, M.; Matsuzawa, Y.; Saito, Y.; Ishikawa, Y.; Oikawa, S.; Sasaki, J.; Hishida, H.; Itakura, H.; et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): A randomised open-label, blinded endpoint analysis. Lancet 2007, 369, 1090–1098. [Google Scholar] [CrossRef]
- Casas, R.; Estruch, R.; Sacanella, E. Influence of Bioactive Nutrients on the Atherosclerotic Process: A Review. Nutrients 2018, 10, 1630. [Google Scholar] [CrossRef]
- Massaro, M.; Scoditti, E.; Carluccio, M.A.; De Caterina, R. Nutraceuticals and Prevention of Atherosclerosis: Focus on ω-3 Polyunsaturated Fatty Acids and Mediterranean Diet Polyphenols. Cardiovasc. Ther. 2010, 28, e13–e19. [Google Scholar] [CrossRef]
- Franzese, C.J.; Bliden, K.P.; Gesheff, M.G.; Pandya, S.; Guyer, K.E.; Singla, A.; Tantry, U.S.; Toth, P.P.; Gurbel, P.A. Relation of Fish Oil Supplementation to Markers of Atherothrombotic Risk in Patients With Cardiovascular Disease Not Receiving Lipid-Lowering Therapy. Am. J. Cardiol. 2015, 115, 1204–1211. [Google Scholar] [CrossRef]
- Kar, S. Omacor and Omega-3 Fatty Acids for Treatment of Coronary Artery Disease and the Pleiotropic Effects. Am. J. Ther. 2014, 21, 56–66. [Google Scholar] [CrossRef]
- Mason, R.P.; Libby, P.; Bhatt, D.L. Emerging Mechanisms of Cardiovascular Protection for the Omega-3 Fatty Acid Eicosapentaenoic Acid. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1135–1147. [Google Scholar] [CrossRef]
- Yagi, S.; Aihara, K.; Fukuda, D.; Takashima, A.; Hara, T.; Hotchi, J.; Ise, T.; Yamaguchi, K.; Tobiume, T.; Iwase, T.; et al. Effects of Docosahexaenoic Acid on the Endothelial Function in Patients with Coronary Artery Disease. J. Atheroscler. Thromb. 2015, 22, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.U.; Lone, A.N.; Khan, M.S.; Virani, S.S.; Blumenthal, R.S.; Nasir, K.; Miller, M.; Michos, E.D.; Ballantyne, C.M.; Boden, W.E.; et al. Effect of omega-3 fatty acids on cardiovascular outcomes: A systematic review and meta-analysis. eClinicalMedicine 2021, 38, 100997. [Google Scholar] [CrossRef] [PubMed]
- Tousoulis, D.; Plastiras, A.; Siasos, G.; Oikonomou, E.; Verveniotis, A.; Kokkou, E.; Maniatis, K.; Gouliopoulos, N.; Miliou, A.; Paraskevopoulos, T.; et al. Omega-3 Omega-3 PUFAs improved endothelial function and arterial stiffness with a parallel antiinflammatory effect in adults with metabolic syndrome. Atherosclerosis 2014, 232, 10–16. [Google Scholar] [CrossRef] [PubMed]
- GISSI-Prevenzione Inormal valueestigators (Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico). Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: Results of the GISSI-Prevenzione trial. Lancet 1999, 354, 447–455. [Google Scholar] [CrossRef]
- Marchioli, R.; Barzi, F.; Bomba, E.; Chieffo, C.; Di Gregorio, D.; Di Mascio, R.; Franzosi, M.G.; Geraci, E.; Levantesi, G.; Maggioni, A.P.; et al. Early Protection Against Sudden Death by n-3 Polyunsaturated Fatty Acids After Myocardial Infarction. Circulation 2002, 105, 1897–1903. [Google Scholar] [CrossRef]
- Banaszak, M.; Dobrzyńskaa, M.; Kawkac, A.; Górnaa, I.; Woźniaka, D.; Przysławskia, J.; Drzymała-Czyż, S. Role of Omega-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) as modulatory and anti-inflammatory agents in noncommunicable diet-related diseases—Reports from the last 10 years. Clin. Nutr. ESPEN 2024, 63, 240–258. [Google Scholar]
- Veenstra, J.; Kalsbeek, A.; Westra, J.; Disselkoen, C.; Smith, C.E.; Tintle, N. Genome-Wide Interaction Study of Omega-3 PUFAs and Other Fatty Acids on Inflammatory Biomarkers of Cardiovascular Health in the Framingham Heart Study. Nutrients 2017, 9, 900. [Google Scholar] [CrossRef]
- Zanetti, M.; Gortan Cappellari, G.; Barbetta, D.; Semolic, A.; Barazzoni, R. Omega 3 Polyunsaturated Fatty Acids Improve Endothelial Dysfunction in Chronic Renal Failure: Role of eNOS Activation and of Oxidative Stress. Nutrients 2017, 9, 895. [Google Scholar] [CrossRef]
- Schuchardt, J.P.; Beinhorn, P.; Hu, X.F.; Chan, H.M.; Roke, K.; Bernasconi, A.; Hahn, A.; Sala-Vila, A.; Stark, K.D.; Harris, W.S. Omega-3 world map: 2024 update. Prog. Lipid Res. 2024, 95, 101286. [Google Scholar] [CrossRef]
- Zhang, B.; Xiong, K.; Cai, J.; Ma, A. Fish Consumption and Coronary Heart Disease: A Meta-Analysis. Nutrients 2020, 12, 2278. [Google Scholar] [CrossRef]
- Dolecek, T.; Granditis, G. Dietary Polyunsaturated Fatty Acids and Mortality in the Multiple Risk Factor Intervention Trial (MRFIT). World Rev. Nutr. Diet. 1991, 66, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Purcaru, D.; Preda, A.; Popa, D.; Moga, M.A.; Rogozea, L. Informed consent: How much awareness is there? PLoS ONE 2014, 9, e110139. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, R.; Retamal, C.; Schupper, D.; Vergara-Hernández, D.; Saha, S.; Profumo, E.; Buttari, B.; Saso, L. Antioxidant Cardioprotection against Reperfusion Injury: Potential Therapeutic Roles of Resveratrol and Quercetin. Molecules 2022, 27, 2564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Madaudo, C.; Coppola, G.; Parlati, A.L.M.; Corrado, E. Discovering Inflammation in Atherosclerosis: Insights from Pathogenic Pathways to Clinical Practice. Int. J. Mol. Sci. 2024, 25, 6016. [Google Scholar] [CrossRef]
- Bobescu, E.; Covaciu, A.; Rus, H.; Rogozea, L.M.; Badea, M.; Marceanu, L.G. Low Response to Clopidogrel in Coronary Artery Disease. Am. J. Ther. 2020, 27, e133–e141. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press Inc.: New York, NY, USA, 2015; Volume 348–353, pp. 539–549. [Google Scholar]
- Sánchez, A.; Mirabel, J.L.; Barrenechea, E.; Eugui, J.; Puelles, A.; Castañeda, A. Evaluation of an improved immunoturbidimetic assay for serum C-reactive protein on a COBAS INTEGRA 400 Analyzer. Clin. Lab. 2002, 48, 313–317. [Google Scholar] [PubMed]
- Louka, M.; Kaliviotis, E. Development of an Optical Method for the Evaluation of Whole Blood Coagulation. Biosensors 2021, 11, 113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mackie, I.; Casini, A.; Pieters, M.; Pruthi, R.; Reilly-Stitt, C.; Suzuki, A. International council for standardisation in haematology recommendations on fibrinogen assays, thrombin clotting time and related tests in the investigation of bleeding disorders. Int. J. Lab. Hematol. 2024, 46, 20–32. [Google Scholar] [CrossRef]
- Bobescu, E.; Marceanu, L.G.; Dima, L.; Balan, A.; Strempel, C.G.; Covaciu, A. Trimetazidine Therapy in Coronary Artery Disease: The Impact on Oxidative Stress, Inflammation, Endothelial Dysfunction, and Long-Term Prognosis. Am. J. Ther. 2021, 28, e540–e547. [Google Scholar] [CrossRef]
- Williams, J.S.; Wiley, E.; Cheng, J.L.; Stone, J.C.; Bostad, W.; Cherubini, J.M.; Gibala, M.J.; Tang, A.; MacDonald, M.J. Differences in cardiovascular risk factors associated with sex and gender identity, but not gender expression, in young, healthy cisgender adults. Front. Cardiovasc. Med. 2024, 11, 1374765. [Google Scholar] [CrossRef]
- Kozlov, S.; Okhota, S.; Avtaeva, Y.; Melnikov, I.; Matroze, E.; Gabbasov, Z. Von Willebrand factor in diagnostics and treatment of cardiovascular disease: Recent advances and prospects. Front. Cardiovasc. Med. 2022, 9, 1038030. [Google Scholar] [CrossRef]
- Kawecki, C.; Lenting, P.J.; Denis, C.V. von Willebrand factor and inflammation. J. Thromb. Haemost. 2017, 15, 1285–1294. [Google Scholar] [CrossRef]
NSTE-ACS Omega-3 PUFAs | NSTE-ACS | STE-ACS Omega-3 PUFAs | STE-ACS | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | N = 283 Patients | % | N = 287 Patients | % | p | N = 293 Patients | % | N = 277 Patients | % | p |
Age > 65 | 113 | 39.93% | 112 | 39.02% | 0.825093 | 112 | 38.23% | 106 | 38.27% | 0.991793 |
Male | 151 | 53.36% | 153 | 53.31% | 0.991068 | 155 | 52.90% | 149 | 53.79% | 0.831501 |
Smokers | 127 | 44.88% | 128 | 44.60% | 0.946975 | 132 | 45.05% | 123 | 44.40% | 0.876634 |
Arterial Hypertension | 188 | 66.43% | 188 | 65.51% | 0.815565 | 195 | 66.55% | 181 | 65.34% | 0.76059 |
Diabetes Mellitus | 112 | 39.58% | 111 | 38.68% | 0.82576 | 114 | 38.91% | 109 | 39.35% | 0.913874 |
BMI >25 kg/m2 | 186 | 65.72% | 184 | 64.11% | 0.686638 | 194 | 66.21% | 176 | 63.54% | 0.503808 |
Total Cholesterol > 200 mg/dL | 194 | 68.55% | 197 | 68.64% | 0.981558 | 202 | 68.94% | 189 | 68.23% | 0.854972 |
LDL Cholesterol > 55 mg/dL | 200 | 70.67% | 197 | 68.64% | 0.598114 | 200 | 68.26% | 195 | 70.40% | 0.580246 |
HDL Cholesterol < 40 mg/dL | 159 | 56.18% | 158 | 55.05% | 0.785738 | 166 | 56.66% | 151 | 54.51% | 0.60683 |
Triglycerides > 150 mg/dL | 195 | 68.90% | 129 | 44.95% | 0.851756 | 135 | 46.08% | 119 | 42.96% | 0.454586 |
Troponin T > 0.1 ng/dL | 278 | 98.23% | 280 | 97.56% | 0.576182 | 290 | 98.98% | 275 | 99.28% | 0.693338 |
CK-MB > 24 U/L | 270 | 95.40% | 272 | 94.77% | 0.726689 | 280 | 95.56% | 266 | 96.03% | 0.180419 |
NSTE-ACS Omega-3 PUFAs | NSTE-ACS | STE-ACS Omega-3 PUFAs | STE-ACS | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | N = 283 Patients | % | N = 287 Patients | % | p | N = 293 Patients | % | N = 277 Patients | % | p |
Aspirin | 283 | 100% | 287 | 100% | 1.0000 | 293 | 100% | 277 | 100% | 1.0000 |
Enoxaparin | 283 | 100% | 287 | 100% | 1.0000 | 293 | 100% | 277 | 100% | 1.0000 |
Clopidogrel | 283 | 100% | 287 | 100% | 1.0000 | 293 | 100% | 277 | 100% | 1.0000 |
ACEI | 188 | 66.43% | 188 | 65.51% | 0.815565 | 195 | 66.55% | 195 | 70.40% | 0.323716 |
Beta-blockers | 232 | 81.98% | 232 | 80.84% | 0.725932 | 141 | 48.12% | 141 | 50.90% | 0.507068 |
Calcium blockers | 19 | 6.71% | 25 | 8.71% | 0.371765 | 21 | 7.17% | 23 | 8.30% | 0.611526 |
Statins | 210 | 74.20% | 210 | 73.17% | 0.779203 | 218 | 74.40% | 202 | 72.92% | 0.688671 |
Intravenous nitroglycerin | 90 | 31.80% | 99 | 34.49% | 0.494768 | 93 | 31.74% | 46 | 16.61% | 0.459779 |
Long-acting nitrates | 126 | 44.52% | 123 | 42.86% | 0.688485 | 123 | 41.98% | 117 | 42.24% | 0.950137 |
OMT only | 119 | 42.05% | 124 | 43.21% | 0.780202 | 123 | 41.98% | 120 | 43.32% | 0.746125 |
Interventional revascularization + OMT | 128 | 45.23% | 129 | 44.95% | 0.946073 | 132 | 45.05% | 125 | 45.13% | 0.98562 |
Surgical revascularization + OMT | 36 | 12.72% | 34 | 11.85% | 0.75054 | 38 | 12.97% | 32 | 11.55% | 0.606453 |
NSTE-ACS Omega-3 PUFAs | NSTE-ACS | STE-ACS Omega-3 PUFAs | STE-ACS | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | N = 283 Patients | % | N = 287 Patients | % | p | N = 293 Patients | % | N = 277 Patients | % | p |
Baseline | ||||||||||
TAS < 1.3 mmol/L | 183 | 64.66% | 181 | 63.07% | 0.691298 | 187 | 63.82% | 177 | 63.90% | 0.984861 |
Ab anti-Ox LDL cholesterol >150 UI/L | 201 | 71.02% | 193 | 67.25% | 0.32906 | 206 | 70.31% | 188 | 67.87% | 0.529031 |
Ab anti-MPO IgG >20 U | 67 | 23.67% | 57 | 19.86% | 0.269773 | 71 | 24.23% | 63 | 22.74% | 0.675342 |
At 6 months | 0.00% | |||||||||
TAS < 1.3 mmol/L | 59 | 20.85% | 94 | 32.75% | 0.001342 | 66 | 22.53% | 98 | 35.38% | 0.000704 |
Ab anti-Ox LDL cholesterol >150 UI/L | 32 | 11.31% | 54 | 18.82% | 0.012283 | 31 | 10.58% | 60 | 21.66% | 0.000306 |
Ab anti-MPO IgG >20 U | 26 | 9.19% | 39 | 13.59% | 0.098328 | 29 | 9.90% | 36 | 13.00% | 0.2447 |
NSTE-ACS Omega-3 PUFAs | NSTE-ACS | STE-ACS Omega-3 PUFAs | STE-ACS | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | N = 283 Patients | % | N = 287 Patients | % | p | N = 293 Patients | % | N = 277 Patients | % | p |
Baseline | ||||||||||
C-reactive protein > 0.5 mg/dL | 161 | 56.89% | 158 | 55.05% | 0.658483 | 164 | 55.97% | 156 | 56.32% | 0.933882 |
Fibrinogen > 400 mg/dL | 137 | 48.41% | 143 | 49.83% | 0.735701 | 150 | 51.19% | 140 | 50.54% | 0.876136 |
At 6 months | ||||||||||
C-reactive protein > 0.5 mg/dL | 64 | 22.61% | 91 | 31.71% | 0.014716 | 53 | 18.09% | 82 | 29.60% | 0.001231 |
Fibrinogen > 400 mg/dL | 31 | 10.95% | 51 | 17.77% | 0.020429 | 40 | 13.65% | 72 | 25.99% | 0.00021 |
NSTE-ACS Omega-3 PUFAs | NSTE-ACS | STE-ACS Omega-3 PUFAs | STE-ACS | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | N = 283 Patients | % | N = 287 Patients | % | p | N = 293 Patients | % | N = 277 Patients | % | p |
Baseline | ||||||||||
Flow-Mediated Vasodilatation (FMV) < 4.5% | 150 | 53.00% | 146 | 50.87% | 0.61043 | 154 | 52.56% | 142 | 51.26% | 0.756888 |
Von Willebrand factor (vWf) activity > 169.7% | 156 | 55.12% | 151 | 52.61% | 0.54779 | 160 | 54.61% | 151 | 54.51% | 0.98186 |
At 6 months | ||||||||||
Flow-Mediated Dilation (FMD) < 4.5% | 56 | 19.79% | 84 | 29.27% | 0.008563 | 43 | 14.68% | 77 | 27.80% | 0.000123 |
Von Willebrand factor (vWf) activity > 169.7% | 53 | 18.73% | 81 | 28.22% | 0.007521 | 46 | 15.70% | 82 | 29.60% | 0.00007 |
NSTE-ACS Omega-3 PUFAs | NSTE-ACS | STE-ACS Omega-3 PUFAs | STE-ACS | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | N = 283 Patients | % | N = 287 Patients | % | p | N = 293 Patients | % | N = 277 Patients | % | p |
Cardiovascular death | 19 | 6.71% | 37 | 12.89% | 0.013221 | 21 | 7.17% | 44 | 15.88% | 0.001066 |
Sudden death | 11 | 3.89% | 25 | 8.71% | 0.01722 | 12 | 4.10% | 28 | 10.11% | 0.004973 |
Recurrence of NSTE/STE-ACS | 32 | 11.31% | 58 | 20.21% | 0.003568 | 39 | 13.31% | 67 | 24.19% | 0.00085 |
In-stent acute thrombosis | 6 | 2.12% | 12 | 4.18% | 0.159467 | 8 | 2.73% | 14 | 5.05% | 0.150016 |
In-stent restenosis | 7 | 2.47% | 38 | 13.24% | <0.00001 | 9 | 3.07% | 41 | 14.80% | <0.00001 |
Stroke | 6 | 2.12% | 17 | 5.92% | 0.02105 | 8 | 2.73% | 15 | 5.42% | 0.103518 |
Readmission for ACS | 46 | 16.25% | 75 | 26.13% | 0.003932 | 49 | 16.72% | 84 | 30.32% | 0.000124 |
Readmission for heart failure | 39 | 13.78% | 67 | 23.34% | 0.003343 | 41 | 13.99% | 71 | 25.63% | 0.000474 |
Loss from follow-up | 10 | 3.53% | 10 | 3.48% | 0.974512 | 9 | 3.07% | 11 | 3.97% | 0.559693 |
Predictor Variable | Coefficient beta (ß) | 95% Confidence Interval (CI) | Standard Error | p-Value |
---|---|---|---|---|
Intercept | 0.161 | 0.010 to 0.303 | 0.069 | 0.02 |
Omega-3 PUFA Therapy | −0.112 | −0.216 to −0.025 | 0.059 | 0.03 |
Age > 65 | 0.211 | 0.091 to 0.332 | 0.052 | 0.005 |
Male | 0.069 | 0.058 to 0.175 | 0.042 | 0.02 |
Smokers | 0.108 | 0.026 to 0.189 | 0.042 | 0.01 |
Arterial Hypertension | 0.154 | 0.061 to 0.232 | 0.045 | 0.001 |
Diabetes Mellitus | 0.114 | 0.034 to 0.188 | 0.045 | 0.009 |
BMI > 25 kg/m2 | 0.076 | −0.158 to −0.060 | 0.051 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Covaciu, A.; Benedek, T.; Bobescu, E.; Rus, H.; Benza, V.; Marceanu, L.G.; Grigorescu, S.; Strempel, C.G. Polyunsaturated Fatty Acids Improved Long Term Prognosis by Reducing Oxidative Stress, Inflammation, and Endothelial Dysfunction in Acute Coronary Syndromes. Mar. Drugs 2025, 23, 154. https://doi.org/10.3390/md23040154
Covaciu A, Benedek T, Bobescu E, Rus H, Benza V, Marceanu LG, Grigorescu S, Strempel CG. Polyunsaturated Fatty Acids Improved Long Term Prognosis by Reducing Oxidative Stress, Inflammation, and Endothelial Dysfunction in Acute Coronary Syndromes. Marine Drugs. 2025; 23(4):154. https://doi.org/10.3390/md23040154
Chicago/Turabian StyleCovaciu, Alexandru, Theodora Benedek, Elena Bobescu, Horatiu Rus, Valentina Benza, Luigi Geo Marceanu, Simona Grigorescu, and Christian Gabriel Strempel. 2025. "Polyunsaturated Fatty Acids Improved Long Term Prognosis by Reducing Oxidative Stress, Inflammation, and Endothelial Dysfunction in Acute Coronary Syndromes" Marine Drugs 23, no. 4: 154. https://doi.org/10.3390/md23040154
APA StyleCovaciu, A., Benedek, T., Bobescu, E., Rus, H., Benza, V., Marceanu, L. G., Grigorescu, S., & Strempel, C. G. (2025). Polyunsaturated Fatty Acids Improved Long Term Prognosis by Reducing Oxidative Stress, Inflammation, and Endothelial Dysfunction in Acute Coronary Syndromes. Marine Drugs, 23(4), 154. https://doi.org/10.3390/md23040154