Marine-Derived Terpenes: Chemistry, Synthesis and Their Therapeutic Potential
Funding
Conflicts of Interest
List of Contributions
- Heo, C.S.; Kang, J.S.; Yang, J.W.; Lee, M.A.; Lee, H.S.; Kim, C.H.; Shin, H.J. Geliboluols A-D: Kaurane-type diterpenoids from the marine-derived rare actinomycete Actinomadura geliboluensis. Mar. Drugs 2025, 23, 78.
- Tang, L.; Xia, J.; Chen, Z.; Wu, X.; Li, G.; Lai, Q.; Shao, Z.; Wang, W.; Hong, X. Cytotoxic pentaketide-sesquiterpenes from the marine-derived fungus Talaromyces variabilis M22734. Mar. Drugs 2024, 22, 274.
- Wang, J.; Guan, H.; Xu, Z. Development and validation of a liquid chromatography-tandem mass spectrometry method for screening potential citrate lyase inhibitors from a library of marine compounds. Mar. Drugs 2024, 22, 245.
- Cheng, W.; Yang, X.; Yang, D.; Zhang, T.; Tian, L.; Dao, J.; Feng, Z.; Hu, W. Recent advances in research on inhibitory effects of seaweed extracts against parasites. Mar. Drugs 2025, 23, 171.
- Zhang, L.; Li, D.; Chen, X.; Zhao, F. Marine-derived diterpenes from 2019 to 2024: Structures, biological activities, synthesis and potential applications. Mar. Drugs 2025, 23, 72.
References
- Cheng, S.; Wang, X.; Deng, Z.; Liu, T. Innovative approaches in the discovery of terpenoid natural products. Curr. Opin. Microbiol. 2025, 83, 102575. [Google Scholar] [CrossRef]
- Wilson, K.; de Rond, T.; Burkhardt, I.; Steele, T.S.; Schafer, R.J.B.; Podell, S.; Allen, E.E.; Moore, B.S. Terpene biosynthesis in marine sponge animals. Proc. Natl. Acad. Sci. USA 2023, 120, e2220934120. [Google Scholar] [CrossRef]
- Scesa, P.D.; Lin, Z.; Schmidt, E.W. Ancient defensive terpene biosynthetic gene clusters in the soft corals. Nat. Chem. Biol. 2022, 18, 659–663. [Google Scholar] [CrossRef]
- Tao, H.; Lauterbach, L.; Bian, G.; Chen, R.; Hou, A.; Mori, T.; Cheng, S.; Hu, B.; Lu, L.; Mu, X.; et al. Discovery of non-squalene triterpenes. Nature 2022, 606, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.-M.; Voigt, C.A. Design of a redox-proficient Escherichia coli for screening terpenoids and modifying cytochrome P450s. Nat. Catal. 2023, 6, 1016–1029. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, J. Marine-Derived Terpenes: Chemistry, Synthesis and Their Therapeutic Potential. Mar. Drugs 2025, 23, 483. https://doi.org/10.3390/md23120483
Xia J. Marine-Derived Terpenes: Chemistry, Synthesis and Their Therapeutic Potential. Marine Drugs. 2025; 23(12):483. https://doi.org/10.3390/md23120483
Chicago/Turabian StyleXia, Jinmei. 2025. "Marine-Derived Terpenes: Chemistry, Synthesis and Their Therapeutic Potential" Marine Drugs 23, no. 12: 483. https://doi.org/10.3390/md23120483
APA StyleXia, J. (2025). Marine-Derived Terpenes: Chemistry, Synthesis and Their Therapeutic Potential. Marine Drugs, 23(12), 483. https://doi.org/10.3390/md23120483
