Structural Elucidation and Antiviral Activity Evaluation of Novelly Synthesized Guaiazulene Derivatives
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antiviral Activity
3. Materials and Methods
3.1. The General Procedures
3.2. Synthesis of Guaiazulene Derivatives (Conditions 1–3)
3.3. Anti-H1N1 Activity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HRESIMS | High-resolution electrospray ionization mass spectrometry |
NMR | Nuclear magnetic resonance |
DEPT | Distortionless enhancement by polarization transfer |
HMBC | 1H-detected heteronuclear multiple bond connectivity |
HMQC | 1H-detected heteronuclear multiple quantum coherence |
COSY | Shift correlation spectroscopy |
NOESY | Nuclear Overhauser effect spectroscopy |
1H-NMR | 1H-nuclear magnetic resonance |
13C-NMR | 13C-nuclear magnetic resonance |
IR | Infrared absorption spectrum |
UV | Ultraviolet-visible spectrum |
EI MS | Electron impact ionization mass spectra |
ESI MS | Electrospray ionization mass spectra |
dd | Doublet of doublet |
m/z | Mass to charge ratio |
ppm | Part per million |
MTT | 3-(4, 5-dimethyl-2-thiazoyl)-2, 5-diphenyl-tetrazolium bromide |
SRB | Sulforhodamine B |
HPLC | High performance liquid chromatography |
TLC | Thin-layer chromatography |
MDCK | Madin-Darby canine kidney |
CPE | Cytopathic effect |
SAR | Structure-activity relationship |
References
- Wakabayashi, S.; Kato, Y.; Mochizuki, K.; Suzuki, R.; Matsumoto, M.; Sugihara, Y.; Shimizu, M. Pyridylazulenes: Synthesis, Color Changes, and Structure of the Colored Product. J. Org. Chem. 2007, 72, 744–749. [Google Scholar] [CrossRef]
- Peart, P.A.; Repka, L.M.; Tovar, J.D. Emerging Prospects for Unusual Aromaticity in Organic Electronic Materials: The Case for Methano[10]annulene. Eur. J. Org. Chem. 2008, 28, 2193–2206. [Google Scholar] [CrossRef]
- López-Alled, C.M.; Park, S.J.; Lee, D.J.; Murfin, L.C.; Kociok-Köhn, G.; Hann, J.L.; Wenk, J.; James, T.D.; Kim, H.M.; Lewis, S.E. Azulene-based fluorescent chemosensor for adenosine diphosphate. Chem. Commun. 2021, 57, 10608–10611. [Google Scholar] [CrossRef]
- Xin, H.; Hou, B.; Gao, X. Azulene-Based π-Functional Materials: Design, Synthesis, and Applications. Acc. Chem. Res. 2021, 54, 1737–1753. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Ito, S. Recent Progress in the Chemistry of Ring-Fused Azulenes: Synthesis, Reactivity and Properties. Chem. Asian J. 2025, 20, e202500166. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Qiu, F.; Ding, Y.; Liang, J.; Zhou, B.; Zhou, Z.; Zhang, L.; Chi, C.; Wang, Q. Perylene with Split-Azulene Embedding. Angew. Chem. Int. Ed. Engl. 2024, 63, e202409750. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Takubo, M.; Ogawa, K.; Nakayama, K.I.; Koganezawa, T.; Katagiri, H. Terazulene Isomers: Polarity Change of OFETs through Molecular Orbital Distribution Contrast. J. Am. Chem. Soc. 2016, 138, 11335–11343. [Google Scholar] [CrossRef]
- Nishimura, H.; Ishida, N.; Shimazaki, A.; Wakamiya, A.; Saeki, A.; Scott, L.T.; Murata, Y. Hole-Transporting Materials with a Two-Dimensionally Expanded π-System around an Azulene Core for Efficient Perovskite Solar Cells. J. Am. Chem. Soc. 2015, 137, 15656–15659. [Google Scholar] [CrossRef]
- Zhou, Y.; Zou, Q.; Qiu, J.; Wang, L.; Zhu, L. Rational Design of a Green-Light-Mediated Unimolecular Platform for Fast Switchable Acidic Sensing. J. Phys. Chem. Lett. 2018, 9, 550–556. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, L. Involving Synergy of Green Light and Acidic Responses in Control of Unimolecular Multicolor Luminescence. Chem. Eur. J. 2018, 24, 10306–10309. [Google Scholar] [CrossRef]
- Cao, T.; Li, Y.; Yang, Z.; Yuan, M.; Li, Y.; Yang, H.; Feng, Y.; Yin, S. Synthesis and biological evaluation of 3, 8-dimethyl-5-isopropylazulene derivatives as antigastric ulcer agent. Chem. Biol. Drug Des. 2016, 88, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Elshamy, A.I.; Nassar, M.I.; Mohamed, T.A.; Hegazy, M.E. Chemical and biological profile of Cespitularia species: A mini review. J. Adv. Res. 2016, 7, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Namikoshi, M.; Kobayashi, H.; Yoshimoto, T.; Meguro, S.; Akano, K. Isolation and characterization of bioactive metabolites from marine-derived filamentous fungi collected from tropical and sub-tropical coral reefs. Chem. Pharm. Bull. 2000, 48, 1452–1457. [Google Scholar] [CrossRef]
- Guo, J.S.; Cho, C.H.; Wang, J.Y.; Koo, M.W. Expression and immunolocalization of heat shock proteins in the healing of gastric ulcers in rats. Scand. J. Gastroenterol. 2002, 37, 17–22. [Google Scholar] [CrossRef]
- Togar, B.; Turkez, H.; Hacimuftuoglu, A.; Tatar, A.; Geyikoglu, F. Guaiazulene biochemical activity and cytotoxic and genotoxic effects on rat neuron and N2a neuroblastom cells. J. Intercult. Ethnopharmacol. 2015, 4, 29–33. [Google Scholar] [CrossRef]
- Nenov, A.; Borrego-Varillas, R.; Oriana, A.; Ganzer, L.; Segatta, F.; Conti, I.; Segarra-Marti, J.; Omachi, J.; Dapor, M.; Taioli, S.; et al. UV-Light-Induced Vibrational Coherences: The Key to Understand Kasha Rule Violation in trans-Azobenzene. J. Phys. Chem. Lett. 2018, 9, 1534–1541. [Google Scholar] [CrossRef]
- Behera, S.K.; Park, S.Y.; Gierschner, J. Dual Emission: Classes, Mechanisms, and Conditions. Angew. Chem. Int. Ed. 2021, 60, 22624–22638. [Google Scholar] [CrossRef]
- Dunlop, D.; Ludvíková, L.; Banerjee, A.; Ottosson, H.; Slanina, T. Excited-State (Anti)Aromaticity Explains Why Azulene Disobeys Kasha’s Rule. J. Am. Chem. Soc. 2023, 145, 21569–21575. [Google Scholar] [CrossRef]
- Wang, F.; Lai, Y.-H.; Han, M.-Y. Stimuli-Responsive Conjugated Copolymers Having Electro-Active Azulene and Bithiophene Units in the Polymer Skeleton: Effect of Protonation and p-Doping on Conducting Properties. Macromolecules 2004, 37, 3222–3230. [Google Scholar] [CrossRef]
- Dong, J.X.; Zhang, H.L. Azulene-based organic functional molecules for optoelectronics. Chin. Chem. Lett. 2016, 27, 1097–1104. [Google Scholar] [CrossRef]
- Ou, L.; Zhou, Y.; Wu, B.; Zhu, L. The unusual physicochemical properties of azulene and azulene-based compounds. Chin. Chem. Lett. 2019, 30, 1903–1907. [Google Scholar] [CrossRef]
- Akram, W.; Tagde, P.; Ahmed, S.; Arora, S.; Emran, T.B.; Babalghith, A.O.; Sweilam, S.H.; Simal-Gandara, J. Guaiazulene and related compounds: A review of current perspective on biomedical applications. Life Sci. 2023, 316, 121389. [Google Scholar] [CrossRef]
- Bakun, P.; Czarczynska-Goslinska, B.; Goslinski, T.; Lijewski, S. In vitro and in vivo biological activities of azulene derivatives with potential applications in medicine. Med. Chem. Res. 2021, 30, 834–846. [Google Scholar] [CrossRef]
- Slon, E.; Slon, B.; Kowalczuk, D. Azulene and Its Derivatives as Potential Compounds in the Therapy of Dermatological and Anticancer Diseases: New Perspectives against the Backdrop of Current Research. Molecules 2024, 29, 2020. [Google Scholar] [CrossRef]
- Correia da Silva, D.; Valentão, P.; Pereira, D.M. Naturally occurring small molecules with dual effect upon inflammatory signaling pathways and endoplasmic reticulum stress response. J. Physiol. Biochem. 2024, 80, 421–437. [Google Scholar] [CrossRef] [PubMed]
- Cheon, H.G.; Kim, H.J.; Mo, H.K.; Shin, E.; Lee, Y. Anti-ulcer activity of newly synthesized acylquinoline derivatives. Arch. Pharm. Res. 1999, 22, 137–142. [Google Scholar] [CrossRef]
- Li, P.; Liu, X.; Zhu, H.; Tang, X.; Shi, X.; Liu, Y.; Li, G. Unusual Inner-Salt Guaiazulene Alkaloids and bis-Sesquiterpene from the South China Sea Gorgonian Muriceides collaris. Sci. Rep. 2017, 7, 7697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-Y.; Yang, F.; Shi, W.-Q.; Zhang, P.; Li, Y.; Yin, S.-F. Synthesis and antigastric ulcer activity of novel 5-isoproyl3,8-dimethylazulene derivatives. Bioorg. Med. Chem. Lett. 2011, 21, 5722–5725. [Google Scholar] [CrossRef]
- Peet, J.; Selyutina, A.; Bredihhin, A. Antiretroviral (HIV-1) activity of azulene derivatives. Bioorg. Med. Chem. 2016, 24, 1653–1657. [Google Scholar] [CrossRef]
- Ma, Z.; Han, X.; Ren, J.; Liu, K.; Zhang, W.; Li, G. Design, Synthesis, and Biological Activity of Guaiazulene Derivatives. Chem. Biodivers. 2023, 20, e202201174. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, Z.; Han, X.; Li, G. Design, synthesis and biological activity of α-nitrile substituted guaiazulene-based chalcone derivatives. Fitoterapia 2024, 178, 106151. [Google Scholar] [CrossRef]
- Shi, X.F. Studies on Chemical Constituents and Bioactivities of Muriceides collaris. Master’s Thesis, Ocean University of China, Qingdao, China, 2009. [Google Scholar]
- Cheng, C.L.; Li, P.L.; Wang, W.; Shi, X.F.; Zhang, G.; Zhu, H.Y.; Wu, R.C.; Tang, X.L.; Li, G.Q. Optimized one-step preparation ofbioactive natural product guaiazulene-2,9-dione. J. Ocean Univ. China 2014, 13, 1000–1004. [Google Scholar] [CrossRef]
- Nozoe, T.; Takekuma, S.; Doi, M.; Matsubara, Y.; Yamamoto, H. Oxidation of azulene derivatives. Autoxidation of guaiazulene in a polar aprotic solvent. Chem. Lett. 1984, 13, 627–630. [Google Scholar] [CrossRef]
- Pailer, M.; Lobenwein, H. Autoxidation products of guaiazulene. Monatshefte Chem. 1971, 102, 1558–1570. [Google Scholar] [CrossRef]
- Matsubara, Y.; Takekuma, S.; Yamamoto, H.; Nozoe, T. 6-(3-Guaiazulenyl)-5-isopropyl-3, 8-dimethyl-1(6H)-azulenone and its norcaradiene isomer. Key intermediates for novel intermolecular one-carbon transfer in autoxidation of guaiazulene. Chem. Lett. 1987, 3, 455–458. [Google Scholar] [CrossRef]
- Matsubara, Y.; Takekuma, S.; Yokoi, K.; Yamamoto, H.; Nozoe, T. Autoxidation of guaiazulene and 4,6,8-trimethylazulene in polar aprotic solvent: Structural proof for products. Bull. Chem. Soc. Jpn. 1987, 60, 1415–1428. [Google Scholar] [CrossRef]
- Matsubara, Y.; Matsui, S.; Takekuma, S.; Quo, Y.P.; Yamamoto, H.; Nozoe, T. An efficient preparation and reactions of [5, 6′-biguaiazulene]-3, 3′(5H, 6′H)-dione and 5-isopropylidene-3, 8-dimethyl-1(5H)-azulenone: Key intermadiates for the autoxidation products of guaiazulene. Bull. Chem. Soc. Jpn. 1989, 62, 2040–2044. [Google Scholar] [CrossRef]
- Nozoe, T.; Ishikama, S.; Shindo, K. Facile shifts of bromine atom on C-3 position of guaiazulene and synthesis of variously functionalized azulenes using these reactions. Chem. Lett. 1989, 2, 353–356. [Google Scholar] [CrossRef]
- Matsubara, Y.; Matsui, S.; Imazu, K.; Takekuma, S.; Yamamoto, H.; Nozoe, T. Electrochemical oxidation of guaiazulene in DMSO. Nippon Kagaku Kaishi 1989, 10, 1753–1756. [Google Scholar] [CrossRef]
- Matsubara, Y.; Morita, M.; Takekuma, S.I.; Nakano, T.; Yamamoto, H.; Nozoe, T. Oxidation of 4, 6, 8-trimethylazulene and guaiazulene with hydrogen peroxide in pyridine. Bull. Chem. Soc. Jpn. 1991, 64, 3497–3499. [Google Scholar] [CrossRef]
- Nozoe, T.; Shido, K.; Wakabayashi, H.; Kurihara, T.; Ishikawa, S. Unusual reactions of guaiazulene with N-bromosuccinimide and synthesis of variously functionalized azulenes using these reactions. Collect. Czechoslov. Chem. Commun. 1991, 56, 999–1010. [Google Scholar] [CrossRef]
- Nozoe, T.; Shindo, K.; Wakabayashi, H.; Kurihara, T.; Uzawa, J. Reaction od guaiazulene with bromine in hexane and in aqueous tetrahydrofunan. Chem. Lett. 1995, 8, 687–688. [Google Scholar] [CrossRef]
- Liu, M.; Li, P.; Tang, X.; Luo, X.; Liu, K.; Zhang, Y.; Wang, Q.; Li, G. Lemnardosinanes AI: New Bioactive Sesquiterpenoids from Soft Coral Lemnalia sp. J. Org. Chem. 2021, 86, 970–979. [Google Scholar] [CrossRef] [PubMed]
No. | 1c | 2c | 2d | 2e | 2f |
---|---|---|---|---|---|
δH a (J in Hz) | δH a (J in Hz) | δH b (J in Hz) | δH b (J in Hz) | δH b (J in Hz) | |
1 | |||||
2 | 7.53, s | 6.30, s | 7.27, dd (5.7, 1.3) | 6.24, s | |
3 | 7.52, d (5.7) | ||||
4 | |||||
5 | 6.81, s | 6.81, d (11.0) | |||
6 | 8.08, dd (11.0, 1.6) | 6.86, d (2.1) | 7.14, d (1.5) | 6.86, s | |
7 | 6.78, s | ||||
8 | 8.98, d (1.8) | 7.35, d (2.1) | 7.45, d (0.8) | 7.08, d (1.5) | |
9 | |||||
10 | 2.86, m | ||||
11 | 1.25, d (6.9) | 2.81, m | 2.89, m | 2.98, m | |
12 | 1.25, d (6.9) | 2.74, s | 1.28, d (6.9) | 1.31, d (6.9) | 1.32, d (6.9) |
13 | 2.49, s | 2.20, s | 1.28, d (6.9) | 1.31, d (6.9) | 1.32, d (6.9) |
14 | 2.19, s | 2.76, s | 1.70, s | 2.47, s | 1.94, s |
15 | 8.22, s | 2.14, s | |||
1’ | |||||
2’ | 7.45, s | 7.41, s | 7.83, s | 6.74, s | |
3’ | |||||
4’ | |||||
5’ | 6.82, d (10.6) | 7.07, d (10.8) | 7.05, d (10.8) | 6.87, d (10.9) | |
6’ | 7.34, dd (10.6, 1.4) | 7.47, dd (10.7, 2.0) | 7.39, dd (10.7, 2.0) | 7.25, dd (10.9, 1.8) | |
7’ | |||||
8’ | 8.21, d (1.7) | 8.22, d (2.1) | 8.11, d (2.1) | 7.97, d (2.1) | |
9’ | |||||
10’ | |||||
11’ | 3.08, m | 3.11, m | 3.07, m | 3.01, m | |
12’ | 1.39, d (6.9) | 1.38, d (6.9) | 1.37, d (6.9) | 1.34, d (6.9) | |
13’ | 1.39, d (6.9) | 1.38, d (6.9) | 1.37, d (6.9) | 1.34, d (6.9) | |
14’ | 2.15, s | 2.68, s | 3.08, s | 3.18, s | |
15’ | 2.69, s | 2.65, s | 2.64, s | 2.43, s |
No. | 1c | 2c | 2d | 2e | 2f |
---|---|---|---|---|---|
δC d | δC d | δC e | δC e | δC e | |
1 | 155.6, C | 135.8, C | 192.6, C | 136.0, C | 146.1, C |
2 | 119.5, C | 141.9, CH | 134.4 g, CH | 133.8, CH | 137.0, CH |
3 | 190.2, C | 126.2, C | 170.2, C | 135.2, CH | 139.0, C |
4 | 137.8, C | 152.3, C | 145.0, C | 140.7, C | 146.1, C |
5 | 129.3, CH | 125.6, CH | 189.0, C | 185.5, C | 125.0, C |
6 | 155.0, C | 136.4, CH | 136.1, CH | 135.1, CH | 126.0, CH |
7 | 116.0, CH | 127.2, C | 154.3, C | 152.4, C | 147.9, C |
8 | 145.6, C | 133.7, CH | 127.9, CH | 122.4, CH | 114.7, CH |
9 | 124.3, C | 134.8, C | 137.3, C | 143.3, C | 124.5, C |
10 | 34.5, CH | 133.0, C | 143.4, C | 146.9, C | 133.1, C |
11 | 23.5, CH3 | 198.4, C | 37.2, CH | 38.5, CH | 34.2, CH |
12 | 23.5, CH3 | 26.7, CH3 | 22.3, CH3 | 23.3, CH3 | 24.4, CH3 |
13 | 17.3, CH3 | 26.6, CH3 | 22.3, CH3 | 23.3, CH3 | 24.4, CH3 |
14 | 13.0, CH3 | 13.2, CH3 | 17.4, CH3 | 17.5, CH3 | 19.0, CH3 |
15 | 124.7, CH | 13.1, CH3 | |||
1’ | 138.1, C | 125.9, C | 127.0, C | 133.1, C | |
2’ | 140.4, CH | 136.4, CH | 140.0, CH | 136.9, CH | |
3’ | 126.2, C | 122.2, C | 124.4, C | 146.1, C | |
4’ | 146.3, C | 146.0, C | 147.0, C | 144.1, C | |
5’ | 126.5, CH | 128.5, CH | 129.4, CH | 125.0, CH | |
6’ | 135.0, CH | 136.1, CH | 136.2, CH | 133.9, CH | |
7’ | 139.7, C | 142.2, C | 143.1, C | 139.2, C | |
8’ | 134.0, CH | 134.5 g, CH | 134.5, CH | 132.8, CH | |
9’ | 124.1, C | 139.4, C | 141.1, C | 125.0, C | |
10’ | 132.2, C | 139.4, C | 136.6, C | 131.9, C | |
11’ | 37.9, CH | 38.0, CH | 37.9, CH | 37.6, CH | |
12’ | 24.7 f, CH3 | 24.6, CH3 | 24.4, CH3 | 24.6 h, CH3 | |
13’ | 24.6 f, CH3 | 24.6, CH3 | 24.4, CH3 | 24.5 h, CH3 | |
14’ | 26.5, CH3 | 27.1, CH3 | 28.5, CH3 | 29.7, CH3 | |
15’ | 12.9, CH3 | 12.9, CH3 | 13.0, CH3 | 12.9, CH3 |
No. | 3a | 3b | ||
---|---|---|---|---|
δH b (J in Hz) | δC e | δH a (J in Hz) | δC d | |
1 | 134.5, C | 133.7, C | ||
2 | 7.38, d (1.2) | 137.7, CH | 7.20, s | 130.7, CH |
3 | 125.3, C | 124.4, C | ||
4 | 144.1, C | 131.5, C | ||
5 | 186.9, C | 129.5, CH | ||
6 | 7.12, s | 134.0 i, CH | 145.8, C | |
7 | 152.1, C | 204.9, C | ||
8 | 7.54, s | 121.7, CH | 8.30, s | 116.4, CH |
9 | 144.5, C | 137.9, C | ||
10 | 146.5, C | 144.7, C | ||
11 | 2.94, m | 38.1, CH | 3.68, m | 35.2, CH |
12 | 1.37, d (6.9) | 23.3 j, CH3 | 1.27, d (6.9) | 19.6 l, CH3 |
13 | 1.37, d (6.9) | 23.2 j, CH3 | 1.27, d (6.9) | 19.5 l, CH3 |
14 | 1.87, s | 18.2, CH3 | 1.85, s | 19.1, CH3 |
15 | 8.22, s | 122.3, CH | 8.49, s | 127.0, CH |
1’ | 124.7 k, C | 132.5, C | ||
2’ | 7.46, s | 139.0, CH | 7.94, s | 141.0, CH |
3’ | 148.1, C | 125.1, C | ||
4’ | 146.2, C | 147.1, C | ||
5’ | 6.92, d (10.8) | 126.9, CH | 7.06, d (10.9) | 129.4, CH |
6’ | 7.36, dd (10.8, 1.8) | 135.2, CH | 7.37, dd (10.9, 1.8) | 136.0, CH |
7’ | 140.1, C | 143.1, C | ||
8’ | 8.20, d (2.0) | 134.0 i, CH | 8.06, d (1.8) | 134.2, CH |
9’ | 138.0, C | 140.9, C | ||
10’ | 132.9, C | 136.5, C | ||
11’ | 3.08, m | 37.8, CH | 3.05, m | 37.9, CH |
12’ | 1.39, d (6.9) | 24.4, CH3 | 1.35, d (6.9) | 24.4, CH3 |
13’ | 1.39, d (6.9) | 24.4, CH3 | 1.35, d (6.9) | 24.4, CH3 |
14’ | 2.65, s | 26.7, CH3 | 3.19, s | 28.9, CH3 |
15’ | 2.68, s | 12.9, CH3 | 2.56, s | 12.9, CH3 |
1” | 127.0, C | 124.4 m, C | ||
2” | 7.82, s | 139.8, CH | 7.55, s | 139.4, CH |
3” | 124.8 k, C | 131.0 m, C | ||
4” | 146.8, C | 146.5, C | ||
5” | 7.03, d (10.8) | 129.2, CH | 6.91, d (10.7) | 126.7, CH |
6” | 7.35, dd (10.8, 1.8) | 136.0, CH | 7.35, dd (10.7, 1.8) | 135.1, CH |
7” | 143.0, C | 139.7, C | ||
8” | 8.05, d (1.9) | 134.3, CH | 8.20, d (1.8) | 133.8, CH |
9” | 140.7, C | 138.5, C | ||
10” | 136.3, C | 133.7, C | ||
11” | 3.04, m | 37.9, CH | 3.08, m | 37.9, CH |
12” | 1.35, d (6.9) | 24.6, CH3 | 1.38, d (6.9) | 24.7 n, CH3 |
13” | 1.35, d (6.9) | 24.6, CH3 | 1.38, d (6.9) | 24.6 n, CH3 |
14” | 3.14, s | 28.6, CH3 | 2.61, s | 26.3, CH3 |
15” | 2.55, s | 12.9, CH3 | 2.69, s | 12.9, CH3 |
Compounds | Concentration (μg/mL) | Inhibition (%) | IC50 (μg/mL) | IC50 (μM) |
---|---|---|---|---|
Ribavirin | 50 | 72.9 | 31.8 | 130.22 |
GA | 50 | 70.2 | 36.8 | 185.73 |
1a | 50 | 4.5 | >100 | >438.37 |
1b | 50 | 9.6 | >100 | >442.20 |
1c | 50 | 0.0 | >100 | >358.37 |
2a | 50 | 32.7 | 81.3 | 206.2 |
2b | 50 | 75.1 | 35.1 | 89.03 |
2c | 50 | 41.9 | 67.5 | 171.22 |
2d | 50 | 67.9 | 40.4 | 98.48 |
2e | 50 | 63.8 | 32.0 | 78.38 |
2f | 50 | 43.4 | 51.2 | 108.20 |
3a | 50 | 67.5 | 30.8 | 50.96 |
3b | 50 | 69.5 | 33.9 | 56.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.; Hou, L.; Tang, X.; Li, G. Structural Elucidation and Antiviral Activity Evaluation of Novelly Synthesized Guaiazulene Derivatives. Mar. Drugs 2025, 23, 387. https://doi.org/10.3390/md23100387
Cheng C, Hou L, Tang X, Li G. Structural Elucidation and Antiviral Activity Evaluation of Novelly Synthesized Guaiazulene Derivatives. Marine Drugs. 2025; 23(10):387. https://doi.org/10.3390/md23100387
Chicago/Turabian StyleCheng, Canling, Lei Hou, Xuli Tang, and Guoqiang Li. 2025. "Structural Elucidation and Antiviral Activity Evaluation of Novelly Synthesized Guaiazulene Derivatives" Marine Drugs 23, no. 10: 387. https://doi.org/10.3390/md23100387
APA StyleCheng, C., Hou, L., Tang, X., & Li, G. (2025). Structural Elucidation and Antiviral Activity Evaluation of Novelly Synthesized Guaiazulene Derivatives. Marine Drugs, 23(10), 387. https://doi.org/10.3390/md23100387