Whole-Cell Biosensor for Iron Monitoring as a Potential Tool for Safeguarding Biodiversity in Polar Marine Environments
Abstract
:1. Introduction
2. Methods for Iron Monitoring in Seawater
Method | Measurement | Benefits | Drawbacks | Detection Limit |
---|---|---|---|---|
Atomic Absorption Spectrometry (AAS) | Laboratory | High sensitivity Short detection time | Pre-concentration of samples High sample volume Cumbersome equipment Expensive costs | 50 pmol L−1 [80] |
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) | Laboratory | High sensitivity Short detection time Small sample volume | Pre-concentration of samples Cumbersome equipment Expensive costs | 14 pmol L−1 [54] |
Spectrophotometry | Laboratory | Iron speciation selectivity Simple procedure and data analysis Short detection time Inexpensive | Limited sensitivity Interference by coloured contaminants Requirement of stable iron complexes Pre-treatment of samples | 1.9 nmol L−1 [81] |
Voltammetry | Laboratory | High sensitivity Fast and simple procedure Iron speciation selectivity | Interference by other heavy metals Pre-treatment of samples Expensive maintenance costs | 5 pmol L−1 [51] |
Chemiluminescence | Laboratory | High sensitivity Iron speciation selectivity Short detection time Wide dynamic range Inexpensive | Interference by other chemical species Pre-treatment of samples Matrix removal requirement | 40 pmol L−1 [60] |
Flow Injection Analysis (FIA) | Onboard ship | High sensitivity Easy automatic operation Short detection time High sample throughput Low reagent consumption Minimizes the redox change and contamination | Expensive instrumentation Pre-treatment of samples Matrix removal requirement | 25 pmol L−1 [82] |
Long Path Length Liquid Waveguide Capillary Cell (LWCC) | Onboard ship | High sensitivity Easy automatic operation High sample throughput Iron speciation selectivity Small sample volume Background signal reduction | Expensive costs Sensitivity to impurities Pre-treatment of samples | 0.1 nmol L−1 [63] |
Reverse Flow Injection Analysis (rFIA) | Onboard ship | High sensitivity Easy automatic operation High sample throughput Fast and precise measurements Low reagents consumption Suitable for long-term shipboard use | Expensive instrumentation and maintenance costs Pre-treatment of samples Matrix removal requirement | 0.4 nmol L−1 [64] |
Voltammetric In Situ Profiling System (VIP) | In situ | Iron speciation selectivity Immersible in seawater Minimizes sample volume High spatial and temporal resolution | Expensive costs Long-term instability Low data accuracy for long-term operation | 0.27 nmol L−1 [67] |
Multi Physical Chemical Profiler (MPCP) | In situ | Iron speciation selectivity Immersible in seawater High spatial and temporal resolution Multiparameter measurements Easy automatic operation Minimize sample volume | Expensive costs Long-term instability Low data accuracy for long-term operation | 0.2 nmol L−1 [67] |
Whole-Cell Biosensor (WCB) | In situ | Bioavailable iron measurement High sensitivity Simple manipulation Inexpensive Potentially suitable for real-time measurements | Long-term maintenance Environmental containment Environmental interference Limited resolution Limited response time | 40 pmol L−1 [34] |
Multiple Light—Addressable Potentiometric Sensors (MLAPS) | In situ real-time | High sensitivity when coupled with voltammetry High specificity Fast detection speed Easy automatic operation Minimal sample requirement Multianalyte measurements | Expensive costs Limited measurement accuracy in complex environments Interference by multiple heavy metals Long-term stability | 50 nmol L−1 [71] |
Long Pathlength Absorbance Spectroscopy (LPAS) | In situ real-time | High sensitivity when coupled with LWCC Precision and Accuracy Minimal sample requirement Minimal interferences Easy automatic operation Suitable for deep sea monitoring | Expensive costs Long-term stability Frequent system maintenance | 27.25 nmol L−1 [73] |
3. Whole-Cell Biosensors: Main Features and Key Elements
3.1. Heavy Metal Sensor Elements
Transcription Factor (TF) | Type | Genes Controlled | Organisms | WCB Applications | References |
---|---|---|---|---|---|
MerR | Activator | merA (mercury reductase), merB (permease), merC (metallothionein) | E. coli, P. aeruginosa PAO1, P. putida | Detection of mercury in seawater and lakes using GFP, RFP, violacein, pyocyanin, Luciferase | [95,96,97,98,99,100,101,102] |
ArsR/SmtB | Repressor | arsA, arsB, arsC (E. coli); arsC, arsD, arsR (B. subtilis) | P. aeruginosa PAO1, P. putida, Enterobacteria, E. coli | Detection of arsenic in lakes and groundwater using GFP and β-Galactosidase; detection of cadmium, lead, antimony | [103,104,105,106,107,108,109,110,111,112,113,114,115] |
Fur | Repressor/Activator | Iron-responsive genes, siderophore synthesis genes, ROS defence, respiration, chemotaxis, nitrogen metabolism, photosynthesis, virulence, glycolysis, citric acid cycle genes | E. coli, Corynebacterium, Streptomyces, Mycobacterium | Detection of iron in freshwater and South West Pacific using bioluminescence in P. putida | [34,116,117,118,119,120,121,122,123] |
DtxR | Repressor/Activator | Iron uptake and metabolism genes | Corynebacterium, Streptomyces, Mycobacterium | N.D. | [122,123] |
IscR | Repressor | iscSUA-hscBA-fdx iron–sulfur cluster | E. coli | N.D. | [124,125,126,127,128] |
3.2. Iron Internalization Mechanisms
3.3. Reporter Genes
3.4. Host Features
4. WCBs Application for Iron Monitoring in Seawater
5. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cochrane, S.K.J.; Andersen, J.H.; Berg, T.; Blanchet, H.; Borja, A.; Carstensen, J.; Elliott, M.; Hummel, H.; Niquil, N.; Renaud, P.E. What Is Marine Biodiversity? Towards Common Concepts and Their Implications for Assessing Biodiversity Status. Front. Mar. Sci. 2016, 3, 248. [Google Scholar] [CrossRef]
- Heiskanen, A.-S.; Berg, T.; Uusitalo, L.; Teixeira, H.; Bruhn, A.; Krause-Jensen, D.; Lynam, C.P.; Rossberg, A.G.; Korpinen, S.; Uyarra, M.C.; et al. Biodiversity in Marine Ecosystems—European Developments toward Robust Assessments. Front. Mar. Sci. 2016, 3, 184. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. Treatise Geochem. 2003, 3, 659. [Google Scholar] [CrossRef]
- Johnson, K.S.; Gordon, R.M.; Coale, K.H. What Controls Dissolved Iron Concentrations in the World Ocean? Authors’ Closing Comments. Mar. Chem. 1997, 57, 181–186. [Google Scholar] [CrossRef]
- Tagliabue, A.; Bowie, A.R.; Boyd, P.W.; Buck, K.N.; Johnson, K.S.; Saito, M.A. The Integral Role of Iron in Ocean Biogeochemistry. Nature 2017, 543, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Twining, B.S.; Baines, S.B. The Trace Metal Composition of Marine Phytoplankton. Ann. Rev. Mar. Sci. 2013, 5, 191–215. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.R.; Hunter, K.A. The Biogeochemistry of Iron in Seawater; Wiley: Chichester, UK, 2001. [Google Scholar]
- Holms, H. Flux Analysis and Control of the Central Metabolic Pathways in Escherichia coli. FEMS Microbiol. Rev. 1996, 19, 85–116. [Google Scholar] [CrossRef] [PubMed]
- Tortell, P.D.; Maldonado, M.T.; Granger, J.; Price, N.M. Marine Bacteria and Biogeochemical Cycling of Iron in the Oceans. FEMS Microbiol. Ecol. 1999, 29, 1–11. [Google Scholar] [CrossRef]
- Andrews, S.C.; Robinson, A.K.; Rodríguez-Quiñones, F. Bacterial Iron Homeostasis. FEMS Microbiol. Rev. 2003, 27, 215–237. [Google Scholar] [CrossRef]
- Almaas, E.; Oltvai, Z.N.; Barabási, A.-L. The Activity Reaction Core and Plasticity of Metabolic Networks. PLoS Comput. Biol. 2005, 1, e68. [Google Scholar] [CrossRef]
- Millero, F.J.; Yao, W.; Aicher, J. The Speciation of Fe(II) and Fe(III) in Natural Waters. Mar. Chem. 1995, 50, 21–39. [Google Scholar] [CrossRef]
- Liu, X.; Millero, F.J. The Solubility of Iron in Seawater. Mar. Chem. 2002, 77, 43–54. [Google Scholar] [CrossRef]
- Marsay, C.M.; Aguilar-Islas, A.; Fitzsimmons, J.N.; Hatta, M.; Jensen, L.T.; John, S.G.; Kadko, D.; Landing, W.M.; Lanning, N.T.; Morton, P.L.; et al. Dissolved and Particulate Trace Elements in Late Summer Arctic Melt Ponds. Mar. Chem. 2018, 204, 70–85. [Google Scholar] [CrossRef]
- González-Santana, D.; Lough, A.J.M.; Planquette, H.; Sarthou, G.; Tagliabue, A.; Lohan, M.C. The Unaccounted Dissolved Iron (II) Sink: Insights from DFe(II) Concentrations in the Deep Atlantic Ocean. Sci. Total Environ. 2023, 862, 161179. [Google Scholar] [CrossRef]
- Millero, F.J. Solubility of Fe(III) in Seawater. Earth Planet. Sci. Lett. 1998, 154, 323–329. [Google Scholar] [CrossRef]
- Browning, T.J.; Moore, C.M. Global Analysis of Ocean Phytoplankton Nutrient Limitation Reveals High Prevalence of Co-Limitation. Nat. Commun. 2023, 14, 5014. [Google Scholar] [CrossRef] [PubMed]
- Fourquez, M.; Devez, A.; Schaumann, A.; Guéneuguès, A.; Jouenne, T.; Obernosterer, I.; Blain, S. Effects of Iron Limitation on Growth and Carbon Metabolism in Oceanic and Coastal Heterotrophic Bacteria. Limnol. Oceanogr. 2014, 59, 349–360. [Google Scholar] [CrossRef]
- Saito, M.A.; Bertrand, E.M.; Dutkiewicz, S.; Bulygin, V.V.; Moran, D.M.; Monteiro, F.M.; Follows, M.J.; Valois, F.W.; Waterbury, J.B. Iron Conservation by Reduction of Metalloenzyme Inventories in the Marine Diazotroph Crocosphaera watsonii. Proc. Natl. Acad. Sci. USA 2011, 108, 2184–2189. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N.R.; Ellis, K.A.; Lampe, R.H.; McNair, H.; Twining, B.S.; Maldonado, M.T.; Brzezinski, M.A.; Kuzminov, F.I.; Thamatrakoln, K.; Till, C.P.; et al. Diatom Transcriptional and Physiological Responses to Changes in Iron Bioavailability across Ocean Provinces. Front. Mar. Sci. 2017, 4, 360. [Google Scholar] [CrossRef]
- Strzepek, R.F.; Harrison, P.J. Photosynthetic Architecture Differs in Coastal and Oceanic Diatoms. Nature 2004, 431, 689–692. [Google Scholar] [CrossRef]
- Bucciarelli, E.; Pondaven, P.; Sarthou, G. Effects of an Iron-Light Co-Limitation on the Elemental Composition (Si, C, N) of the Marine Diatoms Thalassiosira oceanica and Ditylum brightwellii. Biogeosciences 2010, 7, 657–669. [Google Scholar] [CrossRef]
- Tortell, P.D.; Maldonado, M.T.; Price, N.M. The Role of Heterotrophic Bacteria in Iron-Limited Ocean Ecosystems. Nature 1996, 383, 330–332. [Google Scholar] [CrossRef]
- Oexle, H.; Gnaiger, E.; Weiss, G. Iron-Dependent Changes in Cellular Energy Metabolism: Influence on Citric Acid Cycle and Oxidative Phosphorylation. Biochim. Biophys. Acta 1999, 1413, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Shakoury-Elizeh, M.; Protchenko, O.; Berger, A.; Cox, J.; Gable, K.; Dunn, T.M.; Prinz, W.A.; Bard, M.; Philpott, C.C. Metabolic Response to Iron Deficiency in Saccharomyces Cerevisiae. J. Biol. Chem. 2010, 285, 14823–14833. [Google Scholar] [CrossRef]
- Petrou, K.; Kranz, S.A.; Trimborn, S.; Hassler, C.S.; Ameijeiras, S.B.; Sackett, O.; Ralph, P.J.; Davidson, A.T. Southern Ocean Phytoplankton Physiology in a Changing Climate. J. Plant Physiol. 2016, 203, 135–150. [Google Scholar] [CrossRef] [PubMed]
- Baines, S.B.; Chen, X.; Vogt, S.; Fisher, N.S.; Twining, B.S.; Landry, M.R. Microplankton Trace Element Contents: Implications for Mineral Limitation of Mesozooplankton in an HNLC Area. J. Plankton Res. 2016, 38, 256–270. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, A.; Maldonado, M.T. Iron. In The Physiology of Microalgae; Borowitzka, M.A., Beardall, J., Raven, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 233–279. ISBN 978-3-319-24945-2. [Google Scholar]
- Galbraith, E.D.; Le Mézo, P.; Hernandez, G.S.; Bianchi, D.; Kroodsma, D. Growth Limitation of Marine Fish by Low Iron Availability in the Open Ocean. Front. Mar. Sci. 2019, 6, 439120. [Google Scholar] [CrossRef]
- Andrew, S.M.; Morell, H.T.; Strzepek, R.F.; Boyd, P.W.; Ellwood, M.J. Iron Availability Influences the Tolerance of Southern Ocean Phytoplankton to Warming and Elevated Irradiance. Front. Mar. Sci. 2019, 6, 681. [Google Scholar] [CrossRef]
- Deppeler, S.L.; Davidson, A.T. Southern Ocean Phytoplankton in a Changing Climate. Front. Mar. Sci. 2017, 4, 40. [Google Scholar] [CrossRef]
- Smetacek, V.; Naqvi, S.W.A. The next Generation of Iron Fertilization Experiments in the Southern Ocean. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2008, 366, 3947–3967. [Google Scholar] [CrossRef]
- Coale, K.H.; Johnson, K.S.; Chavez, F.P.; Buesseler, K.O.; Barber, R.T.; Brzezinski, M.A.; Cochlan, W.P.; Millero, F.J.; Falkowski, P.G.; Bauer, J.E.; et al. Southern Ocean Iron Enrichment Experiment: Carbon Cycling in High- and Low-Si Waters. Science 2004, 304, 408–414. [Google Scholar] [CrossRef]
- Mioni, C.E.; Handy, S.M.; Ellwood, M.J.; Twiss, M.R.; McKay, R.M.L.; Boyd, P.W.; Wilhelm, S.W. Tracking Changes in Bioavailable Fe within High-Nitrate Low-Chlorophyll Oceanic Waters: A First Estimate Using a Heterotrophic Bacterial Bioreporter. Glob. Biogeochem. Cycles 2005, 19, 1–10. [Google Scholar] [CrossRef]
- Bertrand, E.M.; Saito, M.A.; Lee, P.A.; Dunbar, R.B.; Sedwick, P.N.; DiTullio, G.R. Iron Limitation of a Springtime Bacterial and Phytoplankton Community in the Ross Sea: Implications for Vitamin B12 Nutrition. Front. Microbiol. 2011, 2, 9940. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.H. Glacial-Interglacial CO2 Change: The Iron Hypothesis. Paleoceanography 1990, 5, 1–13. [Google Scholar] [CrossRef]
- Lannuzel, D.; Vancoppenolle, M.; van der Merwe, P.; de Jong, J.; Meiners, K.M.; Grotti, M.; Nishioka, J.; Schoemann, V. Iron in Sea Ice: Review and New Insights. Elem. Sci. Anthr. 2016, 4, 130. [Google Scholar] [CrossRef]
- Henkel, S.; Kasten, S.; Hartmann, J.F.; Silva-Busso, A.; Staubwasser, M. Iron Cycling and Stable Fe Isotope Fractionation in Antarctic Shelf Sediments, King George Island. Geochim. Cosmochim. Acta 2018, 237, 320–338. [Google Scholar] [CrossRef]
- Brauner, M.; Briggs, B.R. Microbial Iron Acquisition Is Influenced by Spatial and Temporal Conditions in a Glacial Influenced River and Estuary System. Environ. Microbiol. 2023, 25, 3450–3465. [Google Scholar] [CrossRef] [PubMed]
- Cadmus, P.; Brinkman, S.F.; May, M.K. Chronic Toxicity of Ferric Iron for North American Aquatic Organisms: Derivation of a Chronic Water Quality Criterion Using Single Species and Mesocosm Data. Arch. Environ. Contam. Toxicol. 2018, 74, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, P.; Wei, Q.; Andrews, S.C.; Vinckx, T. Iron Homeostasis and Management of Oxidative Stress Response in Bacteria. Metallomics 2011, 3, 540–549. [Google Scholar] [CrossRef]
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and Environmental Effects of Heavy Metals. J. King Saud Univ.-Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Taslima, K.; Al-Emran, M.; Rahman, M.S.; Hasan, J.; Ferdous, Z.; Rohani, M.F.; Shahjahan, M. Impacts of Heavy Metals on Early Development, Growth and Reproduction of Fish—A Review. Toxicol. Rep. 2022, 9, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Kolody, B.C.; Smith, S.R.; Zeigler Allen, L.; McCrow, J.P.; Moustafa, A.; Shi, D.; Hopkinson, B.M.; Morel, F.M.M.; Ward, B.B.; Allen, A.E. Nitrogen and Iron Availability Drive Metabolic Remodeling and Natural Selection of Diverse Phytoplankton during Experimental Upwelling. mSystems 2022, 7, e0072922. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, N.E.; LeCleir, G.R.; Strzepek, R.F.; Ellwood, M.J.; Twining, B.S.; Roux, S.; Pennacchio, C.; Boyd, P.W.; Wilhelm, S.W. Bioavailable Iron Titrations Reveal Oceanic Synechococcus Ecotypes Optimized for Different Iron Availabilities. ISME Commun. 2022, 2, 54. [Google Scholar] [CrossRef] [PubMed]
- Castillo, D.J.; Dithugoe, C.D.; Bezuidt, O.K.; Makhalanyane, T.P. Microbial Ecology of the Southern Ocean. FEMS Microbiol. Ecol. 2022, 98, fiac123. [Google Scholar] [CrossRef] [PubMed]
- Raiswell, R.; Tranter, M.; Benning, L.G.; Siegert, M.; De’ath, R.; Huybrechts, P.; Payne, T. Contributions from Glacially Derived Sediment to the Global Iron (Oxyhydr)Oxide Cycle: Implications for Iron Delivery to the Oceans. Geochim. Cosmochim. Acta 2006, 70, 2765–2780. [Google Scholar] [CrossRef]
- Schlitzer, R.; Anderson, R.F.; Dodas, E.M.; Lohan, M.; Geibert, W.; Tagliabue, A.; Bowie, A.; Jeandel, C.; Maldonado, M.T.; Landing, W.M.; et al. The GEOTRACES Intermediate Data Product 2017. Chem. Geol. 2018, 493, 210–223. [Google Scholar] [CrossRef]
- Anderson, R.F. GEOTRACES: Accelerating Research on the Marine Biogeochemical Cycles of Trace Elements and Their Isotopes. Ann. Rev. Mar. Sci. 2020, 12, 49–85. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimmons, J.N.; Conway, T.M. Novel Insights into Marine Iron Biogeochemistry from Iron Isotopes. Ann. Rev. Mar. Sci. 2023, 15, 383–406. [Google Scholar] [CrossRef] [PubMed]
- Laglera, L.M.; Santos-Echeandía, J.; Caprara, S.; Monticelli, D. Quantification of Iron in Seawater at the Low Picomolar Range Based on Optimization of Bromate/Ammonia/Dihydroxynaphtalene System by Catalytic Adsorptive Cathodic Stripping Voltammetry. Anal. Chem. 2013, 85, 2486–2492. [Google Scholar] [CrossRef]
- Lin, M.; Hu, X.; Pan, D.; Han, H. Determination of Iron in Seawater: From the Laboratory to in Situ Measurements. Talanta 2018, 188, 135–144. [Google Scholar] [CrossRef]
- Sadeghi, S.; Ashoori, V. Iron Species Determination by Task-Specific Ionic Liquid-Based in Situ Solvent Formation Dispersive Liquid-Liquid Microextraction Combined with Flame Atomic Absorption Spectrometry. J. Sci. Food Agric. 2017, 97, 4635–4642. [Google Scholar] [CrossRef] [PubMed]
- Biller, D.V.; Bruland, K.W. Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in Seawater Using the Nobias-Chelate PA1 Resin and Magnetic Sector Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Mar. Chem. 2012, 130–131, 12–20. [Google Scholar] [CrossRef]
- Lohan, M.C.; Aguilar-Islas, A.M.; Bruland, K.W. Direct Determination of Iron in Acidified (PH 1.7) Seawater Samples by Flow Injection Analysis with Catalytic Spectrophotometric Detection: Application and Intercomparison. Limnol. Oceanogr. Methods 2006, 4, 164–171. [Google Scholar] [CrossRef]
- Lunvongsa, S.; Oshima, M.; Motomizu, S. Determination of Total and Dissolved Amount of Iron in Water Samples Using Catalytic Spectrophotometric Flow Injection Analysis. Talanta 2006, 68, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Lin, M.; Pan, D.; Han, H.; Li, F. Graphene Oxide-Assisted Synthesis of Bismuth Nanosheets for Catalytic Stripping Voltammetric Determination of Iron in Coastal Waters. Microchim. Acta 2016, 183, 855–861. [Google Scholar] [CrossRef]
- Li, F.; Pan, D.; Lin, M.; Han, H.; Hu, X.; Kang, Q. Electrochemical Determination of Iron in Coastal Waters Based on Ionic Liquid-Reduced Graphene Oxide Supported Gold Nanodendrites. Electrochim. Acta 2015, 176, 548–554. [Google Scholar] [CrossRef]
- O’Sullivan, D.W.; Hanson, A.K.; Kester, D.R. Stopped Flow Luminol Chemiluminescence Determination of Fe(II) and Reducible Iron in Seawater at Subnanomolar Levels. Mar. Chem. 1995, 49, 65–77. [Google Scholar] [CrossRef]
- Hirata, S.; Yoshihara, H.; Aihara, M. Determination of Iron(II) and Total Iron in Environmental Water Samples by Flow Injection Analysis with Column Preconcentration of Chelating Resin Functionalized with N-Hydroxyethylethylenediamine Ligands and Chemiluminescence Detection. Talanta 1999, 49, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, D.W.; Hanson, A.K.; Miller, W.L.; Kester, D.R. Measurement of Fe(II) in Surface Water of the Equatorial Pacific. Limnol. Oceanogr. 1991, 36, 1727–1741. [Google Scholar] [CrossRef]
- Oliveira, H.M.; Grand, M.M.; Ruzicka, J.; Measures, C.I. Towards Chemiluminescence Detection in Micro-Sequential Injection Lab-on-Valve Format: A Proof of Concept Based on the Reaction between Fe(II) and Luminol in Seawater. Talanta 2015, 133, 107–111. [Google Scholar] [CrossRef]
- Huang, Y.; Yuan, D.; Zhu, Y.; Feng, S. Real-Time Redox Speciation of Iron in Estuarine and Coastal Surface Waters. Environ. Sci. Technol. 2015, 49, 3619–3627. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yuan, D.; Dai, M.; Liu, Y. Reverse Flow Injection Analysis Method for Catalytic Spectrophotometric Determination of Iron in Estuarine and Coastal Waters: A Comparison with Normal Flow Injection Analysis. Talanta 2012, 93, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Luther, G.W.; Glazer, B.T.; Ma, S.; Trouwborst, R.E.; Moore, T.S.; Metzger, E.; Kraiya, C.; Waite, T.J.; Druschel, G.; Sundby, B.; et al. Use of Voltammetric Solid-State (Micro)Electrodes for Studying Biogeochemical Processes: Laboratory Measurements to Real Time Measurements with an in Situ Electrochemical Analyzer (ISEA). Mar. Chem. 2008, 108, 221–235. [Google Scholar] [CrossRef]
- Calderilla, C.; Maya, F.; Cerdà, V.; Leal, L.O. 3D Printed Device Including Disk-Based Solid-Phase Extraction for the Automated Speciation of Iron Using the Multisyringe Flow Injection Analysis Technique. Talanta 2017, 175, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Tercier-Waeber, M.-L.; Confalonieri, F.; Riccardi, G.; Sina, A.; Nöel, S.; Buffle, J.; Graziottin, F. Multi Physical–Chemical Profiler for Real-Time in Situ Monitoring of Trace Metal Speciation and Master Variables: Development, Validation and Field Applications. Mar. Chem. 2005, 97, 216–235. [Google Scholar] [CrossRef]
- Chung Chun Lam, C.K.S.; Jickells, T.D.; Richardson, D.J.; Russell, D.A. Fluorescence-Based Siderophore Biosensor for the Determination of Bioavailable Iron in Oceanic Waters. Anal. Chem. 2006, 78, 5040–5045. [Google Scholar] [CrossRef] [PubMed]
- Roy, E.G.; Jiang, C.; Wells, M.L.; Tripp, C. Determining Subnanomolar Iron Concentrations in Oceanic Seawater Using a Siderophore-Modified Film Analyzed by Infrared Spectroscopy. Anal. Chem. 2008, 80, 4689–4695. [Google Scholar] [CrossRef] [PubMed]
- Milani, A.; Statham, P.J.; Mowlem, M.C.; Connelly, D.P. Development and Application of a Microfluidic In-Situ Analyzer for Dissolved Fe and Mn in Natural Waters. Talanta 2015, 136, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Men, H.; Zou, S.; Li, Y.; Wang, Y.; Ye, X.; Wang, P. A Novel Electronic Tongue Combined MLAPS with Stripping Voltammetry for Environmental Detection. Sens. Actuators B Chem. 2005, 110, 350–357. [Google Scholar] [CrossRef]
- Bowie, A.R.; Achterberg, E.P.; Sedwick, P.N.; Ussher, S.; Worsfold, P.J. Real-Time Monitoring of Picomolar Concentrations of Iron(II) in Marine Waters Using Automated Flow Injection-Chemiluminescence Instrumentation. Environ. Sci. Technol. 2002, 36, 4600–4607. [Google Scholar] [CrossRef]
- Jin, B.; Chen, Z.W.; Zhu, S.Q. Development of an In Situ Analyzer for Iron in Deep Sea Environment. In Proceedings of the Manufacturing Process and Equipment, Dalian, China, 30–31 March 2013; Trans Tech Publications Ltd.: Zurich, Switzerland, 2013; Volume 694, pp. 1187–1191. [Google Scholar]
- Ozer, T.; Agir, I.; Borch, T. Water Monitoring with an Automated Smart Sensor Supported with Solar Power for Real-Time and Long Range Detection of Ferrous Iron. Analyst 2024, 149, 2671–2679. [Google Scholar] [CrossRef]
- Moraskie, M.; Roshid, H.; Connor, G.O.; Dikici, E.; Zingg, J.; Deo, S.; Daunert, S. Microbial Whole-Cell Biosensors: Current Applications, Challenges, and Future Perspectives. Biosens. Bioelectron. 2022, 191, 113359. [Google Scholar] [CrossRef] [PubMed]
- Selifonova, O.; Burlage, R.; Barkay, T. Bioluminescent Sensors for Detection of Bioavailable Hg(II) in the Environment. Appl. Environ. Microbiol. 1993, 59, 3083–3090. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Harpaz, D.; Liu, Y.; Eltzov, E. Smartphone-Based Whole-Cell Biosensor Platform Utilizing an Immobilization Approach on a Filter Membrane Disk for the Monitoring of Water Toxicants. Sensors 2020, 20, 5486. [Google Scholar] [CrossRef] [PubMed]
- Saltepe, B.; Wang, L.; Wang, B. Synthetic Biology Enables Field-Deployable Biosensors for Water Contaminants. TrAC Trends Anal. Chem. 2022, 146, 116507. [Google Scholar] [CrossRef]
- Roggo, C.; van der Meer, J.R. Miniaturized and Integrated Whole Cell Living Bacterial Sensors in Field Applicable Autonomous Devices. Curr. Opin. Biotechnol. 2017, 45, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Landing, W.M.; Bruland, K.W. The Contrasting Biogeochemistry of Iron and Manganese in the Pacific Ocean. Geochim. Cosmochim. Acta 1987, 51, 29–43. [Google Scholar] [CrossRef]
- Geißler, F.; Achterberg, E.P.; Beaton, A.D.; Hopwood, M.J.; Clarke, J.S.; Mutzberg, A.; Mowlem, M.C.; Connelly, D.P. Evaluation of a Ferrozine Based Autonomous in Situ Lab-on-Chip Analyzer for Dissolved Iron Species in Coastal Waters. Front. Mar. Sci. 2017, 4, 322. [Google Scholar] [CrossRef]
- Measures, C.I.; Yuan, J.; Resing, J.A. Determination of Iron in Seawater by Flow Injection Analysis Using In-Line Preconcentration and Spectrophotometric Detection. Mar. Chem. 1995, 50, 3–12. [Google Scholar] [CrossRef]
- Bayer, T.; Hänel, L.; Husarcikova, J.; Kunzendorf, A.; Bornscheuer, U.T. In Vivo Detection of Low Molecular Weight Platform Chemicals and Environmental Contaminants by Genetically Encoded Biosensors. ACS Omega 2023, 8, 23227–23239. [Google Scholar] [CrossRef]
- Ravikumar, S.; Baylon, M.G.; Park, S.J.; Choi, J. Engineered Microbial Biosensors Based on Bacterial Two-Component Systems as Synthetic Biotechnology Platforms in Bioremediation and Biorefinery. Microb. Cell Fact. 2017, 16, 62. [Google Scholar] [CrossRef] [PubMed]
- Thai, T.D.; Lim, W.; Na, D. Synthetic Bacteria for the Detection and Bioremediation of Heavy Metals. Front. Bioeng. Biotechnol. 2023, 11, 1178680. [Google Scholar] [CrossRef] [PubMed]
- Papon, N.; Stock, A.M. Two-Component Systems. Curr. Biol. 2019, 29, R724–R725. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Flo, E.; Alaball, M.E.; Macia, J. Two-Component Biosensors: Unveiling the Mechanisms of Predictable Tunability. ACS Synth. Biol. 2020, 9, 1328–1335. [Google Scholar] [CrossRef] [PubMed]
- Ariza-Mateos, A.; Nuthanakanti, A.; Serganov, A. Riboswitch Mechanisms: New Tricks for an Old Dog. Biochemistry 2021, 86, 962–975. [Google Scholar] [CrossRef]
- Zorawski, M.; Shaffer, J.; Velasquez, E.; Liu, J.M. Creating a Riboswitch-Based Whole-Cell Biosensor for Bisphenol A. FASEB J. 2016, 30, 805.3. [Google Scholar] [CrossRef]
- Manna, S.; Truong, J.; Hammond, M.C. Guanidine Biosensors Enable Comparison of Cellular Turn-on Kinetics of Riboswitch-Based Biosensor and Reporter. ACS Synth. Biol. 2021, 10, 566–578. [Google Scholar] [CrossRef]
- Wang, X.; Wei, W.; Zhao, J. Using a Riboswitch Sensor to Detect Co2+/Ni2+ Transport in E. coli. Front. Chem. 2021, 9, 631909. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Zhou, S.; Deng, Y. Transcription-Factor-Based Biosensor Engineering for Applications in Synthetic Biology. ACS Synth. Biol. 2021, 10, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yu, H.; Zhang, B.; Liu, S.; Liu, C.G.; Li, F.; Song, H. Engineering Whole-Cell Microbial Biosensors: Design Principles and Applications in Monitoring and Treatment of Heavy Metals and Organic Pollutants. Biotechnol. Adv. 2022, 60, 108019. [Google Scholar] [CrossRef]
- Pal, C.; Bengtsson-Palme, J.; Rensing, C.; Kristiansson, E.; Larsson, D.G.J. BacMet: Antibacterial Biocide and Metal Resistance Genes Database. Nucleic Acids Res. 2014, 42, D737–D743. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.L.; Stoyanov, J.V.; Kidd, S.P.; Hobman, J.L. The MerR Family of Transcriptional Regulators. FEMS Microbiol. Rev. 2003, 27, 145–163. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Zhang, Y. Bacterial MerR Family Transcription Regulators: Activationby Distortion. Acta Biochim. Biophys. Sin. 2022, 54, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zheng, Y.; Fan, X.; Xu, L.; Pang, T.; Liu, T.; Liang, L.; Huang, S.; Xiao, Q. Visual Detection of Hg2+ by Manipulation of Pyocyanin Biosynthesis through the Hg2+-Dependent Transcriptional Activator MerR in Microbial Cells. J. Biosci. Bioeng. 2020, 129, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zheng, Y.; Wei, L.; Wei, N.; Fan, X.; Huang, S.; Xiao, Q. A Signal-Amplified Whole-Cell Biosensor for Sensitive Detection of Hg2+ Based on Hg2+-Enhanced Reporter Module. J. Environ. Sci. 2020, 96, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Hui, C.-Y.; Liu, L.; Chen, M.-P.; Huang, H.-Y. Development of a Bioavailable Hg(II) Sensing System Based on MerR-Regulated Visual Pigment Biosynthesis. Sci. Rep. 2021, 11, 13516. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Warnock, R.L.; Van der Meer, J.R.; Wegner, S.V. Bioluminescence-Triggered Photoswitchable Bacterial Adhesions Enable Higher Sensitivity and Dual-Readout Bacterial Biosensors for Mercury. ACS Sens. 2020, 5, 2205–2210. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Qiu, T.; Sun, Z.; Liu, F.; Yu, B. Mercury Bioremediation by Engineered Pseudomonas putida KT2440 with Adaptationally Optimized Biosecurity Circuit. Environ. Microbiol. 2022, 24, 3022–3036. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wei, L.; Duan, L.; Yang, F.; Huang, G.; Xiao, T.; Wei, M.; Liang, Y.; Yang, H.; Li, Z.; et al. Rapid Field Testing of Mercury Pollution by Designed Fluorescent Biosensor and Its Cells-Alginate Hydrogel-Based Paper Assay. J. Environ. Sci. 2021, 106, 161–170. [Google Scholar] [CrossRef]
- Busenlehner, L.S.; Pennella, M.A.; Giedroc, D.P. The SmtB/ArsR Family of Metalloregulatory Transcriptional Repressors: Structural Insights into Prokaryotic Metal Resistance. FEMS Microbiol. Rev. 2003, 27, 131–143. [Google Scholar] [CrossRef]
- Osman, D.; Cavet, J.S. Bacterial Metal-Sensing Proteins Exemplified by ArsR-SmtB Family Repressors. Nat. Prod. Rep. 2010, 27, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Saha, R.P.; Samanta, S.; Patra, S.; Sarkar, D.; Saha, A.; Singh, M.K. Metal Homeostasis in Bacteria: The Role of ArsR-SmtB Family of Transcriptional Repressors in Combating Varying Metal Concentrations in the Environment. Biometals Int. J. Role Met. Ions Biol. Biochem. Med. 2017, 30, 459–503. [Google Scholar] [CrossRef]
- Jung, J.; Lee, S.J. Biochemical and Biodiversity Insights into Heavy Metal Ion-Responsive Transcription Regulators for Synthetic Biological Heavy Metal Sensors. J. Microbiol. Biotechnol. 2019, 29, 1522–1542. [Google Scholar] [CrossRef]
- Cai, J.; Salmon, K.; DuBow, M.S. A Chromosomal Ars Operon Homologue of Pseudomonas Aeruginosa Confers Increased Resistance to Arsenic and Antimony in Escherichia coli. Microbiology 1998, 144 Pt 1, 2705–2729. [Google Scholar] [CrossRef]
- Bereza-Malcolm, L.; Aracic, S.; Mann, G.; Franks, A.E. The Development and Analyses of Several Gram-Negative Arsenic Biosensors Using a Synthetic Biology Approach. Sens. Actuators B Chem. 2018, 256, 117–125. [Google Scholar] [CrossRef]
- Huang, C.-W.; Wei, C.-C.; Liao, V.H.-C. A Low Cost Color-Based Bacterial Biosensor for Measuring Arsenic in Groundwater. Chemosphere 2015, 141, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.; Morel, B.; Ramos, J.L.; Krell, T. Paralogous Regulators ArsR1 and ArsR2 of Pseudomonas putida KT2440 as a Basis for Arsenic Biosensor Development. Appl. Environ. Microbiol. 2016, 82, 4133–4144. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Wei, W.; Yin, B.-C.; Tong, Y.; Lu, J.; Ye, B.-C. Development of a Highly Sensitive Whole-Cell Biosensor for Arsenite Detection through Engineered Promoter Modifications. ACS Synth. Biol. 2019, 8, 2295–2302. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Y.; Zhang, Y.; Li, R.; Wang, B.; Ye, B.-C. De Novo Design of the ArsR Regulated P(Ars) Promoter Enables a Highly Sensitive Whole-Cell Biosensor for Arsenic Contamination. Anal. Chem. 2022, 94, 7210–7218. [Google Scholar] [CrossRef]
- Raja, C.E.; Selvam, G.S. Construction of Green Fluorescent Protein Based Bacterial Biosensor for Heavy Metal Remediation. Int. J. Environ. Sci. Technol. 2011, 8, 793–798. [Google Scholar] [CrossRef]
- Hou, Q.; Ma, A.; Wang, T.; Lin, J.; Wang, H.; Du, B.; Zhuang, X.; Zhuang, G. Detection of Bioavailable Cadmium, Lead, and Arsenic in Polluted Soil by Tailored Multiple Escherichia coli Whole-Cell Sensor Set. Anal. Bioanal. Chem. 2015, 407, 6865–6871. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Kim, H.; Jang, G.; Kim, B.-G.; Yoon, Y. Antimony Sensing Whole-Cell Bioreporters Derived from ArsR Genetic Engineering. Appl. Microbiol. Biotechnol. 2020, 104, 2691–2699. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Ryu, S. Regulation of Iron Uptake by Fine-Tuning the Iron Responsiveness of the Iron Sensor Fur. Appl. Environ. Microbiol. 2019, 85, e03026-18. [Google Scholar] [CrossRef] [PubMed]
- Pinochet-Barros, A.; Helmann, J.D. Redox Sensing by Fe2+ in Bacterial Fur Family Metalloregulators. Antioxid. Redox Signal. 2018, 29, 1858–1871. [Google Scholar] [CrossRef]
- Kaushik, M.S.; Singh, P.; Tiwari, B.; Mishra, A.K. Ferric Uptake Regulator (FUR) Protein: Properties and Implications in Cyanobacteria. Ann. Microbiol. 2016, 66, 61–75. [Google Scholar] [CrossRef]
- Massé, E.; Gottesman, S. A Small RNA Regulates the Expression of Genes Involved in Iron Metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA 2002, 99, 4620–4625. [Google Scholar] [CrossRef] [PubMed]
- Massé, E.; Vanderpool, C.K.; Gottesman, S. Effect of RyhB Small RNA on Global Iron Use in Escherichia coli. J. Bacteriol. 2005, 187, 6962–6971. [Google Scholar] [CrossRef] [PubMed]
- Troxell, B.; Hassan, H.M. Transcriptional Regulation by Ferric Uptake Regulator (Fur) in Pathogenic Bacteria. Front. Cell. Infect. Microbiol. 2013, 4, 59. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Yang, R.; Lyu, M.; Wang, S.; Liu, X.; Wen, Y.; Song, Y.; Li, J.; Chen, Z. IdeR, a DtxR Family Iron Response Regulator, Controls Iron Homeostasis, Morphological Differentiation, Secondary Metabolism, and the Oxidative Stress Response in Streptomyces Avermitilis. Appl. Environ. Microbiol. 2018, 84, e01503-18. [Google Scholar] [CrossRef]
- Marcos-Torres, F.J.; Juniar, L.; Griese, J.J. The Molecular Mechanisms of the Bacterial Iron Sensor IdeR. Biochem. Soc. Trans. 2023, 51, 1319–1329. [Google Scholar] [CrossRef]
- Ayala-Castro, C.; Saini, A.; Outten, F.W. Fe-S Cluster Assembly Pathways in Bacteria. Microbiol. Mol. Biol. Rev. 2008, 72, 110–125. [Google Scholar] [CrossRef]
- Roche, B.; Aussel, L.; Ezraty, B.; Mandin, P.; Py, B.; Barras, F. Iron/Sulfur Proteins Biogenesis in Prokaryotes: Formation, Regulation and Diversity. Biochim. Biophys. Acta 2013, 1827, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.A.; Pereira, P.J.B.; Macedo-Ribeiro, S. What a Difference a Cluster Makes: The Multifaceted Roles of IscR in Gene Regulation and DNA Recognition. Biochim. Biophys. Acta 2015, 1854, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.J.; Giel, J.L.; Patschkowski, T.; Luther, C.; Ruzicka, F.J.; Beinert, H.; Kiley, P.J. IscR, an Fe-S Cluster-Containing Transcription Factor, Represses Expression of Escherichia coli Genes Encoding Fe-S Cluster Assembly Proteins. Proc. Natl. Acad. Sci. USA 2001, 98, 14895–14900. [Google Scholar] [CrossRef] [PubMed]
- Giel, J.L.; Nesbit, A.D.; Mettert, E.L.; Fleischhacker, A.S.; Wanta, B.T.; Kiley, P.J. Regulation of Iron-Sulphur Cluster Homeostasis through Transcriptional Control of the Isc Pathway by [2Fe-2S]-IscR in Escherichia coli. Mol. Microbiol. 2013, 87, 478–492. [Google Scholar] [CrossRef] [PubMed]
- Sandy, M.; Butler, A. Microbial Iron Acquisition: Marine and Terrestrial Siderophores. Chem. Rev. 2009, 109, 4580–4595. [Google Scholar] [CrossRef] [PubMed]
- Butler, A. Marine Siderophores and Microbial Iron Mobilization. BioMetals 2005, 18, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Guo, Y.; Lu, Y.; Wang, B.; Sun, J.; Zhang, H.; Wang, H. Chemistry and Biology of Siderophores from Marine Microbes. Mar. Drugs 2019, 17, 562. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.K.Y.; Krewulak, K.D.; Vogel, H.J. Bacterial Ferrous Iron Transport: The Feo System. FEMS Microbiol. Rev. 2016, 40, 273–298. [Google Scholar] [CrossRef]
- Sestok, A.E.; Linkous, R.O.; Smith, A.T. Toward a Mechanistic Understanding of Feo-Mediated Ferrous Iron Uptake. Metallomics 2018, 10, 887–898. [Google Scholar] [CrossRef]
- Orzel, B.; Pelucelli, A.; Ostrowska, M.; Potocki, S.; Kozlowski, H.; Peana, M.; Gumienna-Kontecka, E. Fe(II), Mn(II), and Zn(II) Binding to the C-Terminal Region of FeoB Protein: An Insight into the Coordination Chemistry and Specificity of the Escherichia coli Fe(II) Transporter. Inorg. Chem. 2023, 62, 18607–18624. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Garzón, C.; Barrick, J.E.; Payne, S.M. Disentangling the Evolutionary History of Feo, the Major Ferrous Iron Transport System in Bacteria. MBio 2022, 13, e0351221. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, S.; Wang, S.; Dong, Z.; Gao, H. Complex Iron Uptake by the Putrebactin-Mediated and Feo Systems in Shewanella Oneidensis. Appl. Environ. Microbiol. 2018, 84, e01752-18. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, B.; Wyckoff, E.E.; Payne, S.M. Vibrio Cholerae FeoA, FeoB, and FeoC Interact To Form a Complex. J. Bacteriol. 2016, 198, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Durham, B.P.; Key, R.S.; Groussman, R.D.; Bartolek, Z.; Pinedo-Gonzalez, P.; Hawco, N.J.; John, S.G.; Carlson, M.C.G.; Lindell, D.; et al. Siderophore Production and Utilization by Marine Bacteria in the North Pacific Ocean. Limnol. Oceanogr. 2023, 68, 1636–1653. [Google Scholar] [CrossRef]
- Singh, M.; Chaudhary, S.; Sareen, D. Non-Ribosomal Peptide Synthetases: Identifying the Cryptic Gene Clusters and Decoding the Natural Product. J. Biosci. 2017, 42, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Carroll, C.S.; Moore, M.M. Ironing out Siderophore Biosynthesis: A Review of Non-Ribosomal Peptide Synthetase (NRPS)-Independent Siderophore Synthetases. Crit. Rev. Biochem. Mol. Biol. 2018, 53, 356–381. [Google Scholar] [CrossRef] [PubMed]
- Gulick, A.M. Nonribosomal Peptide Synthetase Biosynthetic Clusters of ESKAPE Pathogens. Nat. Prod. Rep. 2017, 34, 981–1009. [Google Scholar] [CrossRef] [PubMed]
- Gledhiir, M.; Buck, K.N. The Organic Complexation of Iron in the Marine Environment: A Review. Front. Microbiol. 2012, 3, 18807. [Google Scholar] [CrossRef]
- Butler, A.; Harder, T.; Ostrowski, A.D.; Carrano, C.J. Photoactive Siderophores: Structure, Function and Biology. J. Inorg. Biochem. 2021, 221, 111457. [Google Scholar] [CrossRef]
- Martinez, J.S.; Butler, A. Marine Amphiphilic Siderophores: Marinobactin Structure, Uptake, and Microbial Partitioning. J. Inorg. Biochem. 2007, 101, 1692–1698. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.W.; McCarville, N.G.; MacIntyre, L.W.; Correa, H.; Haltli, B.; Marchbank, D.H.; Kerr, R.G. Isolation of Imaqobactin, an Amphiphilic Siderophore from the Arctic Marine Bacterium Variovorax Species RKJM285. J. Nat. Prod. 2018, 81, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, L.O.S.; Schwarz, B.; Richards, A.M. Structural Characterization of Amphiphilic Siderophores Produced by a Soda Lake Isolate, Halomonas sp. SL01, Reveals Cysteine-, Phenylalanine- and Proline-Containing Head Groups. Extremophiles 2015, 19, 1183–1192. [Google Scholar] [CrossRef]
- Küpper, F.C.; Carrano, C.J.; Kuhn, J.-U.; Butler, A. Photoreactivity of Iron(III)-Aerobactin: Photoproduct Structure and Iron(III) Coordination. Inorg. Chem. 2006, 45, 6028–6033. [Google Scholar] [CrossRef] [PubMed]
- Homann, V.V.; Edwards, K.J.; Webb, E.A.; Butler, A. Siderophores of Marinobacter aquaeolei: Petrobactin and Its Sulfonated Derivatives. Biometals 2009, 22, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Barbeau, K.; Rue, E.L.; Bruland, K.W.; Butler, A. Photochemical Cycling of Iron in the Surface Ocean Mediated by Microbial Iron(III)-Binding Ligands. Nature 2001, 413, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, J.R.; Zhou, H.; Butler, A. A Suite of Asymmetric Citrate Siderophores Isolated from a Marine Shewanella Species. J. Inorg. Biochem. 2019, 198, 110736. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R. Ferric Siderophore Transport via Outer Membrane Receptors of Escherichia coli: Structural Advancement and a Tribute to Dr. Dick van Der Helm—An ‘Ironman’ of Siderophore Biology. In Iron Uptake in Bacteria with Emphasis on E. coli and Pseudomonas; Chakraborty, R., Braun, V., Hantke, K., Cornelis, P., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 1–29. ISBN 978-94-007-6088-2. [Google Scholar]
- Faraldo-Gómez, J.D.; Sansom, M.S.P. Acquisition of Siderophores in Gram-Negative Bacteria. Nat. Rev. Mol. Cell Biol. 2003, 4, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, S.K.; Smith, B.S.; Venkatramani, L.; Xia, D.; Esser, L.; Palnitkar, M.; Chakraborty, R.; van der Helm, D.; Deisenhofer, J. Crystal Structure of the Outer Membrane Active Transporter FepA from Escherichia coli. Nat. Struct. Biol. 1999, 6, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, A.D.; Chakraborty, R.; Smith, B.S.; Esser, L.; van der Helm, D.; Deisenhofer, J. Structural Basis of Gating by the Outer Membrane Transporter FecA. Science 2002, 295, 1715–1719. [Google Scholar] [CrossRef]
- Ferguson, A.D.; Braun, V.; Fiedler, H.P.; Coulton, J.W.; Diederichs, K.; Welte, W. Crystal Structure of the Antibiotic Albomycin in Complex with the Outer Membrane Transporter FhuA. Protein Sci. 2000, 9, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Celia, H.; Botos, I.; Ni, X.; Fox, T.; De Val, N.; Lloubes, R.; Jiang, J.; Buchanan, S.K. Cryo-EM Structure of the Bacterial Ton Motor Subcomplex ExbB-ExbD Provides Information on Structure and Stoichiometry. Commun. Biol. 2019, 2, 358. [Google Scholar] [CrossRef] [PubMed]
- Ratliff, A.C.; Buchanan, S.K.; Celia, H. The Ton Motor. Front. Microbiol. 2022, 13, 852955. [Google Scholar] [CrossRef] [PubMed]
- Krewulak, K.D.; Köster, W.; Vogel, H.J. Siderophore-Binding Periplasmatic Protein FhuD and Related Periplasmic Binding Proteins Involved in Bacterial Iron Uptake. In Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; ISBN 9781119951438. [Google Scholar]
- Delepelaire, P. Bacterial ABC Transporters of Iron Containing Compounds. Res. Microbiol. 2019, 170, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Cain, T.J.; Smith, A.T. Ferric Iron Reductases and Their Contribution to Unicellular Ferrous Iron Uptake. J. Inorg. Biochem. 2021, 218, 111407. [Google Scholar] [CrossRef] [PubMed]
- Yeom, J.; Imlay, J.A.; Park, W. Iron Homeostasis Affects Antibiotic-Mediated Cell Death in Pseudomonas Species*. J. Biol. Chem. 2010, 285, 22689–22695. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Sato, J.; Goto, K.; Fujita, T.; Watanabe, T.; Abo, M.; Yoshimura, E.; Nakagawa, J.; Abe, A.; Kawasaki, S.; et al. Escherichia coli Ferredoxin-NADP+ Reductase and Oxygen-Insensitive Nitroreductase Are Capable of Functioning as Ferric Reductase and of Driving the Fenton Reaction. Biometals 2010, 23, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, J.R.; Heinrichs, D.E. Recent Developments in Understanding the Iron Acquisition Strategies of Gram Positive Pathogens. FEMS Microbiol. Rev. 2015, 39, 592–630. [Google Scholar] [CrossRef] [PubMed]
- Gauglitz, J.M.; Boiteau, R.M.; McLean, C.; Babcock-Adams, L.; McIlvin, M.R.; Moran, D.M.; Repeta, D.J.; Saito, M.A. Dynamic Proteome Response of a Marine Vibrio to a Gradient of Iron and Ferrioxamine Bioavailability. Mar. Chem. 2021, 229, 103913. [Google Scholar] [CrossRef]
- Kramer, J.; Özkaya, Ö.; Kümmerli, R. Bacterial Siderophores in Community and Host Interactions. Nat. Rev. Microbiol. 2020, 18, 152–163. [Google Scholar] [CrossRef]
- Shao, J.; Rong, N.; Wu, Z.; Gu, S.; Liu, B.; Shen, N.; Li, Z. Siderophore-Mediated Iron Partition Promotes Dynamical Coexistence between Cooperators and Cheaters. iScience 2023, 26, 107396. [Google Scholar] [CrossRef] [PubMed]
- Hogle, S.L.; Barbeau, K.A.; Gledhill, M. Heme in the Marine Environment: From Cells to the Iron Cycle. Metallomics 2014, 6, 1107–1120. [Google Scholar] [CrossRef] [PubMed]
- Graf, J.; Schöpperle, M.; Pernil, R.; Schleiff, E. Two TonB-Dependent Outer Membrane Transporters Involved in Heme Uptake in Anabaena Sp. PCC 7120. Microb. Cell 2024, 11, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Hopkinson, B.M.; Roe, K.L.; Barbeau, K.A. Heme Uptake by Microscilla marina and Evidence for Heme Uptake Systems in the Genomes of Diverse Marine Bacteria. Appl. Environ. Microbiol. 2008, 74, 6263–6270. [Google Scholar] [CrossRef] [PubMed]
- Hogle, S.L.; Brahamsha, B.; Barbeau, K.A. Direct Heme Uptake by Phytoplankton-Associated Roseobacter Bacteria. mSystems 2017, 2, e00124-16. [Google Scholar] [CrossRef] [PubMed]
- Frankenberg-Dinkel, N. Bacterial Heme Oxygenases. Antioxid. Redox Signal. 2004, 6, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.K.; Parli Venkateswaran, B.; Tripathy, S.C.; Sarkar, A.; Prabhakaran, S. Effects of Growth Conditions on Siderophore Producing Bacteria and Siderophore Production from Indian Ocean Sector of Southern Ocean. J. Basic Microbiol. 2019, 59, 412–424. [Google Scholar] [CrossRef]
- McRose, D.L.; Baars, O.; Seyedsayamdost, M.R.; Morel, F.M.M. Quorum Sensing and Iron Regulate a Two-for-One Siderophore Gene Cluster in Vibrio harveyi. Proc. Natl. Acad. Sci. USA 2018, 115, 7581–7586. [Google Scholar] [CrossRef] [PubMed]
- Lopreside, A.; Montali, L.; Wang, B.; Tassoni, A.; Ferri, M.; Calabretta, M.M.; Michelini, E. Orthogonal Paper Biosensor for Mercury(II) Combining Bioluminescence and Colorimetric Smartphone Detection. Biosens. Bioelectron. 2021, 194, 113569. [Google Scholar] [CrossRef]
- Close, D.; Xu, T.; Smartt, A.; Rogers, A.; Crossley, R.; Price, S.; Ripp, S.; Sayler, G. The Evolution of the Bacterial Luciferase Gene Cassette (Lux) as a Real-Time Bioreporter. Sensors 2012, 12, 732–752. [Google Scholar] [CrossRef]
- Eremeeva, E.V.; Vysotski, E.S. Bioluminescent and Biochemical Properties of Cys-Free Ca2+-Regulated Photoproteins Obelin and Aequorin. J. Photochem. Photobiol. B 2017, 174, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Gregucci, D.; Nazir, F.; Calabretta, M.M.; Michelini, E. Illuminating Progress: The Contribution of Bioluminescence to Sustainable Development Goal 6—Clean Water and Sanitation—Of the United Nations 2030 Agenda. Sensors 2023, 23, 7244. [Google Scholar] [CrossRef]
- Wang, M.; Da, Y.; Tian, Y. Fluorescent Proteins and Genetically Encoded Biosensors. Chem. Soc. Rev. 2023, 52, 1189–1214. [Google Scholar] [CrossRef]
- Rodriguez, E.A.; Campbell, R.E.; Lin, J.Y.; Lin, M.Z.; Miyawaki, A.; Palmer, A.E.; Shu, X.; Zhang, J.; Tsien, R.Y. The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. Trends Biochem. Sci. 2017, 42, 111–129. [Google Scholar] [CrossRef]
- Jach, G. Use of Fluorescent Proteins as Reporters. Methods Mol. Biol. 2006, 323, 275–291. [Google Scholar] [CrossRef]
- Potzkei, J.; Kunze, M.; Drepper, T.; Gensch, T.; Jaeger, K.-E.; Büchs, J. Real-Time Determination of Intracellular Oxygen in Bacteria Using a Genetically Encoded FRET-Based Biosensor. BMC Biol. 2012, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Hui, C.-Y.; Guo, Y.; Li, H.; Chen, Y.-T.; Yi, J. Differential Detection of Bioavailable Mercury and Cadmium Based on a Robust Dual-Sensing Bacterial Biosensor. Front. Microbiol. 2022, 13, 846524. [Google Scholar] [CrossRef]
- Joe, M.-H.; Lee, K.-H.; Lim, S.-Y.; Im, S.-H.; Song, H.-P.; Lee, I.S.; Kim, D.-H. Pigment-Based Whole-Cell Biosensor System for Cadmium Detection Using Genetically Engineered Deinococcus radiodurans. Bioprocess Biosyst. Eng. 2012, 35, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Nemer, G.; Koubaa, M.; El Chamy, L.; Maroun, R.G.; Louka, N. Seeing Colors: A Literature Review on Colorimetric Whole-Cell Biosensors. Fermentation 2024, 10, 79. [Google Scholar] [CrossRef]
- Hui, C.; Guo, Y.; Gao, C.; Li, H.; Lin, Y.; Yun, J.; Chen, Y.; Yi, J. A Tailored Indigoidine-Based Whole-Cell Biosensor for Detecting Toxic Cadmium in Environmental Water Samples. Environ. Technol. Innov. 2022, 27, 102511. [Google Scholar] [CrossRef]
- Smale, S.T. Beta-Galactosidase Assay. Cold Spring Harb. Protoc. 2010, 2010, pdb.prot5423. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, J.; Jovanovic, G.; Kotta-Loizou, I.; Buck, M. Single-Step Method for β-Galactosidase Assays in Escherichia coli Using a 96-Well Microplate Reader. Anal. Biochem. 2016, 503, 56–57. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Close, D.M.; Sayler, G.S.; Ripp, S. Genetically Modified Whole-Cell Bioreporters for Environmental Assessment. Ecol. Indic. 2013, 28, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Doura, T.; Kamiya, M.; Obata, F.; Yamaguchi, Y.; Hiyama, T.Y.; Matsuda, T.; Fukamizu, A.; Noda, M.; Miura, M.; Urano, Y. Detection of LacZ-Positive Cells in Living Tissue with Single-Cell Resolution. Angew. Chem. Int. Ed. Engl. 2016, 55, 9620–9624. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, C.; Dutta, C.; Fang, M.; Zhang, S.; Tiwari, A.; Werner, T.; Luo, F.-T.; Liu, H. A Novel Near-Infrared Fluorescent Probe for Sensitive Detection of β-Galactosidase in Living Cells. Anal. Chim. Acta 2017, 968, 97–104. [Google Scholar] [CrossRef]
- Lindow, S. History of Discovery and Environmental Role of Ice Nucleating Bacteria. Phytopathology 2023, 113, 605–615. [Google Scholar] [CrossRef]
- Creamean, J.M.; Cross, J.N.; Pickart, R.; McRaven, L.; Lin, P.; Pacini, A.; Hanlon, R.; Schmale, D.G.; Ceniceros, J.; Aydell, T.; et al. Ice Nucleating Particles Carried From Below a Phytoplankton Bloom to the Arctic Atmosphere. Geophys. Res. Lett. 2019, 46, 8572–8581. [Google Scholar] [CrossRef]
- Hansen, T.; Lee, J.; Reicher, N.; Ovadia, G.; Guo, S.; Guo, W.; Liu, J.; Braslavsky, I.; Rudich, Y.; Davies, P.L. Ice Nucleation Proteins Self-Assemble into Large Fibres to Trigger Freezing at near 0 °C. Elife 2023, 12, RP91976. [Google Scholar] [CrossRef]
- Soveizi, N.; Latifi, A.M.; Mehrabian, S.; Akhavan Sepahi, A. Bacterial Ice Nucleation Proteins: Features, Structure, and Applications. J. Appl. Biotechnol. Rep. 2023, 10, 1041–1054. [Google Scholar] [CrossRef]
- Baloh, P.; Els, N.; David, R.O.; Larose, C.; Whitmore, K.; Sattler, B.; Grothe, H. Assessment of Artificial and Natural Transport Mechanisms of Ice Nucleating Particles in an Alpine Ski Resort in Obergurgl, Austria. Front. Microbiol. 2019, 10, 2278. [Google Scholar] [CrossRef]
- Creamean, J.M.; Hill, T.C.J.; DeMott, P.J.; Uetake, J.; Kreidenweis, S.; Douglas, T.A. Thawing Permafrost: An Overlooked Source of Seeds for Arctic Cloud Formation. Environ. Res. Lett. 2020, 15, 84022. [Google Scholar] [CrossRef]
- Loper, J.E.; Henkels, M.D. Utilization of Heterologous Siderophores Enhances Levels of Iron Available to Pseudomonas putida in the Rhizosphere. Appl. Environ. Microbiol. 1999, 65, 5357–5363. [Google Scholar] [CrossRef] [PubMed]
- Noori, M.T.; Thatikayala, D.; Pant, D.; Min, B. A Critical Review on Microbe-Electrode Interactions towards Heavy Metal Ion Detection Using Microbial Fuel Cell Technology. Bioresour. Technol. 2022, 347, 126589. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Wang, S.; Jiang, Y.; Liu, P.; Li, Q.; Hao, W.; Han, J.; Zhou, Y.; Huang, X.; Liang, P. Artificial Electrochemically Active Biofilm for Improved Sensing Performance and Quickly Devising of Water Quality Early Warning Biosensors. Water Res. 2021, 198, 117164. [Google Scholar] [CrossRef] [PubMed]
- Li, P.-S.; Peng, Z.-W.; Su, J.; Tao, H.-C. Construction and Optimization of a Pseudomonas putida Whole-Cell Bioreporter for Detection of Bioavailable Copper. Biotechnol. Lett. 2014, 36, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Ivask, A.; Rõlova, T.; Kahru, A. A Suite of Recombinant Luminescent Bacterial Strains for the Quantification of Bioavailable Heavy Metals and Toxicity Testing. BMC Biotechnol. 2009, 9, 41. [Google Scholar] [CrossRef]
- Zang, Y.; Zhao, T.; Xie, B.; Feng, Y.; Yi, Y.; Liu, H. A Bio-Electrochemical Sensor Based on Suspended Shewanella Oneidensis MR-1 for the Sensitive Assessment of Water Biotoxicity. Sens. Actuators B Chem. 2021, 341, 130004. [Google Scholar] [CrossRef]
- Fonseca, P.; Moreno, R.; Rojo, F. Growth of Pseudomonas putida at Low Temperature: Global Transcriptomic and Proteomic Analyses. Environ. Microbiol. Rep. 2011, 3, 329–339. [Google Scholar] [CrossRef]
- dos Anjos Gonçalves, L.D.; Piccoli, H.R.; de Paula Peres, A.; Saúde, A.V. Predictive Modeling of Pseudomonas fluorescens Growth under Different Temperature and PH Values. Braz. J. Microbiol. 2017, 48, 352–358. [Google Scholar] [CrossRef]
- Abboud, R.; Popa, R.; Souza-Egipsy, V.; Giometti, C.S.; Tollaksen, S.; Mosher, J.J.; Findlay, R.H.; Nealson, K.H. Low-Temperature Growth of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 2005, 71, 811–816. [Google Scholar] [CrossRef]
- Medigue, C.; Krin, E.; Bernsel, A.; Bertin, P.N.; Cheung, F.; Amico, S.D.; Duilio, A.; Fang, G.; Feller, G.; Ho, C.; et al. Coping with Cold: The Genome of the Versatile Marine Antarctica Bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res. 2005, 15, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Sannino, F.; Giuliani, M.; Salvatore, U.; Apuzzo, G.A.; de Pascale, D.; Fani, R.; Fondi, M.; Marino, G.; Tutino, M.L.; Parrilli, E. A Novel Synthetic Medium and Expression System for Subzero Growth and Recombinant Protein Production in Pseudoalteromonas haloplanktis TAC125. Appl. Microbiol. Biotechnol. 2017, 101, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Toll-Riera, M.; Olombrada, M.; Castro-Giner, F.; Wagner, A. A Limit on the Evolutionary Rescue of an Antarctic Bacterium from Rising Temperatures. Sci. Adv. 2022, 8, eabk3511. [Google Scholar] [CrossRef] [PubMed]
- Calvanese, M.; Colarusso, A.; Lauro, C.; Parrilli, E.; Tutino, M.L. Soluble Recombinant Protein Production in Pseudoalteromonas haloplanktis TAC125: The Case Study of the Full-Length Human CDKL5 Protein. Methods in Molecular Biology 2022, 2406, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Colarusso, A.; Lauro, C.; Calvanese, M.; Parrilli, E.; Tutino, M.L. Improvement of Pseudoalteromonas haloplanktis TAC125 as a Cell Factory: IPTG-Inducible Plasmid Construction and Strain Engineering. Microorganisms 2020, 8, 1466. [Google Scholar] [CrossRef] [PubMed]
- Calvanese, M.; Balestra, C.; Colarusso, A.; Lauro, C.; Riccardi, C.; Fondi, M.; Parrilli, E.; Tutino, M.L. Development of High-Copy Number Plasmids in Pseudoalteromonas haloplanktis TAC125. Appl. Microbiol. Biotechnol. 2023, 107, 2469–2481. [Google Scholar] [CrossRef] [PubMed]
- Calvanese, M.; D’Angelo, C.; Lauro, C.; Tutino, M.L.; Parrilli, E. Recombinant Protein Production in Pseudoalteromonas haloplanktis TAC125 Biofilm. Biofilm 2024, 7, 100179. [Google Scholar] [CrossRef]
- Xu, J.; Cotruvo, J.A.J. Reconsidering the czcD (NiCo) Riboswitch as an Iron Riboswitch. ACS Bio Med. Chem. Au 2022, 2, 376–385. [Google Scholar] [CrossRef]
- Boyanapalli, R.; Bullerjahn, G.S.; Pohl, C.; Croot, P.L.; Boyd, P.W.; McKay, R.M.L. Luminescent Whole-Cell Cyanobacterial Bioreporter for Measuring Fe Availability in Diverse Marine Environments. Appl. Environ. Microbiol. 2007, 73, 1019–1024. [Google Scholar] [CrossRef]
- Melamed, S.; Ceriotti, L.; Weigel, W.; Rossi, F.; Colpo, P.; Belkin, S. A Printed Nanolitre-Scale Bacterial Sensor Array. Lab Chip 2011, 11, 139–146. [Google Scholar] [CrossRef]
- Stirling, F.; Bitzan, L.; O’Keefe, S.; Redfield, E.; Oliver, J.W.K.; Way, J.; Silver, P.A. Rational Design of Evolutionarily Stable Microbial Kill Switches. Mol. Cell 2017, 68, 686–697.e3. [Google Scholar] [CrossRef] [PubMed]
- Kamruzzaman, M.; Wu, A.Y.; Iredell, J.R. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. Microorganisms 2021, 9, 1276. [Google Scholar] [CrossRef] [PubMed]
- Stephens, K.; Bentley, W.E. Synthetic Biology for Manipulating Quorum Sensing in Microbial Consortia. Trends Microbiol. 2020, 28, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Müller, M.; Chang, M.W.; Frettlöh, M.; Schönherr, H. Encapsulation of Autoinducer Sensing Reporter Bacteria in Reinforced Alginate-Based Microbeads. ACS Appl. Mater. Interfaces 2017, 9, 22321–22331. [Google Scholar] [CrossRef] [PubMed]
- Durham, K.A.; Porta, D.; Twiss, M.R.; McKay, R.M.L.; Bullerjahn, G.S. Construction and Initial Characterization of a Luminescent Synechococcus sp. PCC 7942 Fe-Dependent Bioreporter. FEMS Microbiol. Lett. 2002, 209, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Mckay, R.M.L.; Porta, D.; Bullerjahn, G.S.; Al-Rshaidat, M.M.D.; Klimowicz, J.A.; Sterner, R.W.; Smutka, T.M.; Brown, E.T.; Sherrell, R.M. Bioavailable Iron in Oligotrophic Lake Superior Assessed Using Biological Reporters. J. Plankton Res. 2005, 27, 1033–1044. [Google Scholar] [CrossRef]
- Abd-El-Haleem, D.; Zaki, S.; Abulhamd, A.; Elbery, H.; Abu-Elreesh, G. Acinetobacter Bioreporter Assessing Heavy Metals Toxicity. J. Basic Microbiol. 2006, 46, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Hassler, C.S.; Havens, S.M.; Bullerjahn, G.S.; McKay, M.L.; Twissa, M.R. An Evaluation of Iron Bioavailability and Speciation in Western Lake Superior with the Use of Combined Physical, Chemical, and Biological Assessment. Limnol. Oceanogr. 2009, 54, 987–1001. [Google Scholar] [CrossRef]
- Nguyen Tran, P.H.; Luong, T.T.T.; Nguyen, T.T.T.; Nguyen, H.Q.; Duong, H.V.; Kim, B.H.; Pham, H.T. Possibility of Using a Lithotrophic Iron-Oxidizing Microbial Fuel Cell as a Biosensor for Detecting Iron and Manganese in Water Samples. Environ. Sci. Process. Impacts 2015, 17, 1806–1815. [Google Scholar] [CrossRef]
- Mioni, C.E.; Howard, A.M.; DeBruyn, J.M.; Bright, N.G.; Twiss, M.R.; Applegate, B.M.; Wilhelm, S.W. Characterization and Field Trials of a Bioluminescent Bacterial Reporter of Iron Bioavailability. Mar. Chem. 2003, 83, 31–46. [Google Scholar] [CrossRef]
- Blanco-Ameijeiras, S.; Cabanes, D.J.E.; Hassler, C.S. Towards the Development of a New Generation of Whole-Cell Bioreporters to Sense Iron Bioavailability in Oceanic Systems—Learning from the Case of Synechococcus sp. PCC7002 Iron Bioreporter. J. Appl. Microbiol. 2019, 127, 1291–1304. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Ameijeiras, S.; Cosio, C.; Hassler, C.S. Long-Term Acclimation to Iron Limitation Reveals New Insights in Metabolism Regulation of Synechococcus sp. PCC7002. Front. Mar. Sci. 2017, 4, 247. [Google Scholar] [CrossRef]
- Hicks, M.; Bachmann, T.T.; Wang, B. Synthetic Biology Enables Programmable Cell-Based Biosensors. ChemPhysChem 2020, 21, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, X.; Su, H.; Guo, M.; Liu, H. Advances in Synthetic-Biology-Based Whole-Cell Biosensors: Principles, Genetic Modules, and Applications in Food Safety. Int. J. Mol. Sci. 2023, 24, 7989. [Google Scholar] [CrossRef] [PubMed]
Reporter Gene | Signal Type | Mechanism | Advantages | Disadvantages |
---|---|---|---|---|
Lux (Bacterial luciferase) | Bioluminescence | Emits blue-green light (490 nm) via oxidation of a long-chain aldehyde produced by luxCDE | No need for exogenous substrates | Heat-labile |
Luc (Firefly luciferase) | Bioluminescence | Produces visible light using luciferin, ATP, oxygen, and magnesium ions | High sensitivity and signal stability | Requires external substrates |
Aequorin | Bioluminescence | Emits blue light upon oxidation of coelenterazine in the presence of calcium ions | High sensitivity and signal stability | Requires external substrates |
GFP (Green Fluorescent Protein) | Fluorescence | Fluoresces green upon exposure to specific wavelengths | Easy expression by a single gene | High background signal, slow maturation |
RFP (Red Fluorescent Protein) | Fluorescence | Fluoresces red upon exposure to specific wavelengths | Allows multianalyte assays | Less brightness compared to GFP, more prone to photobleaching |
CFP (Cyan Fluorescent Protein) | Fluorescence | Fluoresces cyan upon exposure to specific wavelengths | Allows multianalyte assays | Less brightness compared to GFP, spectral overlap with GFP, potential toxicity |
YFP (Yellow Fluorescent Protein) | Fluorescence | Fluoresces yellow upon exposure to specific wavelengths | Allows multianalyte assays | Less brightness compared to GFP, sensitive to pH changes, prone to photobleaching |
β-galactosidase (lacZ) | Colourimetric/Fluorescence | Cleaves X-gal to produce a coloured product; can also use luminescent/fluorescent substrates | Versatile applications | Requires exogenous substrates and cell lysis; endogenous β-gal activity can cause background noise |
Ice Nucleation Proteins (INPs) | Physical/Visual | Promotes ice crystal formation at warmer temperatures | Suitable for cold environments | Complex detection process, not real-time |
Microbial pigments | Colourimetric | Produces visible colour changes via secondary metabolite pathways | Easily observable in field applications | Dependent on substrate availability |
Host | Type of Organism | Growth Temperature Range | Analyte | References |
---|---|---|---|---|
Escherichia coli | Mesophilic | 15–40 °C | Arsenic, Cobalt (II), Nickel (II), Mercury | [91,99,102,213] |
Shewanella oneidensis | Mesophilic | 5–30 °C | Nickel (II), Cadmium (II), Lead (II) | [202] |
Pseudomonas putida | Mesophilic | 8–35 °C | Arsenic, Copper, Mercury, Iron | [34,101,110,200] |
Deinococcus radiodurans | Mesophilic | 20–39 °C | Cadmium (II) | [183] |
Synechococcus sp. strain PCC 7002 | Mesophilic/Psychrotolerant | 15–47.5 °C | Iron | [214] |
Pseudomonas fluorescens | Psychrophilic | 8–30 °C | Heavy metals | [201] |
Analyte | Sensing Element | Reporter Gene | Output | Chassis Cell | Field Application | Drawbacks | References |
---|---|---|---|---|---|---|---|
Bioavailable iron | fepA–fes from E. coli | luxCDABE from V. fischeri | bioluminescence | P. putida FeLux | Lake Erie; South West Pacific (FeCycle Fe fertilization study) | Sensitivity variations across natural bacterial communities | [34,225] |
Bioavailable iron | isiAB promoter from Synechocystis sp. strain PCC 6803 | luxAB from V. harveyi | bioluminescence | Synechococcus sp. strain PCC 7002 | IOW 213, IOW 271, and Bocknis-Eck stations in the Baltic Sea; subarctic Pacific 50 km northeast of Ocean Station Papa (SERIES Fe fertilization study) | Low sensitivity, inadequate representation of picocyanobacteria diversity | [214] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvanese, M.; D’Angelo, C.; Tutino, M.L.; Lauro, C. Whole-Cell Biosensor for Iron Monitoring as a Potential Tool for Safeguarding Biodiversity in Polar Marine Environments. Mar. Drugs 2024, 22, 299. https://doi.org/10.3390/md22070299
Calvanese M, D’Angelo C, Tutino ML, Lauro C. Whole-Cell Biosensor for Iron Monitoring as a Potential Tool for Safeguarding Biodiversity in Polar Marine Environments. Marine Drugs. 2024; 22(7):299. https://doi.org/10.3390/md22070299
Chicago/Turabian StyleCalvanese, Marzia, Caterina D’Angelo, Maria Luisa Tutino, and Concetta Lauro. 2024. "Whole-Cell Biosensor for Iron Monitoring as a Potential Tool for Safeguarding Biodiversity in Polar Marine Environments" Marine Drugs 22, no. 7: 299. https://doi.org/10.3390/md22070299
APA StyleCalvanese, M., D’Angelo, C., Tutino, M. L., & Lauro, C. (2024). Whole-Cell Biosensor for Iron Monitoring as a Potential Tool for Safeguarding Biodiversity in Polar Marine Environments. Marine Drugs, 22(7), 299. https://doi.org/10.3390/md22070299