The Discovery of Cyclic Lipopeptide Olenamidonins in a Deepsea-Derived Streptomyces Strain by Knocking Out a DtxR Family Regulator
Abstract
:1. Introduction
2. Results
3. Conclusions
4. Materials and Methods
4.1. General Materials and Methods
4.2. Bioinformatic Analysis
4.3. The Construction of the dtxRso Mutant Strain
4.4. Production and Purification of Olenamidonins
4.5. Antibacterial Assay
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, D.; Okada, B.K.; Wu, Y.; Xu, F.; Seyedsayamdost, M.R. Recent advances in activating silent biosynthetic gene clusters in bacteria. Curr. Opin. Microbiol. 2018, 45, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Chater, K.F.; Chandra, G.; Niu, G.; Tan, H. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol. Mol. Biol. Rev. 2013, 77, 112–143. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; He, J.; Wei, X.; Ju, J.; Ma, J. Exploration and genome mining of natural products from marine Streptomyces. Appl. Microbiol. Biotechnol. 2020, 104, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Boyd, J.; Oza, M.N.; Murphy, J.R. Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae. Proc. Natl. Acad. Sci. USA 1990, 87, 5968–5972. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Yang, R.; Lyu, M.; Wang, S.; Liu, X.; Wen, Y.; Song, Y.; Li, J.; Chen, Z. IdeR, a DtxR family iron response regulator, controls iron homeostasis, morphological differentiation, secondary metabolism, and the oxidative stress response in Streptomyces avermitilis. Appl. Environ. Microbiol. 2018, 84, e01503-18. [Google Scholar] [PubMed]
- Deng, Y.; Zhang, X. DtxR, an iron-dependent transcriptional repressor that regulates the expression of siderophore gene clusters in Thermobifida fusca. FEMS Microbiol. Lett. 2015, 362, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hantke, K. Iron and metal regulation in bacteria. Curr. Opin. Microbiol. 2001, 4, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Flores, F.J.; Martín, J.F. Iron-regulatory proteins DmdR1 and DmdR2 of Streptomyces coelicolor form two different DNA-protein complexes with iron boxes. Biochem. J. 2004, 380, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Flores, F.J.; Barreiro, C.; Coque, J.J.; Martín, J.F. Functional analysis of two divalent metal-dependent regulatory genes dmdR1 and dmdR2 in Streptomyces coelicolor and proteome changes in deletion mutants. FEBS J. 2005, 272, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Namatame, I.; Tomoda, H.; Matsuda, D.; Tabata, N.; Kobayashi, S.; Omura, S. K97-0239A and B, new inhibitors of macrophage foam cell formation, produced by Streptomyces sp. K97-0239. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2006, 78, 45–50. [Google Scholar] [CrossRef]
- Ohshiro, T.; Rudel, L.L.; Omura, S.; Tomoda, H. Selectivity of microbial acyl-CoA: Cholesterol acyltransferase inhibitors toward isozymes. J. Antibiot. 2007, 60, 43–51. [Google Scholar] [CrossRef]
- Son, S.; Ko, S.K.; Kim, S.M.; Kim, E.; Kim, G.S.; Lee, B.; Ryoo, I.J.; Kim, W.G.; Lee, J.S.; Hong, Y.S.; et al. Antibacterial cyclic lipopeptide enamidonins with an enamide-linked acyl chain from a Streptomyces Species. J. Nat. Prod. 2018, 81, 2462–2469. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, C.; Li, Q.; Ma, J.; Ju, J. Metabolic blockade-based genome mining reveals lipochain-linked dihydro-β-alanine synthetases involved in autucedine biosynthesis. Org. Lett. 2022, 24, 5535–5540. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor: New York, NY, USA, 2001; pp. 895–909. [Google Scholar]
- Gerlt, J.A.; Bouvier, J.T.; Davidson, D.B.; Imker, H.J.; Sadkhin, B.; Slater, D.R.; Whalen, K.L. Enzyme function initiative-enzyme similarity tool (EFI-EST): A web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta 2015, 1854, 1019–1037. [Google Scholar] [CrossRef] [PubMed]
- Gust, B.; Challis, G.L.; Fowler, K.; Kieser, T.; Chater, K.F. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 2003, 100, 1541–1546. [Google Scholar] [CrossRef] [PubMed]
- Gust, B.; Chandra, G.; Jakimowicz, D.; Yuqing, T.; Bruton, C.J.; Chater, K.F. Lambda red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv. Appl. Microbiol. 2004, 54, 107–128. [Google Scholar] [PubMed]
- Kieser, T.; Bibb, M.J.; Buttner, M.J.; Chater, K.F.; Hopwood, D.A.; Charter, K.; Bib, M.J.; Bipp, M.; Keiser, T.; Butner, M. Practical Streptomyces Genetics; John Innes Foundation: Norwich, UK, 2000. [Google Scholar]
- Macneil, D.J.; Occi, J.L.; Gewain, K.M.; Macneil, T.; Gibbons, P.H.; Ruby, C.L.; Danis, S.J. Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene 1992, 115, 119–125. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | 3 | ||||
position | ΔC, type | ΔH (J in Hz) | ΔC, type | ΔH (J in Hz) | ΔC, type | ΔH (J in Hz) |
1-N | ||||||
2 | 44.6, CH2 | 4.17, d (14.3) 3.31, m | 44.6, CH2 | 4.17, d (14.3) 3.31, m | 44.6, CH2 | 4.17, d (14.4) 3.31, m |
3 | 168.8, C | 168.8, C | 168.8, C | |||
4-NH | 7.21, m | 7.21, m | 7.21, m | |||
5 | 53.9, CH | 4.49, td (8.8, 6.4) | 53.9, CH | 4.49, td (8.8, 6.4) | 53.9, CH | 4.49, td (8.8, 6.4) |
6 | 171.1, C | 171.1, C | 171.1, C | |||
7-NH | 8.70, d (7.7) | 8.70, d (7.7) | 8.70, d (7.7) | |||
8 | 52.2, CH | 4.36, q (7.3) | 52.2, CH | 4.36, q (7.3) | 52.2, CH | 4.36, q (7.3) |
9 | 171.8, C | 171.8, C | 171.8, C | |||
10-NH | 6.98, t (5.9) | 6.98, t (5.9) | 6.98, t (5.9) | |||
11 | 38.9, CH2 | 3.50, m 3.24, m | 38.9, CH2 | 3.50, m 3.24, m | 38.9, CH2 | 3.50, m 3.24, m |
12 | 58.9, CH | 3.77, m | 58.9, CH | 3.77, d (8.4) | 58.9, CH | 3.77, d (8.2) |
13-NH | 2.99, d (9.4) | 2.99, d (9.4) | 2.99, d (9.4) | |||
14 | 76.3, C | 76.3, C | 76.3, C | |||
15 | 172.8, C | 172.8, C | 172.8, C | |||
16 | 36.3, CH2 | 3.07, dd (13.9, 8.7) 2.78, dd (13.9, 6.2) | 36.3, CH2 | 3.07, dd (13.9, 8.7) 2.78, dd (13.9, 6.2) | 36.3, CH2 | 3.07, dd (13.9, 8.7) 2.78, dd (13.9, 6.2) |
17 | 137.3, C | 137.3, C | 137.3, C | |||
18/22 | 128.8, CH | 7.18, m | 128.8, CH | 7.18 m | 128.8, CH | 7.18, m |
19/21 | 128.3, CH | 7.24, m | 128.3, CH | 7.24 m | 128.3, CH | 7.24, m |
20 | 126.3, CH | 7.17, m | 126.3, CH | 7.17, m | 126.3, CH | 7.17, m |
23 | 27.4, CH3 | 1.26, s | 27.4, CH3 | 1.26, m | 27.4, CH3 | 1.26, m |
24 | 25.9, CH3 | 1.18, s | 25.9, CH3 | 1.18, s | 25.9, CH3 | 1.18, s |
25 | 37.7, CH2 | 3.31, m | 37.7, CH2 | 3.31, m | 37.7, CH2 | 3.31, m |
26-NH | 7.77, t (5.7) | 7.77, t (5.7) | 7.77, t (5.7) | |||
27 | 166.6, C | 166.6, C | 166.6, C | |||
28 | 103.5, CH | 5.55, d (14.0) | 103.5, CH | 5.55, d (14.0) | 103.5, CH | 5.55, d (14.0) |
29 | 133.8, CH | 7.59, dd (13.9, 11.1) | 133.8, CH | 7.59, dd (13.9, 11.1) | 133.8, CH | 7.59, dd (13.9, 11.1) |
30-NH | 10.35, d (11.0) | NH | 10.35, d (11.0) | 10.35, d (11.0) | ||
1′ | 171.5, C | 171.5, C | 171.5, C | |||
2′ | 35.4, CH2 | 2.24, t (7.3) | 35.4, CH2 | 2.24, t (7.3) | 35.3, CH2 | 2.24, t (7.3) |
3′ | 24.7, CH2 | 1.54, m | 24.7, CH2 | 1.54, m | 24.8, CH2 | 1.54, m |
4′ | 28.6, CH2 | 1.25, m | 28.6, CH2 | 1.25, m | 28.8, CH2 | 1.25, m |
5′ | 29.1, CH2 | 1.26, m | 28.8, CH2 | 1.24, m | 26.4, CH2 | 1.26, m |
6′ | 26.3, CH2 | 1.24, m | 29.2, CH2 | 1.23, m | 38.3, CH2 | 1.15, m |
7′ | 35.9, CH2 | 1.25, m 1.07, m | 26.8, CH2 | 1.24, m | 27.3, CH | 1.49, m |
8′ | 33.7, CH | 1.27, m | 38.4, CH2 | 1.13, m | 22.48, CH3 | 0.84, d (6.6) |
9′ | 28.9, CH2 | 1.29, m 1.08, m | 27.3, CH | 1.49, m | 22.48, CH3 | 0.84, d (6.6) |
10′ | 11.2, CH3 | 0.83, m | 22.5, CH3 | 0.84, d (6.6) | ||
11′ | 19.1, CH3 | 0.82, m | 22.5, CH3 | 0.84, d (6.6) |
Strains | MIC (μg/mL) | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | Tetracycline | Ciprofloxacin | |
M. luteus ML01 | >50 | >50 | >50 | >50 | >50 | 6.25 | |
E. faecalis CCARM 5172 | 3.12 | 1.56 | 6.25 | 6.25 | 3.12 | 6.25 | |
E. faecium CCARM 5203 | 1.56 | 1.56 | 3.12 | 6.25 | 1.56 | 1.56 | |
E. coli CCARM 1009 | >50 | >50 | >50 | >50 | >50 | 1.56 | |
P. aeruginosa 15690 | >50 | >50 | >50 | >50 | >50 | 12.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Yu, D.; Zhang, X.; Xiao, F.; Li, W. The Discovery of Cyclic Lipopeptide Olenamidonins in a Deepsea-Derived Streptomyces Strain by Knocking Out a DtxR Family Regulator. Mar. Drugs 2024, 22, 262. https://doi.org/10.3390/md22060262
Sun Q, Yu D, Zhang X, Xiao F, Li W. The Discovery of Cyclic Lipopeptide Olenamidonins in a Deepsea-Derived Streptomyces Strain by Knocking Out a DtxR Family Regulator. Marine Drugs. 2024; 22(6):262. https://doi.org/10.3390/md22060262
Chicago/Turabian StyleSun, Qiannan, Dongqi Yu, Xueqing Zhang, Fei Xiao, and Wenli Li. 2024. "The Discovery of Cyclic Lipopeptide Olenamidonins in a Deepsea-Derived Streptomyces Strain by Knocking Out a DtxR Family Regulator" Marine Drugs 22, no. 6: 262. https://doi.org/10.3390/md22060262
APA StyleSun, Q., Yu, D., Zhang, X., Xiao, F., & Li, W. (2024). The Discovery of Cyclic Lipopeptide Olenamidonins in a Deepsea-Derived Streptomyces Strain by Knocking Out a DtxR Family Regulator. Marine Drugs, 22(6), 262. https://doi.org/10.3390/md22060262