Influence of Nutrient Deprivation on the Antioxidant Capacity and Chemical Profile of Two Diatoms from Genus Chaetoceros
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic Content & Antioxidant Potentials
2.2. Non-Target Screening of Non-Volatile Compounds in Ethanol Extract
3. Materials and Methods
3.1. Experimental Design and Cultivation Conditions
3.2. Harvesting and Extraction
3.3. Antioxidation Assays
3.4. Ultra-High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-ESI-HRMS) of Ethanol Extract
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rizwan, M.; Mujtaba, G.; Memon, S.A.; Lee, K.; Rashid, N. Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renew. Sustain. Energy Rev. 2018, 92, 394–404. [Google Scholar] [CrossRef]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Zhuo, W.H.; Wang, X.W.; Chen, C.P.; Gao, Y.H.; Liang, J.R. Effects of fundamental nutrient stresses on the lipid accumulation profiles in two diatom Species Thalassiosira weissflogii and Chaetoceros muelleri. Bioprocess Biosyst. Eng. 2018, 41, 1213–1224. [Google Scholar] [CrossRef] [PubMed]
- Gatamaneni, B.L.; Orsat, V.; Lefsrud, M. Factors affecting growth of various microalgal species. Environ. Eng. Sci. 2018, 35, 1037–1048. [Google Scholar] [CrossRef]
- Vello, V.; Phang, S.-M.; Poong, S.-W.; Lim, Y.-K.; Ng, F.-L.; Shanmugam, J.; Gopal, M. New Report of Halamphora subtropica (Bacillariophyta) from the Strait of Malacca and its growth and biochemical characterisation under nutrient deprivation. Reg. Stud. Mar. Sci. 2023, 62, 102947. [Google Scholar] [CrossRef]
- Martin-Jézéquel, V.; Hildebrand, M.; Brzezinski, M.A. Silicon metabolism in diatoms: Implications for growth. J. Phycol. 2000, 36, 821–840. [Google Scholar] [CrossRef]
- Orefice, I.; Musella, M.; Smerilli, A.; Sansone, C.; Chandrasekaran, R.; Corato, F.; Brunet, C. Role of nutrient concentrations and water movement on diatom’s productivity in culture. Sci. Rep. 2019, 9, 1479. [Google Scholar] [CrossRef]
- Shrestha, R.P.; Hildebrand, M. Evidence for a regulatory role of diatom silicon transporters in cellular silicon responses. Eukaryot. Cell 2015, 14, 29. [Google Scholar] [CrossRef]
- Lovio-Fragoso, J.P.; de Jesús-Campos, D.; López-Elías, J.A.; Medina-Juárez, L.Á.; Fimbres-Olivarría, D.; Hayano-Kanashiro, C. Biochemical and molecular aspects of phosphorus limitation in diatoms and their relationship with biomolecule accumulation. Biology 2021, 10, 565. [Google Scholar] [CrossRef]
- Curcuraci, E.; Manuguerra, S.; Messina, C.M.; Arena, R.; Renda, G.; Ioannou, T.; Amato, V.; Hellio, C.; Barba, F.J.; Santulli, A. Culture conditions affect antioxidant production, metabolism and related biomarkers of the microalgae Phaeodactylum tricornutum. Antioxidants 2022, 11, 411. [Google Scholar] [CrossRef]
- Smith, S.R.; Glé, C.; Abbriano, R.M.; Traller, J.C.; Davis, A.; Trentacoste, E.; Vernet, M.; Allen, A.E.; Hildebrand, M. Transcript level coordination of carbon pathways during silicon starvation-induced lipid accumulation in the diatom Thalassiosira pseudonana. N. Phytol. 2016, 210, 890–904. [Google Scholar] [CrossRef]
- Yu, S.J.; Shen, X.F.; Ge, H.Q.; Zheng, H.; Chu, F.F.; Hu, H.; Zeng, R.J. Role of sufficient phosphorus in biodiesel production from diatom Phaeodactylum tricornutum. Appl. Microbiol. Biotechnol. 2016, 100, 6927–6934. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yang, M.; Wang, C. Nutrient deprivation enhances lipid content in marine microalgae. Bioresour. Technol. 2013, 147, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Lovio Fragoso, J.; Hayano Kanashiro, C.; Lopez Elias, J. Effect of different phosphorus concentrations on growth and biochemical composition of Chaetoceros muelleri. Lat. Am. J. Aquat. Res. 2019, 47, 361–366. [Google Scholar] [CrossRef]
- Goiris, K.; Van Colen, W.; Wilches, I.; León-Tamariz, F.; De Cooman, L.; Muylaert, K. Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Res. 2015, 7, 51–57. [Google Scholar] [CrossRef]
- Trentin, R.; Custódio, L.; Rodrigues, M.J.; Moschin, E.; Sciuto, K.; da Silva, J.P.; Moro, I. Total phenolic levels, In vitro antioxidant properties, and fatty acid profile of two microalgae, Tetraselmis marina strain IMA043 and Naviculoid diatom strain IMA053, isolated from the North Adriatic Sea. Mar. Drugs 2022, 20, 207. [Google Scholar] [CrossRef]
- Kuczynska, P.; Jemiola-Rzeminska, M.; Strzalka, K. Photosynthetic pigments in diatoms. Mar. Drugs 2015, 13, 5847–5881. [Google Scholar] [CrossRef]
- Singh, P.; Baranwal, M.; Reddy, S.M. Antioxidant and cytotoxic activity of carotenes produced by Dunaliella salina under stress. Pharm. Biol. 2016, 54, 2269–2275. [Google Scholar] [CrossRef]
- Jeyakumar, B.; Asha, D.; Varalakshmi, P.; Kathiresan, S. Nitrogen repletion favors cellular metabolism and improves eicosapentaenoic acid production in the marine microalga Isochrysis Sp. CASA CC 101. Algal Res. 2020, 47, 101877. [Google Scholar] [CrossRef]
- Blaženović, I.; Kind, T.; Ji, J.; Fiehn, O. software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites 2018, 8, 31. [Google Scholar] [CrossRef]
- Indriani, I.; Aminah, N.S.; Puspaningsih, N.N.T. Antiplasmodial Activity of stigmastane steroids from Dryobalanops oblongifolia stem bark. Open Chem. 2020, 18, 259–264. [Google Scholar] [CrossRef]
- Saide, A.; Lauritano, C.; Ianora, A. Pheophorbide a: State of the art. Mar. Drugs 2020, 18, 257. [Google Scholar] [CrossRef]
- Collier, J.L.; Grossman, A.R. Chlorosis induced by nutrient deprivation in Synechococcus Sp. strain PCC 7942: Not all bleaching is the same. J. Bacteriol. 1992, 174, 4718–4726. [Google Scholar] [CrossRef]
- Repeta, D.J. Carotenoid diagenesis in recent marine sediments: II. degradation of fucoxanthin to loliolide. Geochim. Cosmochim. Acta 1989, 53, 699–707. [Google Scholar] [CrossRef]
- Percot, A.; Yalçin, A.; Aysel, V.; Erduǧan, H.; Dural, B.; Güven, K.C. Loliolide in marine algae. Nat. Prod. Res. 2009, 23, 460–465. [Google Scholar] [CrossRef]
- El Hattab, M.; Culioli, G.; Valls, R.; Richou, M.; Piovetti, L. Apo-fucoxanthinoids and loliolide from the brown alga Cladostephus spongiosus f. verticillatus (Heterokonta, Sphacelariales). Biochem. Syst. Ecol. 2008, 36, 447–451. [Google Scholar] [CrossRef]
- Radman, S.; Cikoš, A.M.; Flanjak, I.; Babić, S.; Čižmek, L.; Šubarić, D.; Čož-Rakovac, R.; Jokić, S.; Jerković, I. Less polar compounds and targeted antioxidant potential (in vitro and in vivo) of Codium adhaerens c. Agardh 1822. Pharmaceuticals 2021, 14, 944. [Google Scholar] [CrossRef]
- Radman, S.; Čižmek, L.; Babić, S.; Cikoš, A.M.; Čož-Rakovac, R.; Jokić, S.; Jerković, I. Bioprospecting of less-polar fractions of Ericaria crinita and Ericaria amentacea: Developmental toxicity and antioxidant activity. Mar. Drugs 2022, 20, 57. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, D.S.; Kim, S.; Lorz, L.R.; Choi, E.; Lim, H.Y.; Hossain, M.A.; Jang, S.G.; Choi, Y.I.; Park, K.J.; et al. Loliolide presents antiapoptosis and antiscratching effects in human keratinocytes. Int. J. Mol. Sci. 2019, 20, 651. [Google Scholar] [CrossRef]
- Yang, X.; Kang, M.-C.; Lee, K.-W.; Kang, S.-M.; Lee, W.-W.; Jeon, Y.-J. Antioxidant activity and cell protective effect of loliolide isolated from Sargassum ringgoldianum Subsp. coreanum. Algae 2011, 26, 201–208. [Google Scholar] [CrossRef]
- Menzel, D.; Van Bergen, P.F.; Schouten, S.; Sinninghe Damsté, J.S. Reconstruction of changes in export productivity during pliocene sapropel deposition: A biomarker approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 190, 273–287. [Google Scholar] [CrossRef]
- Vladić, J.; Jerković, I.; Radman, S.; Jazić, J.M.; Ferreira, A.; Maletić, S.; Gouveia, L. Supercritical CO2 extract from microalga Tetradesmus obliquus: The effect of high-pressure pre-treatment. Molecules 2022, 27, 3883. [Google Scholar] [CrossRef]
- Silva, J.; Alves, C.; Martins, A.; Susano, P.; Simões, M.; Guedes, M.; Rehfeldt, S.; Pinteus, S.; Gaspar, H.; Rodrigues, A.; et al. Loliolide, a new therapeutic option for neurological diseases? In vitro neuroprotective and anti-inflammatory activities of a monoterpenoid lactone isolated from Codium tomentosum. Int. J. Mol. Sci. 2021, 22, 1888. [Google Scholar] [CrossRef] [PubMed]
- Lanfer-Marquez, U.M.; Barros, R.M.C.; Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Int. 2005, 38, 885–891. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Chao, P.-Y.; Hu, S.-P.; Yang, C.-M. The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. Food Nutr. Sci. 2013, 4, 8A. [Google Scholar] [CrossRef]
- Ohta, S.; Ono, F.; Shiomi, Y.; Nakao, T.; Aozasa, O.; Nagate, T.; Kitamura, K.; Yamaguchi, S.; Nishi, M.; Miyata, H. Anti-Herpes simplex virus substances produced by the marine green alga, Dunaliella primolecta. J. Appl. Phycol. 1998, 10, 349–356. [Google Scholar] [CrossRef]
- Ratnoglik, S.L.; Aoki, C.; Sudarmono, P.; Komoto, M.; Deng, L.; Shoji, I.; Fuchino, H.; Kawahara, N.; Hotta, H. Antiviral activity of extracts from Morinda citrifolia leaves and chlorophyll catabolites, pheophorbide a and pyropheophorbide a, against Hepatitis C virus. Microbiol. Immunol. 2014, 58, 188–194. [Google Scholar] [CrossRef]
- Lauritano, C.; Helland, K.; Riccio, G.; Andersen, J.H.; Ianora, A.; Hansen, E.H. Lysophosphatidylcholines and chlorophyll-derived molecules from the diatom Cylindrotheca closterium with anti-inflammatory activity. Mar. Drugs 2020, 18, 166. [Google Scholar] [CrossRef] [PubMed]
- Miranda, N.; Volpato, H.; da Silva Rodrigues, J.H.; Caetano, W.; Ueda-Nakamura, T.; de Oliveira Silva, S.; Nakamura, C.V. The photodynamic action of pheophorbide a induces cell death through oxidative stress in Leishmania amazonensis. J. Photochem. Photobiol. B Biol. 2017, 174, 342–354. [Google Scholar] [CrossRef]
- Radman, S.; Cikoš, A.M.; Babić, S.; Čižmek, L.; Čož-Rakovac, R.; Jokić, S.; Jerković, I. In vivo and in vitro antioxidant activity of less polar fractions of Dasycladus vermicularis (Scopoli) Krasser 1898 and the chemical composition of fractions and macroalga volatilome. Pharmaceuticals 2022, 15, 743. [Google Scholar] [CrossRef]
- Radman, S.; Čagalj, M.; Šimat, V.; Jerković, I. Seasonal monitoring of volatiles and antioxidant activity of brown alga Cladostephus spongiosus. Mar. Drugs 2023, 21, 415. [Google Scholar] [CrossRef] [PubMed]
- Frleta, R.; Popović, M.; Smital, T.; Šimat, V. Comparison of growth and chemical profile of diatom Skeletonema grevillei in bioreactor and incubation-shaking cabinet in two growth phases. Mar. Drugs 2022, 20, 697. [Google Scholar] [CrossRef] [PubMed]
- Farrell, E.K.; Chen, Y.; Barazanji, M.; Jeffries, K.A.; Cameroamortegui, F.; Merkler, D.J. Primary fatty acid amide metabolism: Conversion of fatty acids and an ethanolamine in N 18TG 2 and SCP Cells. J. Lipid Res. 2012, 53, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Tanvir, R.; Javeed, A.; Rehman, Y. Fatty acids and their amide derivatives from endophytes: New therapeutic possibilities from a hidden source. FEMS Microbiol. Lett. 2018, 365, fny114. [Google Scholar] [CrossRef] [PubMed]
- D’Oca, C.D.R.M.; Coelho, T.; Marinho, T.G.; Hack, C.R.L.; Da Costa Duarte, R.; Da Silva, P.A.; D’Oca, M.G.M. Synthesis and antituberculosis activity of new fatty acid amides. Bioorganic Med. Chem. Lett. 2010, 20, 5255–5257. [Google Scholar] [CrossRef] [PubMed]
- Kabara, J.J.; Swieczkowski, D.M.; Conley, A.J.; Truant, J.P. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 1972, 2, 23–28. [Google Scholar] [CrossRef]
- Dembitsky, V.M. Microbiological aspects of unique, rare, and unusual fatty acids derived from natural amides and their pharmacological profile. Microbiol. Res. 2022, 13, 377–417. [Google Scholar] [CrossRef]
- Ano, Y.; Ozawa, M.; Kutsukake, T.; Sugiyama, S.; Uchida, K.; Yoshida, A.; Nakayama, H. Preventive effects of a fermented dairy product against Alzheimer’s disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity. PLoS ONE 2015, 10, e0118512. [Google Scholar] [CrossRef]
- Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H.; Murphy, R.C.; Raetz, C.R.H.; Russell, D.W.; Seyama, Y.; Shaw, W.; et al. A comprehensive classification system for lipids. J. Lipid Res. 2005, 46, 839–861. [Google Scholar] [CrossRef]
- Fagundes, M.B.; Vendruscolo, R.G.; Wagner, R. Sterols from Microalgae; Elsevier Inc.: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Volkman, J.K. The Physiology of Microalgae; Borowitzka, M.A., Beardall, J., Raven, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Andersen, R.A. Algal Culturing Techniques; Elsevier Academic Press: New York, NY, USA, 2005. [Google Scholar]
- Frleta Matas, R.; Popović, M.; Čagalj, M.; Šimat, V. The marine diatom Thalassiosira rotula: Chemical profile and antioxidant activity of hydroalcoholic extracts. Front. Mar. Sci. 2023, 10, 1–9. [Google Scholar] [CrossRef]
- Amerine, M.A.; Ough, C.S. Methods Analysis of Musts and Wines, 2nd ed.; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Hoang, H.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agric. Food Chem. 2003, 51, 3273–3279. [Google Scholar] [CrossRef] [PubMed]
- Burčul, F.; Generalić Mekinić, I.; Radan, M.; Rollin, P.; Blažević, I. Isothiocyanates: Cholinesterase inhibiting, antioxidant, and anti-inflammatory activity. J. Enzyme Inhib. Med. Chem. 2018, 33, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Šimat, V.; Vlahović, J.; Soldo, B.; Generalić Mekinić, I.; Čagalj, M.; Hamed, I.; Skroza, D. Production and characterization of crude oils from seafood processing by-products. Food Biosci. 2020, 33, 100484. [Google Scholar] [CrossRef]
No. | Compound Name | Mass | [M+H]+ | Molecular Formula | tR (min) | Mass Difference (ppm) | Peak Area (Arbitrary Units) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chaetoceros costatus | Chaetoceros socialis | |||||||||||||
Ctrl | P dep | N dep | Si dep | Ctrl | P dep | N dep | Si dep | |||||||
Pigments and Derivatives | ||||||||||||||
1 | Loliolide | 196.110 | 197.11722 | C11H16O3 | 5.866 | 0.1 | 1.65 × 106 | 1.06 × 106 | 1.95 × 106 | 3.87 × 105 | 2.53 × 105 | 1.32 × 105 | 1.62 × 105 | 1.54 × 105 |
2 | Apo-10-fucoxanthinal | 424.261 | 425.26864 | C27H36O4 | 9.514 | 1 | 1.50 × 105 | 4.13 × 104 | 7.99 × 104 | - | 6.09 × 104 | 6.98 × 103 | 5.54 × 104 | - |
3 | Halocynthiaxanthin acetate | 640.413 | 641.42005 | C42H56O5 | 12.364 | 2 | 6.39 × 105 | 1.88 × 105 | 3.89 × 105 | - | 3.64 × 105 | 2.26 × 104 | 4.21 × 105 | 2.41 × 104 |
4 | Pheophorbide b | 606.248 | 607.25511 | C35H34N4O6 | 12.371 | 1 | 6.33 × 104 | 4.83 × 104 | 5.82 × 104 | 7.13 × 103 | 1.43 × 104 | 6.17 × 103 | 9.87 × 103 | 4.85 × 102 |
5 | Fucoxanthin | 658.423 | 659.43062 | C42H58O6 | 12.385 | 2.1 | 1.18 × 105 | 9.73 × 104 | 7.69 × 104 | - | 6.90 × 105 | 4.34 × 104 | 7.97 × 105 | 6.02 × 103 |
6 | Diatoxanthin | 566.412 | 567.41966 | C40H54O2 | 12.772 | 0.1 | 4.21 × 104 | 3.90 × 104 | 1.22 × 104 | 1.86 × 104 | 6.43 × 104 | 3.52 × 104 | 3.69 × 104 | 1.92 × 104 |
7 | Fucoxanthinol | 616.413 | 617.42005 | C40H56O5 | 12.836 | 2.8 | 9.89 × 104 | 5.03 × 104 | 6.45 × 104 | 4.14 × 104 | 5.75 × 103 | 9.44 × 103 | 6.02 × 103 | 9.99 × 103 |
8 | Pheophorbide a | 592.269 | 593.27585 | C35H36N4O5 | 13.125 | 1.3 | 5.18 × 106 | 1.26 × 106 | 5.75 × 106 | 2.78 × 104 | 2.50 × 105 | 3.91 × 104 | 1.24 × 105 | 4.15 × 103 |
9 | 3-[21-Methoxycarbonyl-4,8,13,18-tetramethyl-20-oxo-9,14-divinyl-3,4-didehydro-3-24,25-dihydrophorbinyl]propanoic acid | 588.237 | 589.24455 | C35H32N4O5 | 13.247 | 3 | 9.06 × 105 | 3.67 × 105 | 9.17 × 105 | 5.31 × 104 | 1.51 × 105 | 9.19 × 104 | 1.66 × 105 | 1.32 × 104 |
10 | Pheophytin b | 884.545 | 885.55246 | C55H72N4O6 | 18.463 | 3.5 | 1.50 × 105 | 2.75 × 104 | 1.62 × 105 | - | 9.22 × 104 | 5.06 × 103 | 3.12 × 105 | - |
11 | Divinyl pheophytin a | 868.550 | 869.55755 | C55H72N4O5 | 18.721 | 2.4 | 4.20 × 105 | 1.27 × 105 | 2.69 × 105 | - | 1.04 × 105 | 9.56 × 103 | 2.03 × 105 | - |
12 | 151-hydroxy-lactone-pheophytin a | 902.556 | 903.56303 | C55H74N4O7 | 18.842 | 0.8 | 9.45 × 105 | 5.63 × 105 | 1.20 × 106 | 2.67 × 103 | 4.66 × 105 | 5.32 × 104 | 4.43 × 105 | 2.13 × 103 |
13 | 132-hydroxy-pheophytin a | 886.561 | 887.56811 | C55H74N4O6 | 18.859 | 0.1 | 4.03 × 105 | 5.46 × 105 | 5.44 × 105 | 1.64 × 104 | 4.65 × 105 | 5.03 × 104 | 4.14 × 105 | 1.99 × 104 |
14 | Pheophytin a | 870.566 | 871.5732 | C55H74N4O5 | 19.071 | 0.4 | 2.40 × 107 | 4.74 × 106 | 1.91 × 107 | 5.27 × 104 | 3.31 × 106 | 2.12 × 105 | 3.98 × 106 | 5.24 × 104 |
Fatty Acid Derivatives | ||||||||||||||
15 | Hexadecasphinganine | 273.267 | 274.27406 | C16H35NO2 | 6.24 | 0.6 | 8.20 × 106 | 7.33 × 106 | 5.69 × 106 | 5.19 × 106 | 9.40 × 106 | 5.76 × 106 | 6.39 × 106 | 4.33 × 106 |
16 | Myristamide (Tetradecanamide) | 227.225 | 228.23219 | C14H29NO | 10.328 | 0.6 | 2.59 × 106 | 1.76 × 106 | 1.41 × 106 | 2.15 × 106 | 3.69 × 106 | 1.98 × 106 | 2.89 × 106 | 2.04 × 106 |
17 | Monomyristin (2,3-Dihydroxypropyl tetradecanoate) | 302.246 | 303.25299 | C17H34O4 | 10.641 | 6.4 | 7.80 × 104 | 8.87 × 104 | 1.86 × 105 | 8.32 × 104 | 6.21 × 104 | 2.08 × 105 | 2.09 × 105 | 1.53 × 105 |
18 | Palmitoleamide (Hexadec-9-enamide) | 253.241 | 254.24784 | C16H31NO | 10.743 | 0.2 | 6.10 × 106 | 4.33 × 106 | 3.30 × 106 | 4.44 × 106 | 9.16 × 106 | 4.91 × 106 | 6.28 × 106 | 4.43 × 106 |
19 | Linoleamide (Octadeca-9,12-dienamide) | 279.256 | 280.26349 | C18H33NO | 11.182 | 0.1 | 5.91 × 106 | 4.60 × 106 | 1.31 × 106 | 5.05 × 106 | 1.14 × 107 | 6.11 × 106 | 8.14 × 106 | 4.86 × 106 |
20 | Palmitamide (Hexadecanamide) | 255.256 | 256.26349 | C16H33NO | 11.437 | 0.2 | 1.48 × 107 | 1.22 × 107 | 9.33 × 106 | 1.11 × 107 | 2.29 × 107 | 1.30 × 107 | 1.54 × 107 | 1.17 × 107 |
21 | Monopalmitin (2,3-Dihydroxypropyl hexadecanoate) | 330.277 | 331.28429 | C19H38O4 | 11.71 | 0.1 | 3.62 × 106 | 3.49 × 106 | 3.98 × 106 | 2.64 × 106 | 4.36 × 106 | 3.88 × 106 | 4.49 × 106 | 2.70 × 106 |
22 | Oleamide (Octadec-9-enamide) | 281.272 | 282.27914 | C18H35NO | 11.813 | 0.3 | 1.06 × 108 | 8.81 × 107 | 6.67 × 107 | 7.65 × 107 | 9.55 × 107 | 5.47 × 107 | 1.03 × 107 | 7.53 × 107 |
23 | Stearamide (Octadecanamide) | 283.288 | 284.29479 | C18H37NO | 12.506 | 0.8 | 7.89 × 106 | 6.91 × 106 | 5.23 × 106 | 6.17 × 106 | 1.27 × 107 | 6.93 × 106 | 9.03 × 106 | 7.06 × 106 |
24 | Monostearin (2,3-Dihydroxypropyl octadecanoate) | 358.308 | 359.31559 | C21H42O4 | 12.765 | 0.6 | 3.70 × 106 | 3.51 × 106 | 3.98 × 106 | 2.27 × 106 | 4.16 × 106 | 2.92 × 106 | 4.46 × 106 | 2.46 × 106 |
25 | Gondamide (Icos-11-enamide) | 309.303 | 310.31044 | C20H39NO | 12.796 | 1.7 | 1.29 × 106 | 1.01 × 106 | 7.99 × 105 | 1.03 × 106 | 2.29 × 106 | 1.07 × 106 | 1.61 × 106 | 1.09 × 106 |
26 | Arachidonic acid (Icosa-5,8,11,14-tetraenoic acid) | 304.240 | 305.24751 | C20H32O2 | 13.16 | 0.3 | 3.85 × 104 | 5.46 × 104 | 5.14 × 104 | 5.25 × 104 | 5.75 × 104 | 5.61 × 104 | 5.50 × 104 | 3.53 × 104 |
27 | Erucamide (Docos-13-enamide) | 337.334 | 338.34174 | C22H43NO | 13.787 | 0.6 | 2.00 × 106 | 1.47 × 106 | 1.30 × 106 | 9.99 × 105 | 2.09 × 106 | 1.16 × 106 | 1.80 × 106 | 1.01 × 106 |
28 | 1-(9-Octadecenoyl)-2-(9-pentadecenoyl)-glycero-3-phosphocholine | 743.547 | 744.55378 | C41H78NO8P | 15.863 | 2.8 | 7.52 × 104 | 1.74 × 104 | 4.53 × 104 | 3.51 × 104 | 8.82 × 104 | 6.16 × 104 | 8.76 × 104 | 5.54 × 104 |
29 | 1-(11,14-Eicosadienoyl)-2-heptadecanoyl-glycero-3-phosphoserine | 801.552 | 802.55926 | C43H80NO10P | 16.300 | 0.1 | 1.95 × 105 | 1.22 × 105 | 1.45 × 105 | 7.31 × 104 | 1.68 × 105 | 1.07 × 105 | 1.63 × 105 | 6.01 × 104 |
30 | 1-Octadecanoyl-2-(9,12-heptadecadienoyl)-glycero-3-phosphocholine | 771.578 | 772.58508 | C43H82NO8P | 16.403 | 2.6 | 7.63 × 104 | 1.31 × 104 | 3.56 × 104 | 5.58 × 104 | 9.23 × 104 | 8.82 × 104 | 8.22 × 104 | 7.74 × 104 |
31 | 1-(9-Octadecenoyl)-2-(9-nonadecenoyl)-glycero-3-phosphocholine | 799.609 | 800.61638 | C45H86NO8P | 16.737 | 1.5 | 7.04 × 104 | 3.50 × 104 | 3.33 × 104 | 2.29 × 104 | 6.11 × 104 | 4.75 × 104 | 5.33 × 104 | 1.31 × 104 |
32 | Dipalmitin | 568.507 | 569.51395 | C35H68O5 | 17.729 | 1.2 | 3.60 × 104 | 3.09 × 104 | 3.70 × 104 | 1.52 × 104 | 2.53 × 104 | 2.70 × 104 | 3.39 × 104 | 3.20 × 104 |
33 | 1-Octadecanoyl-2-hexadecanoyl-sn-glycerol | 596.538 | 597.54525 | C37H72O5 | 18.276 | 1.6 | 2.30 × 104 | 1.76 × 104 | 2.54 × 104 | 8.29 × 103 | 1.96 × 104 | 1.59 × 104 | 2.09 × 104 | 1.75 × 104 |
Steroids and Derivatives | ||||||||||||||
34 | Chola-5,22-dien-3-ol | 342.292 | 343.29954 | C24H38O | 7.426 | 4.8 | 1.30 × 105 | 1.14 × 105 | 1.36 × 105 | 1.37 × 105 | 1.01 × 105 | 8.97 × 104 | 1.54 × 105 | 1.60 × 105 |
35 | Campesterol | 400.371 | 401.37779 | C28H48O | 7.944 | 0.8 | 9.75 × 103 | 4.13 × 102 | 7.92 × 103 | 5.52 × 103 | 1.20 × 104 | 4.19 × 103 | 8.97 × 103 | 4.80 × 103 |
36 | 24-Hydroperoxy-24-vinyl-cholesterol | 444.360 | 445.36762 | C29H48O3 | 14.914 | 0.2 | 3.95 × 104 | 2.26 × 104 | 4.35 × 104 | 2.08 × 104 | 7.14 × 103 | 1.45 × 104 | 9.19 × 103 | 1.14 × 104 |
37 | (3β)-3-Hydroxystigmast-5-en-7-one | 428.365 | 429.37271 | C29H48O2 | 15.434 | 3.8 | 1.70 × 105 | 1.01 × 105 | 1.79 × 105 | 6.52 × 104 | 3.07 × 104 | - | 3.02 × 104 | 3.43 × 104 |
38 | Stigmastatriene | 394.360 | 395.36723 | C29H46 | 15.609 | 1.9 | 2.33 × 104 | 3.16 × 104 | 1.99 × 104 | 2.04 × 104 | 1.02 × 104 | 4.29 × 104 | 2.01 × 104 | 2.33 × 104 |
Treatment Group | Composition |
---|---|
Control group (Ctrl) | The F/2 medium was prepared according to the previously described recipe [52] |
P dep | Based on F/2 medium without addition of NaH2PO4·H2O |
N dep | Based on F/2 medium without addition of NaNO3 |
Si dep | Based on F/2 medium without addition of Na2SiO3·9H2O |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frleta Matas, R.; Radman, S.; Čagalj, M.; Šimat, V. Influence of Nutrient Deprivation on the Antioxidant Capacity and Chemical Profile of Two Diatoms from Genus Chaetoceros. Mar. Drugs 2024, 22, 96. https://doi.org/10.3390/md22020096
Frleta Matas R, Radman S, Čagalj M, Šimat V. Influence of Nutrient Deprivation on the Antioxidant Capacity and Chemical Profile of Two Diatoms from Genus Chaetoceros. Marine Drugs. 2024; 22(2):96. https://doi.org/10.3390/md22020096
Chicago/Turabian StyleFrleta Matas, Roberta, Sanja Radman, Martina Čagalj, and Vida Šimat. 2024. "Influence of Nutrient Deprivation on the Antioxidant Capacity and Chemical Profile of Two Diatoms from Genus Chaetoceros" Marine Drugs 22, no. 2: 96. https://doi.org/10.3390/md22020096
APA StyleFrleta Matas, R., Radman, S., Čagalj, M., & Šimat, V. (2024). Influence of Nutrient Deprivation on the Antioxidant Capacity and Chemical Profile of Two Diatoms from Genus Chaetoceros. Marine Drugs, 22(2), 96. https://doi.org/10.3390/md22020096