Investigating A Multi-Domain Polyketide Synthase in Amphidinium carterae
Abstract
:1. Introduction
2. Results
2.1. Multi-Modular Polyketide Synthase in Amphidinium carterae
2.2. Thin Layer Chromatography Showing 14C Acetate Incorporation into Lipids in A. Carterae with and without Cerulenin Inhibition
2.3. Quantitation of 14C Acetate Incorporation into Lipids and Amphidinols
2.4. UV Absorbance Chromatograms Showing 14C Acetate Incorporation into Amphidinol and Sulpho-amphidinol
2.5. Quantitation of Total Toxin and Lipid Levels in A. carterae and A. sanguinea
2.6. Multi-Modular PKS Transcript Abundance over a Diel Cycle in A. carterae
2.7. Western Blotting of Three Protein Domains in the Multi-modular PKS from A. carterae
2.8. Mass Spectra of Adducts to the Synthetic KS Peptide
2.9. Fragmentation of the Synthetic KS Peptide and Cerulenin Adducts
3. Discussion
4. Materials and Methods
4.1. Cell Culture Conditions for A. carterae and A. sanguinea
4.2. 14C Acetate Labeling of A. carterae and A. sanguinea
4.3. Lipid and Toxin Extraction from Cell Pellets of A. carterae and A. sanguinea
4.4. Sample Preparation for LC/MS Analysis
4.5. Thin Layer Chromatography (TLC) Analysis of Lipids in A. carterae and A. sanguinea
4.6. Cell Culture and Harvest for Diel RNA Quantification
4.7. RNA Extraction and qPCR Analysis
4.8. Cell Culture and Harvest for SDS-PAGE and Mass Spectrometry
4.9. Western Blotting
4.10. HPLC and LC–MS Analysis of Amphidinol
4.11. KS peptide and Cerulenin Adducts
4.12. MS Analysis of Synthetic Peptide with Cerulenin
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houdai, T.; Matsuoka, S.; Murata, M.; Satake, M.; Ota, S.; Oshima, Y.; Rhodes, L.L. Acetate labeling patterns of dinoflagellate polyketides, amphidinols 2, 3 and 4. Tetrahedron 2001, 57, 5551–5555. [Google Scholar] [CrossRef]
- Lee, M.S.; Repeta, D.J.; Nakanishi, K.; Zagorski, M.G. Biosynthetic origins and assignments of carbon 13 NMR peaks of brevetoxin B. J. Am. Chem. Soc. 1986, 108, 7855–7856. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, M.; Tachibana, K.; Satake, M. Complete 13C-labeling pattern of yessotoxin a marine ladder-frame polyether. Tetrahedron 2011, 67, 877–880. [Google Scholar] [CrossRef]
- Dutta, S.; Whicher, J.R.; Hansen, D.A.; Hale, W.A.; Chemler, J.A.; Congdon, G.R.; Narayan, A.R.; Håkansson, K.; Sherman, D.H.; Smith, J.L.; et al. Structure of a modular polyketide synthase. Nature 2014, 510, 512–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wagoner, R.M.; Satake, M.; Wright, J.L. Polyketide biosynthesis in dinoflagellates: What makes it different. Nat. Prod. Rep. 2014, 31, 1101–1137. [Google Scholar] [CrossRef] [PubMed]
- Kohli, G.S.; John, U.; Figueroa, R.I.; Rhodes, L.L.; Harwood, D.T.; Groth, M.; Bolch, C.J.; Murray, S.A. Polyketide synthesis genes associated with toxin production in two species of Gambierdiscus (Dinophyceae). BMC Genom. 2015, 16, 410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCune, S.A.; Harris, R.A. Mechanism responsible for 5-(tetradecyloxy)-2-furoic acid inhibition of hepatic lipogenesis. J. Biol. Chem. 1979, 254, 10095–10101. [Google Scholar]
- Meier, J.L.; Burkart, M.D. The chemical biology of modular biosynthetic enzymes. Chem. Soc. Rev. 2009, 38, 2012–2045. [Google Scholar] [CrossRef]
- Monroe, E.A.; Johnson, J.G.; Wang, Z.; Pierce, R.K.; Van Dolah, F.M. Characterization and Expression of Nuclear-Encoded Polyketide Synthases in the Brevetoxin-Producing Dinoflagellate Karenia Brevis 1. J. Phycol. 2010, 46, 541–552. [Google Scholar] [CrossRef]
- Bell, M.V.; Dick, J.R.; Pond, D.W. Octadecapentaenoic acid in a raphidophyte alga, Heterosigma akashiwo Phytochemistry. Phytochemistry 1997, 45, 303–306. [Google Scholar] [CrossRef]
- Khosla, C.; Herschlag, D.; Cane, D.E.; Walsh, C.T. Assembly line polyketide synthases: Mechanistic insights and unsolved problems. Biochemistry 2014, 53, 2875–2883. [Google Scholar] [CrossRef] [PubMed]
- Shelest, E.; Heimerl, N.; Fichtner, M.; Sasso, S. Multimodular type I polyketide synthases in algae evolve by module duplications and displacement of AT domains in trans. BMC Genom. 2015, 16, 1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachvaroff, T.R.; Williams, E.P.; Jagus, R.; Place, A.R. A cryptic noncanonical multi-module PKS/NRPS found in dinoflagellates. In Proceedings of the 16 International Conference on Harmful Algae, Wellington, New Zealand, 27–31 October 2015; pp. 101–104. [Google Scholar]
- Piel, J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 2010, 27, 996–1047. [Google Scholar] [CrossRef]
- Bennett, V.; Stenbuck, P.J. Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin. J. Biol. Chem. 1979, 254, 2533–2541. [Google Scholar] [CrossRef]
- Van Dolah, F.M.; Zippay, M.L.; Pezzolesi, L.; Rein, K.S.; Johnson, J.G.; Morey, J.S.; Wang, Z.; Pistocchi, R. Subcellular localization of dinoflagellate polyketide synthases and fatty acid synthase activity. J. Phycol. 2013, 49, 1118–1127. [Google Scholar] [CrossRef]
- Verwoert, I.I.; Verbree, E.C.; van der Linden, K.H.; Nijkamp, H.J.; Stuitje, A.R. Cloning, nucleotide sequence, and expression of the Escherichia coli fabD gene, encoding malonyl coenzyme A-acyl carrier protein transacylase. J. Bacteriol. 1992, 174, 2851–2857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, S.; Flø Jørgensen, M.; Daugbjerg, N.; Rhodes, L. Amphidinium Revisited. Ii. Resolving Species Boundaries in the Amphidinium operculatum Species Complex (Dinophyceae), Including the Descriptions of Amphidinium trulla Sp. Nov. and Amphidinium gibbosum. COMB. NOV.1. J. Phycol. 2004, 40, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Houdai, T.; Matsuoka, S.; Matsumori, N.; Murata, M. Membrane-permeabilizing activities of amphidinol 3, polyene-polyhydroxy antifungal from a marine dinoflagellate. Biochim. Biophys. Acta 2004, 1667, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Smith, S. The animal fatty acid synthase: One gene, one polypeptide, seven enzymes. FASEB J. 1994, 8, 1248–1259. [Google Scholar]
- Kobayashi, J.; Kubota, T. Bioactive Macrolides and Polyketides from Marine Dinoflagellates of the Genus Amphidinium. J. Nat. Prod. 2007, 70, 451–460. [Google Scholar] [CrossRef]
- Williams, E.; Bachvaroff, T.; Place, A. A Comparison of Dinoflagellate Thiolation Domain Binding Proteins Using In Vitro and Molecular Methods. Mar. Drugs 2022, 20, 581. [Google Scholar] [CrossRef]
- Kohli, G.S.; John, U.; Van Dolah, F.M.; Murray, S.A. Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes. ISME J. 2016, 10, 1877–1890. [Google Scholar] [CrossRef] [Green Version]
- Williams, E.P.; Bachvaroff, T.R.; Place, A.R. A Global Approach to Estimating the Abundance and Duplication of Polyketide Synthase Domains in Dinoflagellates. Evol. Bioinform. Online 2021, 17, 11769343211031871. [Google Scholar] [CrossRef] [PubMed]
- Haq, S.; Bachvaroff, T.R.; Place, A.R. Characterization of Acetyl-CoA Carboxylases in the Basal Dinoflagellate Amphidinium carterae. Mar. Drugs 2017, 15, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, G.D.; Williams, E.P.; Place, A.R.; Jagus, R.; Bachvaroff, T.R. The alveolate translation initiation factor 4E family reveals a custom toolkit for translational control in core dinoflagellates. BMC Evol. Biol. 2015, 15, 14. [Google Scholar] [CrossRef] [Green Version]
- Williams, E.P.; Jagus, R.; Place, A.R. Discovery of non-coding RNAs in Amphidinium carterae differentially expressed over a diel cycle. In Proceedings of the 16 International Conference on Harmful Algae, Wellington City, New Zealand, 27–31 October 2015; pp. 233–237. [Google Scholar]
- Anderson, D.M. Toxic algal blooms and red tides: A global perspective in Okaichi. In Red Tides: Biology, Environmental Science, and Toxicology; Anderson, D.M., Nemoto, T., Eds.; Elsevier Science Publishing Co., Inc.: Amsterdam, The Netherlands, 1989; pp. 11–16. [Google Scholar]
- Van Dolah, F.M.; Kohli, G.S.; Morey, J.S.; Murray, S.A. Both modular and single-domain Type I polyketide synthases are expressed in the brevetoxin-producing dinoflagellate, Karenia brevis (Dinophyceae). J. Phycol. 2017, 53, 1325–1339. [Google Scholar] [CrossRef] [Green Version]
- Omura, S. The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol. Rev. 1976, 40, 681–697. [Google Scholar] [CrossRef]
- Wang, L.H.; Lee, H.H.; Fang, L.S.; Mayfield, A.B.; Chen, C.S. Fatty acid and phospholipid syntheses are prerequisites for the cell cycle of Symbiodinium and their endosymbiosis within sea anemones. PLoS ONE 2013, 8, e72486. [Google Scholar] [CrossRef] [Green Version]
- Gautier, A.; Michel-Salamin, L.; Tosi-Couture, E.; McDowall, A.W.; Dubochet, J. Electron microscopy of the chromosomes of dinoflagellates in situ: Confirmation of Bouligand’s liquid crystal hypothesis. J. Ultrastruct. Mol. Struct. Res. 1986, 97, 10–30. [Google Scholar] [CrossRef]
- Kobayashi, J. Amphidinolides and its related macrolides from marine dinoflagellates. J. Antibiot. 2008, 61, 271–284. [Google Scholar] [CrossRef] [Green Version]
- Mansour, M.P.; Volkman, J.K.; Jackson, A.E.; Blackburn, S.I. The Fatty Acid and Sterol Composition of Five Marine Dinoflagellates. J. Phycol. 1999, 35, 710–720. [Google Scholar] [CrossRef]
- Yazawa, K. Production of eicosapentaenoic acid from marine bacteria. Lipids 1996, 31 Pt 2, S297–S300. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, E.J.N.; Ueoka, R.; Dolev, A.; Rust, M.; Meoded, R.A.; Bhushan, A.; Califano, G.; Costa, R.; Gugger, M.; Steinbeck, C.; et al. Automated structure prediction of trans-acyltransferase polyketide synthase products. Nat. Chem. Biol. 2019, 15, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Koryakina, I.; McArthur, J.; Randall, S.; Draelos, M.M.; Musiol, E.M.; Muddiman, D.C.; Weber, T.; Williams, G.J. Poly specific trans-acyltransferase machinery revealed via engineered acyl-CoA synthetases. ACS Chem. Biol. 2013, 8, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Vander Wood, D.A.; Keatinge-Clay, A.T. The modules of trans-acyltransferase assembly lines redefined with a central acyl carrier protein. Proteins 2018, 86, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Berges, J.A.; Franklin, D.J.; Harrison, P.J. Evolution of an artificial seawater medium: Improvements in enriched seawater, artificial water over the last two decades (Vol. 37: 1138–1145). J Phycol. 2004, 40, 619. [Google Scholar]
- Adolf, J.E.; Place, A.R.; Stoecker, D.K.; Harding, L.W. Modulation of polyunsaturated fatty acids in mixotrophic Karlodinium veneficum (Dinophyceae) and its prey, Storeatula major (Cryptophyceae)1. J. Phycol. 2007, 43, 1259–1270. [Google Scholar] [CrossRef]
- Niedermeyer, T.H.; Strohalm, M. mMass as a software tool for the annotation of cyclic peptide tandem mass spectra. PLoS ONE 2012, 7, e44913. [Google Scholar] [CrossRef] [Green Version]
Species | Time Point (h) | Cerulenin (+/−) | % In Lipids | % In Sulpho-amphidinol | % In Amphidinol |
---|---|---|---|---|---|
A. carterae | 0 | + | 0.110 | 0.020 | 0.0003 |
A. carterae | 1 | + | 0.524 | 0.038 | 0.0005 |
A. carterae | 2 | + | 0.058 | 0.002 | 0.0008 |
A. carterae | 0 | − | 0.352 | 0.097 | 0.0004 |
A. carterae | 1 | − | 0.702 | 0.014 | 0.0020 |
A. carterae | 2 | − | 1.351 | 0.058 | 0.0035 |
A. sanguinea | 0 | + | 0.002 | --- | --- |
A. sanguinea | 1 | + | 0.198 | --- | --- |
A. sanguinea | 2 | + | 0.325 | --- | --- |
A. sanguinea | 0 | − | 0.230 | --- | --- |
A. sanguinea | 1 | − | 0.442 | --- | --- |
A. sanguinea | 2 | − | 0.691 | --- | --- |
Primary Antibody | Peptide Sequence | Dilution | Secondary Antibody | Dilution |
---|---|---|---|---|
A. carterae KS1 | CSFPGNAGGAQRY | 1:2000 | Goat Anti-rabbit IgG-HRP Conjugate (Bio-Rad) | 1:2500 |
A. carterae KR2 | SRSGKVQPGFGLEGC | 1:2000 | Goat Anti-rabbit IgG-HRP Conjugate (Bio-Rad) | 1:2500 |
A. carterae TE | KEVPVRQVPGGHFGC | 1:2000 | Goat Anti-rabbit IgG-HRP Conjugate (Bio-Rad) | 1:2500 |
Primer Name | Forward Primer Sequence | Reverse Primer Sequence |
---|---|---|
A. carterae LSU | GGCGATGAGGGATGAACCTA | ACCACCGTCCTGCTGTCAGT |
A. carterae ITS | ATGGCGAATGAAAGGAGATG | AGGGATGACAGATGCCAGAC |
A. carterae Triple KS (beginning) | GACTTCATTTGGTCGCAGGT | TCAGCCAAGTCGTTTGTGGAG |
A. carterae Triple KS (end) | ACAGGCCTTGTTGACAGCTT | ACGTCGCACAGCTTTTTCTT |
Sample Name | Peptide (µg) | 50 mM Ammonium Bicarbonate pH 8 (µg) | Adduct Compound (µg) |
---|---|---|---|
Peptide Alone | 50 | 50 | 50 |
Peptide + Iodoacetamide (IAA) | 50 | 50 | 50 |
Peptide + Cerulenin | 50 | 50 | 50 |
Peptide + Short Cerulenin | 50 | 50 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haq, S.; Oyler, B.L.; Williams, E.; Khan, M.M.; Goodlett, D.R.; Bachvaroff, T.; Place, A.R. Investigating A Multi-Domain Polyketide Synthase in Amphidinium carterae. Mar. Drugs 2023, 21, 425. https://doi.org/10.3390/md21080425
Haq S, Oyler BL, Williams E, Khan MM, Goodlett DR, Bachvaroff T, Place AR. Investigating A Multi-Domain Polyketide Synthase in Amphidinium carterae. Marine Drugs. 2023; 21(8):425. https://doi.org/10.3390/md21080425
Chicago/Turabian StyleHaq, Saddef, Benjamin L. Oyler, Ernest Williams, Mohd M. Khan, David R. Goodlett, Tsvetan Bachvaroff, and Allen R. Place. 2023. "Investigating A Multi-Domain Polyketide Synthase in Amphidinium carterae" Marine Drugs 21, no. 8: 425. https://doi.org/10.3390/md21080425
APA StyleHaq, S., Oyler, B. L., Williams, E., Khan, M. M., Goodlett, D. R., Bachvaroff, T., & Place, A. R. (2023). Investigating A Multi-Domain Polyketide Synthase in Amphidinium carterae. Marine Drugs, 21(8), 425. https://doi.org/10.3390/md21080425