Design, Synthesis, and Biological Evaluation of Marine Lissodendrins B Analogues as Modulators of ABCB1-Mediated Multidrug Resistance
Abstract
:1. Introduction
2. Results
2.1. Biological Evaluation
2.1.1. Biological Investigation and Structure–Activity Relationship Study
2.1.2. Compounds D1, D2, and D4 Have a Synergic Effect in Combination with DOX
2.1.3. Molecular Docking of D1 with ABCB1
2.1.4. Compound D1 Increases the Intracellular Accumulation of DOX in K562/ADR and MCF-7/ADR Cells
2.1.5. Compound D1 increases the Intracellular Accumulation of ABCB1 Substrate Rho123 in K562/ADR and MCF-7/ADR Cells
2.1.6. ABCB1 Is Involved in Compound D1-Mediated MDR Reversal
2.1.7. Compound D1 Did Not Have an Obvious Effect on the Expression Levels of ABCB1
2.2. Discussion
3. Materials and Methods
3.1. Chemical Design and Synthesis Materials
3.2. Biological Evaluation
3.2.1. Cell Culture and Reagents
3.2.2. Detection of Cell Proliferation
3.2.3. Calculation of Combined Drug Synergistic Effects
3.2.4. Intracellular DOX Accumulation Assay
3.2.5. Intracellular Rhodamine 123 (Rho123) Accumulation Assay
3.2.6. ABCB1 mRNA Level and RT-PCR
3.2.7. Western Blotting Assay
3.2.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fletcher, J.I.; Haber, M.; Henderson, M.J.; Norris, M.D. ABC transporters in cancer: More than just drug efflux pumps. Nat. Rev. Cancer 2010, 10, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Ma, L.-Y.; Wang, J.-Q.; Lei, Z.-N.; Gupta, P.-Y.; Zhao, D.; Li, Z.-H.; Liu, Y.; Zhang, X.-H.; Li, Y.-N.; et al. Discovery of 5-cyano-6-phenylpyrimidin derivatives containing an acylurea moiety as orally bioavailable reversal agents against P-glycoprotein-mediated mutidrug resistance. J. Med. Chem. 2018, 61, 5988–6001. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Qin, Z.; Zhang, W.-D.; Cheng, G.; Yehuda, A.G.; Ashby, C.R.; Chen, Z.-S.; Cheng, X.-D.; Qin, J.-J. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist. Updates 2020, 49, 100681. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Pan, T.; Jiang, Y.; Zhang, Z.; Zeng, M.; Sun, S.; Li, Z.; Wu, Y.; Qiu, J.; Niu, M.; et al. Design and evaluation of dibenzoazepine-tetrahydroisoquinoline hybrids as potential P-glycoprotein inhibitors against multidrug resistant K562/A02 cells. Eur. J. Med. Chem. 2023, 249, 115150. [Google Scholar] [CrossRef] [PubMed]
- Faneyte, I.F.; Kristel, P.M.P.; Maliepaard, M.; Scheffer, G.L.; Scheper, R.J.; Schellens, J.H.M.; Vijver, M.J. Expression of the breast cancer resistance protein in breast cancer. Clin. Can. Res. 2002, 8, 1068–1074. [Google Scholar]
- Yuan, J.; Wong, I.L.; Jiang, T.; Wang, S.-W.; Liu, T.; Wen, B.-J.; Chow, L.M.; Wan, S.-B. Synthesis of methylated quercetin derivatives and their reversal activities on P-gp- and BCRP-mediated multidrug resistance tumour cells. Eur. J. Med. Chem. 2012, 54, 413–422. [Google Scholar] [CrossRef]
- Zhang, P.-Y.; Wong, I.L.; Yan, C.-S.; Zhang, X.-Y.; Jiang, T.; Chow, L.M.; Wan, S.-B. Design and syntheses of permethyl ningalin B analogues: Potent multidrug resistance (MDR) reversal agents of cancer cells. J. Med. Chem. 2010, 53, 5108–5120. [Google Scholar] [CrossRef]
- Yang, C.; Wong, I.L.; Peng, K.; Liu, Z.; Wang, P.; Jiang, T.; Chow, L.M.; Wan, S.-B. Extending the structure-activity relationship study of marine natural ningalin B analogues as P-glycoprotein inhibitors. Eur. J. Med. Chem. 2017, 125, 795–806. [Google Scholar] [CrossRef]
- Gao, L.; Liu, Q.; Ren, S.; Wan, S.; Jiang, T.; Wong, I.L.K.; Chow, L.M.C.; Wang, S. Synthesis of a novel series of (E,E)-4,6-bis(styryl)-2-O-glucopyranosyl-pyrimidines and their potent multidrug resistance (MDR) reversal activity against cancer cells. J. Carbohydr. Chem. 2012, 31, 620–633. [Google Scholar] [CrossRef]
- Copp, B.R.; Fairchild, C.R.; Cornell, L.; Casazza, A.M.; Robinson, S.; Ireland, C.M. Naamidine A is an antagonist of the epidermal growth factor receptor and an in vivo active antitumor agent. J. Med. Chem. 1998, 41, 3909–3911. [Google Scholar] [CrossRef]
- Higgins, C.F.; Gottesman, M.M. Is the multidrug transporter a flippase? Trends Biochem. Sci. 1992, 17, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Gong, K.-K.; Tang, X.-L.; Liu, Y.-S.; Li, P.-L.; Li, G.-Q. Imidazole alkaloids from the south china sea sponge pericharax heteroraphis and their cytotoxic and antiviral activities. Molecules 2016, 21, 150. [Google Scholar] [CrossRef] [PubMed]
- Me’lanie, R.; Isabelle, D.C.; Alexander, E.; Chakib, D.; Thierry, P.; Marie-Lise, B.-K. Cellular localization of clathridimine, an antimicrobial 2-aminoimidazole alkaloid produced by the mediterranean calcareous sponge clathrina clathrus. J. Nat. Prod. 2010, 73, 1277–1282. [Google Scholar]
- Hassan, W.; Edrada, R.A.; Ebel, R.; Wray, V.; Proksch, P. New imidazole alkaloids from the indonesian sponge leucetta chagosensis. J. Nat. Prod. 2004, 67, 817–822. [Google Scholar] [CrossRef]
- Li, G.; Guo, J.; Wang, Z.; Liu, Y.; Song, H.; Wang, Q. Marine natural products for drug discovery: First discovery of kealiinines A-C and their derivatives as novel antiviral and antiphytopathogenic fungus agents. J. Agric. Food Chem. 2018, 66, 7310–7318. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, Z.; Wong, I.L.; Wan, S.; Chow, L.M.; Jiang, T. 4,5-Di-substituted benzyl-imidazol-2-substituted amines as the structure template for the design and synthesis of reversal agents against P-gp-mediated multidrug resistance breast cancer cells. Eur. J. Med. Chem. 2014, 83, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.W.; Mong, S.; Hemling, M.E.; Freyer, A.J.; Westley, J.W. New leukotriene B4 receptor antagonist: Leucettamine A and related imidazole alkaloids from the marine sponge Leucetta microraphis. J. Nat. Prod. 1993, 56, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Mokhlesi, A.; Hartmann, R.; Achten, E.; Chaidir; Hartmann, T.; Lin, W.; Daletos, G.; Proksch, P. Lissodendrins A and B: 2-aminoimidazole alkaloids from the marine sponge lissodendoryx (acanthodoryx) fibrosa. Eur. J. Org. Chem. 2016, 2016, 639–643. [Google Scholar] [CrossRef]
- Wei, X.; Hu, X.; Yu, R.; Wan, S.; Jiang, T. Efficient total synthesis of lissodendrin B, 2-aminoimidazole marine alkaloids isolated from lissodendoryx (acanthodoryx) fibrosa. Mar. Drugs 2019, 18, 36. [Google Scholar] [CrossRef]
- Newman, M.J.; Rodarte, J.C.; Benbatoul, K.D.; Romano, S.J.; Zhang, C.; Krane, S.; Moran, E.J.; Uyeda, R.T.; Dixon, R.; Guns, E.S.; et al. Discovery and characterization of OC144-093, a novel inhibitor of P-glycoproteinmediated multidrug resistance. Cancer Res. 2000, 60, 2964–2972. [Google Scholar]
- Kathawala, R.J.; Gupta, P.; Ashby, C.R.; Chen, Z.-S. The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist. Updates 2015, 18, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yang, X.; Li, Y.; Cai, Y.; Yu, Y.; Zhuang, W.; Sun, X.; Li, Q.; Bao, X.; Ye, X.; et al. Design, synthesis and biological evaluation of novel phenylfuran-bisamide derivatives as P-glycoprotein inhibitors against multidrug resistance in MCF-7/ADR cell. Eur. J. Med. Chem. 2023, 248, 115092. [Google Scholar] [CrossRef]
- Qadir, M.; O’ Loughlin, K.L.; Fricke, S.M.; Williamson, N.A.; Greco, W.R.; Baer, H.; Minderman, M.R. Cyclosporin A is a broad-spectrum multidrug resistance modulator. Clin. Cancer Res. 2005, 11, 2320–2326. [Google Scholar] [CrossRef] [PubMed]
- Kairuki, M.; Qiu, Q.; Pan, M.; Li, Q.; Zhou, J.; Ghaleb, H.; Huang, W.; Qian, H.; Jiang, C. Designed P-glycoprotein inhibitors with triazol-tetrahydroisoquinoline-core increase doxorubicin-induced mortality in multidrug resistant K562/A02 cells. Bioorg. Med. Chem. 2019, 27, 3347–3357. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Prasad, N.R.; Chufan, E.E.; Patel, B.A.; Wang, Y.J.; Chen, Z.S.; Ambudkar, S.V.; Talele, T.T. Design and synthesis of human ABCB1 (P-glycoprotein) inhibitors by peptide coupling of diverse chemical scaffolds on carboxyl and amino termini of (S)-valine-derived thiazole amino acid. J. Med. Chem. 2014, 57, 4058–4072. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, D.; Ye, J.; Wei, X.; Pei, Y.; Li, X.; Si, G.; Chen, X.-Y.; Chen, Z.-S.; Dong, Y.; et al. Discovery of potent inhibitors against P-glycoprotein-mediated multidrug resistance aided by late-Stage functionalization of a 2-(4-(pyridin-2-yl)phenoxy)pyridine analogue. J. Med. Chem. 2020, 63, 5458–5476. [Google Scholar] [CrossRef]
- Waghray, D.; Zhang, Q. Inhibit or evade multidrug resistance P-glycoprotein in cancer treatment. J. Med. Chem. 2018, 61, 5108–5121. [Google Scholar] [CrossRef]
- Wang, H.; Liang, Y.; Yin, Y.; Zhang, J.; Su, W.; White, A.M.; Bin, J.; Xu, J.; Zhang, Y.; Stewart, S.; et al. Carbon nano-onion-mediated dual targeting of P-selectin and P-glycoprotein to overcome cancer drug resistance. Nat. Commun. 2021, 12, 312. [Google Scholar] [CrossRef]
- Qiu, Q.; Zhou, J.; Shi, W.; Kairuki, M.; Huang, W.; Qian, H. Design, synthesis and biological evaluation of N-(4-(2-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)phenyl)-4-oxo-3,4-dihydrophthalazine-1-carboxamide derivatives as novel P-glycoprotein inhibitors reversing multidrug resistance. Bioorg. Chem. 2019, 86, 166–175. [Google Scholar] [CrossRef]
- Braconi, L.; Bartolucci, G.; Contino, M.; Chiaramonte, N.; Giampietro, R.; Manetti, D.; Perrone, M.G.; Romanelli, M.N.; Colabufo, N.A.; Riganti, C.; et al. 6,7-Dimethoxy-2-phenethyl-1,2,3,4-tetrahydroisoquinoline amides and corresponding ester isosteres as multidrug resistance reversers. J. Enzyme. Inhib. Med. Chem. 2020, 35, 974–992. [Google Scholar] [CrossRef]
- Liu, X.; Wei, X.; Li, X.; Yu, R.; Jiang, T.; Zhao, C. Design, synthesis, and bioactivity study on Lissodendrins B derivatives as PARP1 inhibitor. Bioorg. Med. Chem. 2022, 69, 116892. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Kung, R.; Kowal, J.; McLeod, R.A.; Tremp, N.; Broude, E.V.; Roninson, I.B.; Stahlberg, H.; Locher, K.P. Structure of a zosuquidar and UIC2-bound human-mouse chimeric ABCB1. Proc. Natl. Acad. Sci. USA 2018, 115, 1973–1982. [Google Scholar] [CrossRef] [PubMed]
- Shawky, A.M.; Abdalla, A.N.; Ibrahim, N.A.; Abourehab, M.A.S.; Gouda, A.M. Discovery of new pyrimidopyrrolizine/indolizine-based derivatives as P-glycoprotein inhibitors: Design, synthesis, cytotoxicity, and MDR reversal activities. Eur. J. Med. Chem. 2021, 218, 113403. [Google Scholar] [CrossRef] [PubMed]
- Videira, M.; Reis, R.L.; Brito, M.A. Deconstructing breast cancer cell biology and the mechanisms of multidrug resistance. Biochim. Biophys. Acta Rev. Cancer 2014, 1846, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Lu, X.; Zhang, J.; Zhao, X.; Zhang, W.; Lin, X. Teratogenic jervine increases the activity of doxorubicin in MCF-7/ADR cells by inhibiting ABCB1. Biomed. Pharmacother. 2019, 117, 109059. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, W.; Zhang, W.; Zhou, X.; Li, M.; Miao, J. Prenylflavonoid isoxanthohumol sensitizes MCF-7/ADR cells to doxorubicin cytotoxicity via acting as a substrate of ABCB1. Toxins 2017, 9, 208. [Google Scholar] [CrossRef]
- Liu, F.; Hoag, H.; Wu, C.; Liu, H.; Yin, H.; Dong, J.; Qian, Z.; Miao, F.; Liu, M.; Miao, J. Experimental and simulation identification of xanthohumol as an inhibitor and substrate of ABCB1. Appl. Sci. 2018, 8, 681. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.; Xu, M.; Chen, L.K.; Zhang, X.; To, K.K.; Zhao, H.; Wang, F.; Xia, Z.; Chen, X.; et al. Osimertinib (AZD9291) enhanced the efficacy of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro, in vivo and ex vivo. Mol. Cancer Ther. 2016, 15, 1845–1858. [Google Scholar] [CrossRef]
- Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 2006, 5, 219–234. [Google Scholar] [CrossRef]
- Chou, T.C. Drug combination studies and their synergy quantification using the chou-talalay method. Cancer Res. 2010, 70, 440. [Google Scholar] [CrossRef]
Compounds (10 μM) | IC50 (DOX, µM) | RF | IC50 (DOX, µM) | RF |
---|---|---|---|---|
K562/ADR | MCF-7/ADR | |||
DOX | 14.48 ± 1.37 | 19.75 ± 1.96 | ||
A1 | 1.37 ± 0.01 | 10.60 | 1.57 ± 0.01 | 12.61 |
A2 | 2.69 ± 0.21 | 5.39 | 2.56 ± 0.05 | 7.71 |
A3 | 2.08 ± 0.08 | 6.97 | 5.70 ± 0.00 | 3.46 |
B1 | 0.67 ± 0.05 | 21.73 | 1.10 ± 0.04 | 17.90 |
B2 | 0.96 ± 0.15 | 15.10 | 1.73 ± 0.03 | 11.44 |
B3 | 3.83 ± 0.02 | 3.78 | 4.77 ± 0.02 | 4.14 |
C1 | 0.56 ± 0.01 | 26.04 | 2.54 ± 0.21 | 7.77 |
C2 | 0.21 ± 0.00 | 68.95 | 1.05 ± 0.04 | 18.86 |
C3 | 1.86 ± 0.39 | 7.77 | 6.81 ± 0.15 | 2.90 |
D1 | 0.0078 ± 0.00 | 1845.76 | 0.10 ± 0.03 | 207.86 |
D2 | 0.18 ± 0.01 | 80.00 | 0.49 ± 0.06 | 40.63 |
D3 | 0.91 ± 0.03 | 15.89 | 4.05 ± 0.00 | 4.87 |
D4 | 0.0088 ± 0.00 | 1645.45 | 0.15 ± 0.00 | 131.67 |
E1 | 1.52 ± 0.04 | 9.56 | 4.92 ± 0.02 | 4.02 |
E2 | 1.01 ± 0.00 | 14.30 | 3.32 ± 0.04 | 5.95 |
E3 | 1.65 ± 0.03 | 8.80 | 3.56 ± 0.02 | 5.55 |
E4 | 6.70 ± 0.00 | 2.16 | 6.75 ± 0.10 | 2.93 |
E5 | 1.92 ± 0.03 | 7.54 | 3.71 ± 0.03 | 5.33 |
E6 | 1.69 ± 0.02 | 8.59 | 3.54 ± 0.05 | 5.58 |
Lissodendrin B | 17.23 ± 0.80 | 0.84 | 15.57 ± 0.01 | 1.27 |
Compounds | Concentration (μM) | IC50 (DOX) | RF | IC50 (DOX) | RF |
---|---|---|---|---|---|
K562/ADR | MCF-7/ADR | ||||
DOX | 14.54 ± 0.97 | 20.20 ± 1.31 | |||
D1 | 2.50 | 0.35 ± 0.01 | 41.54 | 3.54 ± 0.12 | 15.71 |
1.25 | 2.70 ± 0.01 | 5.39 | 5.12 ± 0.14 | 3.95 | |
0.63 | 8.13 ± 0.05 | 1.79 | 6.49 ± 0.07 | 3.11 | |
D2 | 5.00 | 1.23 ± 0.01 | 11.87 | 1.73 ± 0.20 | 11.66 |
2.50 | 2.18 ± 0.00 | 6.67 | 2.91 ± 0.05 | 6.94 | |
1.25 | 4.28 ± 0.01 | 3.40 | 4.21 ± 0.04 | 4.80 | |
D4 | 2.50 | 0.48 ± 0.00 | 30.45 | 2.61 ± 0.28 | 7.73 |
1.25 | 5.91 ± 0.23 | 2.46 | 10.59 ± 0.15 | 1.91 | |
0.63 | 13.52 ± 0.50 | 1.08 | 11.05 ± 0.18 | 1.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zhang, J.; Wei, X.; Yang, M.; Ma, W.; Yu, R.; Liu, M.; Jiang, T. Design, Synthesis, and Biological Evaluation of Marine Lissodendrins B Analogues as Modulators of ABCB1-Mediated Multidrug Resistance. Mar. Drugs 2023, 21, 314. https://doi.org/10.3390/md21050314
Wang C, Zhang J, Wei X, Yang M, Ma W, Yu R, Liu M, Jiang T. Design, Synthesis, and Biological Evaluation of Marine Lissodendrins B Analogues as Modulators of ABCB1-Mediated Multidrug Resistance. Marine Drugs. 2023; 21(5):314. https://doi.org/10.3390/md21050314
Chicago/Turabian StyleWang, Chaoming, Jinman Zhang, Xianfeng Wei, Mengke Yang, Weiping Ma, Rilei Yu, Ming Liu, and Tao Jiang. 2023. "Design, Synthesis, and Biological Evaluation of Marine Lissodendrins B Analogues as Modulators of ABCB1-Mediated Multidrug Resistance" Marine Drugs 21, no. 5: 314. https://doi.org/10.3390/md21050314
APA StyleWang, C., Zhang, J., Wei, X., Yang, M., Ma, W., Yu, R., Liu, M., & Jiang, T. (2023). Design, Synthesis, and Biological Evaluation of Marine Lissodendrins B Analogues as Modulators of ABCB1-Mediated Multidrug Resistance. Marine Drugs, 21(5), 314. https://doi.org/10.3390/md21050314