Comparative Genomic Analysis of Cold-Water Coral-Derived Sulfitobacter faviae: Insights into Their Habitat Adaptation and Metabolism
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Taxonomic Status of Sulfitobacter faviae Strains SCSIO W1865 and SCSIO W1866
2.2. Genome Features and Annotations of Sulfitobacter faviae Strains SCSIO W1865 and SCSIO W1866
2.3. Prediction of Mobile Genetic Elements (MGEs)
2.3.1. Plasmids
2.3.2. Prophages
2.3.3. Genomic Islands (GIs)
2.4. Antiphage Systems
2.4.1. Toxin-Antitoxin Systems
2.4.2. Other Antiphage Systems
2.5. Proposed Metabolism Pathways
2.5.1. Secondary Metabolite Biosynthetic Gene Clusters
2.5.2. Sulfite Oxidation and DMSP Degradation Pathways
3. Experimental Procedures
3.1. Isolation of SCSIO W1865 and SCSIO W1866
3.2. DNA Extraction, Genome Sequencing, Assembly and Annotation
3.3. Comparative Genomic Analysis
3.4. Phylogenetic Tree Construction
3.5. FastANI and Pacbio Genome Assembly of Sulfitobacter faivae S5-53T
3.6. Prediction of Metabolism
3.7. Prediction of MGEs
3.8. Prediction of Antiphage Defense Systems
3.9. Data Availability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Park, S.; Kim, I.K.; Lee, J.S.; Yoon, J.H. Sulfitobacter sabulilitoris sp. nov., isolated from marine sand. Int. J. Syst. Evol. Microbiol. 2019, 69, 3230–3236. [Google Scholar] [CrossRef] [PubMed]
- Sorokin, D.Y. Sulfitobacter pontiacus gen. nov., sp. nov.—A new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Microbiology 1995, 64, 295–305. [Google Scholar]
- Song, J.; Jang, H.J.; Joung, Y.; Kang, I.; Cho, J.C. Sulfitobacter profundi sp. nov., isolated from deep seawater. J. Microbiol. 2019, 57, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Labrenz, M.; Tindall, B.J.; Lawson, P.A.; Collins, M.D.; Schumann, P.; Hirsch, P. Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., alpha-3-Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. Int. J. Syst. Evol. Microbiol. 2000, 50 Pt 1, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Curson, A.R.J.; Rogers, R.; Todd, J.D.; Brearley, C.A.; Johnston, A.W.B. Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine alpha-proteobacteria and Rhodobacter sphaeroides. Environ. Microbiol. 2008, 10, 1099. [Google Scholar] [CrossRef]
- Kumari, P.; Bhattacharjee, S.; Poddar, A.; Das, S.K. Sulfitobacter faviae sp. nov., isolated from the coral Favia veroni. Int. J. Syst. Evol. Microbiol. 2016, 66, 3786–3792. [Google Scholar] [CrossRef]
- Jensen, S.; Hovland, M.; Lynch, M.D.J.; Bourne, D.G. Diversity of deep-water coral-associated bacteria and comparison across depth gradients. FEMS Microbiol. Ecol. 2019, 95, fiz091. [Google Scholar] [CrossRef]
- Yuyama, I.; Higuchi, T.; Takei, Y. Sulfur utilization of corals is enhanced by endosymbiotic algae. Biol. Open 2016, 5, 1299–1304. [Google Scholar] [CrossRef]
- Cavanaugh, C.M. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature 1983, 302, 58–61. [Google Scholar] [CrossRef]
- Curson, A.R.J.; Liu, J.; Martinez, A.B.; Green, R.T.; Chan, Y.H.; Carrion, O.; Williams, B.T.; Zhang, S.H.; Yang, G.P.; Page, P.C.B.; et al. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. Nat. Microbiol. 2017, 2, 17009. [Google Scholar] [CrossRef]
- Shaw, D.K.; Sekar, J.; Ramalingam, P.V. Recent insights into oceanic dimethylsulfoniopropionate biosynthesis and catabolism. Environ. Microbiol. 2022, 24, 2669–2700. [Google Scholar] [CrossRef]
- Teng, Z.J.; Wang, P.; Chen, X.L.; Guillonneau, R.; Li, C.Y.; Zou, S.B.; Gong, J.; Xu, K.W.; Han, L.; Wang, C.; et al. Acrylate protects a marine bacterium from grazing by a ciliate predator. Nat. Microbiol. 2021, 6, 1351–1356. [Google Scholar] [CrossRef]
- Haydon, T.D.; Seymour, J.R.; Suggett, D.J. Soft corals are significant DMSP producers in tropical and temperate reefs. Mar. Biol. 2018, 165, 109. [Google Scholar] [CrossRef]
- Deschaseaux, E.S.M.; Jones, G.B.; Deseo, M.A.; Shepherd, K.M.; Kiene, R.P.; Swan, H.B.; Harrison, P.L.; Eyre, B.D. Effects of environmental factors on dimethylated sulfur compounds and their potential role in the antioxidant system of the coral holobiont. Limnol. Oceanogr. 2014, 59, 758–768. [Google Scholar] [CrossRef]
- Downs, C.A.; McDougall, K.E.; Woodley, C.M.; Fauth, J.E.; Richmond, R.H.; Kushmaro, A.; Gibb, S.W.; Loya, Y.; Ostrander, G.K.; Kramarsky-Winter, E. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS ONE 2013, 8, e77173. [Google Scholar] [CrossRef]
- Frade, P.R.; Schwaninger, V.; Glasl, B.; Sintes, E.; Hill, R.W.; Simo, R.; Herndl, G.J. Dimethylsulfoniopropionate in corals and its interrelations with bacterial assemblages in coral surface mucus. Environ. Chem. 2016, 13, 252–265. [Google Scholar] [CrossRef]
- Barak-Gavish, N.; Dassa, B.; Kuhlisch, C.; Nussbaum, I.; Brandis, A.; Rosenberg, G.; Avraham, R.; Vardi, A. Bacterial lifestyle switch in response to algal metabolites. eLife 2023, 12, e84400. [Google Scholar] [CrossRef]
- Frost, L.S.; Leplae, R.; Summers, A.O.; Toussaint, A. Mobile genetic elements: The agents of open source evolution. Nat. Rev. Microbiol. 2005, 3, 722–732. [Google Scholar] [CrossRef]
- Vale, F.F.; Lehours, P.; Yamaoka, Y. Editorial: The role of mobile genetic elements in bacterial evolution and their adaptability. Front. Microbiol. 2022, 13, 849667. [Google Scholar] [CrossRef]
- Liu, X.; Tang, K.; Zhang, D.; Li, Y.; Liu, Z.; Yao, J.; Wood, T.K.; Wang, X. Symbiosis of a P2-family phage and deep-sea Shewanella putrefaciens. Environ. Microbiol. 2019, 21, 4212–4232. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, X.; Yao, J.; Guo, Y.; Li, B.; Li, Y.; Jiao, N.; Wang, X. Cold adaptation regulated by cryptic prophage excision in Shewanella oneidensis. ISME J. 2016, 10, 2787–2800. [Google Scholar] [CrossRef] [PubMed]
- Yusof, N.A.; Hashim, N.H.F.; Bharudin, I. Cold adaptation strategies and the potential of psychrophilic enzymes from the antarctic yeast, Glaciozyma antarctica PI12. J. Fungi 2021, 7, 528. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Tang, K.; Wang, P.; Zeng, Z.; Xu, T.; Zhan, W.; Liu, T.; Wang, Y.; Wang, X. The coral pathogen Vibrio coralliilyticus kills non-pathogenic holobiont competitors by triggering prophage induction. Nat. Ecol. Evol. 2022, 6, 1132–1144. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Wood, T.K. Cryptic prophages as targets for drug development. Drug Resist. Updates 2016, 27, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef]
- Hu, J.; Ye, H.; Wang, S.L.; Wang, J.J.; Han, D.D. Prophage activation in the intestine: Insights into functions and possible applications. Front. Microbiol. 2021, 12, 785634. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, Y.; Wang, W.; Lin, S.; Tang, K.; Liu, T.; Wood, T.K.; Wang, X. Mobile genetic elements used by competing coral microbial populations increase genomic plasticity. ISME J. 2022, 16, 2220–2229. [Google Scholar] [CrossRef]
- Bertelli, C.; Laird, M.R.; Williams, K.P.; Simon Fraser University Research Computing Group; Lau, B.Y.; Hoad, G.; Winsor, G.L.; Brinkman, F.S.L. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017, 45, W30–W35. [Google Scholar] [CrossRef]
- Hampton, H.G.; Watson, B.N.J.; Fineran, P.C. The arms race between bacteria and their phage foes. Nature 2020, 577, 327–336. [Google Scholar] [CrossRef]
- Tal, N.; Sorek, R. SnapShot: Bacterial immunity. Cell 2022, 185, 578–578.e1. [Google Scholar] [CrossRef]
- LeRoux, M.; Laub, M.T. Toxin-antitoxin systems as phage defense elements. Annu. Rev. Microbiol. 2022, 76, 21–43. [Google Scholar] [CrossRef]
- Zhang, T.; Tamman, H.; Coppieters ‘t Wallant, K.; Kurata, T.; LeRoux, M.; Srikant, S.; Brodiazhenko, T.; Cepauskas, A.; Talavera, A.; Martens, C.; et al. Direct activation of a bacterial innate immune system by a viral capsid protein. Nature 2022, 612, 132–140. [Google Scholar] [CrossRef]
- Keller-Costa, T.; Lago-Leston, A.; Saraiva, J.P.; Toscan, R.; Silva, S.G.; Goncalves, J.; Cox, C.J.; Kyrpides, N.; da Rocha, U.N.; Costa, R. Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals. Microbiome 2021, 9, 72. [Google Scholar] [CrossRef]
- Keller-Costa, T.; Kozma, L.; Silva, S.G.; Toscan, R.; Goncalves, J.; Lago-Leston, A.; Kyrpides, N.C.; da Rocha, U.N.; Costa, R. Metagenomics-resolved genomics provides novel insights into chitin turnover, metabolic specialization, and niche partitioning in the octocoral microbiome. Microbiome 2022, 10, 151. [Google Scholar] [CrossRef]
- Karimi, E.; Ramos, M.; Goncalves, J.M.S.; Xavier, J.R.; Reis, M.P.; Costa, R. Comparative metagenomics reveals the distinctive adaptive features of the Spongia officinalis endosymbiotic consortium. Front. Microbiol. 2017, 8, 2499. [Google Scholar] [CrossRef]
- Jurenas, D.; Fraikin, N.; Goormaghtigh, F.; Van Melderen, L. Biology and evolution of bacterial toxin-antitoxin systems. Nat. Rev. Microbiol. 2022, 20, 335–350. [Google Scholar] [CrossRef]
- Lin, J.; Guo, Y.; Yao, J.; Tang, K.; Wang, X. Applications of toxin-antitoxin systems in synthetic biology. Eng. Microbiol. 2023, 3, 100069. [Google Scholar] [CrossRef]
- Fraikin, N.; Goormaghtigh, F.; Van Melderen, L. Type II toxin-antitoxin systems: Evolution and revolutions. J. Bacteriol. 2020, 202, e00763-19. [Google Scholar] [CrossRef]
- Drouin, M.; Lucas, P.; Otis, C.; Lemieux, C.; Turmel, M. Biochemical characterization of I-CmoeI reveals that this H-N-H homing endonuclease shares functional similarities with H-N-H colicins. Nucleic Acids Res. 2000, 28, 4566–4572. [Google Scholar] [CrossRef]
- Schureck, M.A.; Repack, A.; Miles, S.J.; Marquez, J.; Dunham, C.M. Mechanism of endonuclease cleavage by the HigB toxin. Nucleic Acids Res. 2016, 44, 7944–7953. [Google Scholar] [CrossRef]
- Ramisetty, B.C.; Santhosh, R.S. Horizontal gene transfer of chromosomal type II toxin-antitoxin systems of Escherichia coli. FEMS Microbiol. Lett. 2016, 363, fnv23. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Sun, C.; Li, Y.; Tang, K.; Ni, S.; Wang, X. Antitoxin HigA inhibits virulence gene mvfR expression in Pseudomonas aeruginosa. Environ. Microbiol. 2019, 21, 2707–2723. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wood, T.K. Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl. Environ. Microbiol. 2011, 77, 5577–5583. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Guo, Y.; Wang, P.; Zeng, Z.; Li, B.; Tang, K.; Liu, X.; Wang, X. Type II toxin/antitoxin system ParESO /CopASO stabilizes prophage CP4So in Shewanella oneidensis. Environ. Microbiol. 2018, 20, 1224–1239. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, W.; Yao, J.; Wang, X.; Liu, D.; Wang, P. The HipAB toxin-antitoxin system stabilizes a composite genomic island in Shewanella putrefaciens CN-32. Front. Microbiol. 2022, 13, 858857. [Google Scholar] [CrossRef] [PubMed]
- Tesson, F.; Bernheim, A. Synergy and regulation of antiphage systems: Toward the existence of a bacterial immune system? Curr. Opin. Microbiol. 2023, 71, 102238. [Google Scholar] [CrossRef]
- Bobonis, J.; Mitosch, K.; Mateus, A.; Karcher, N.; Kritikos, G.; Selkrig, J.; Zietek, M.; Monzon, V.; Pfalz, B.; Garcia-Santamarina, S.; et al. Bacterial retrons encode phage-defending tripartite toxin-antitoxin systems. Nature 2022, 609, 144–150. [Google Scholar] [CrossRef]
- Millman, A.; Bernheim, A.; Stokar-Avihail, A.; Fedorenko, T.; Voichek, M.; Leavitt, A.; Oppenheimer-Shaanan, Y.; Sorek, R. Bacterial retrons function in anti-phage defense. Cell 2020, 183, 1551–1561.e12. [Google Scholar] [CrossRef]
- Tock, M.R.; Dryden, D.T. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 2005, 8, 466–472. [Google Scholar] [CrossRef]
- Rousset, F.; Depardieu, F.; Miele, S.; Dowding, J.; Laval, A.L.; Lieberman, E.; Garry, D.; Rocha, E.P.C.; Bernheim, A.; Bikard, D. Phages and their satellites encode hotspots of antiviral systems. Cell Host Microbe 2022, 30, 740–753.e5. [Google Scholar] [CrossRef]
- Hussain, F.A.; Dubert, J.; Elsherbini, J.; Murphy, M.; VanInsberghe, D.; Arevalo, P.; Kauffman, K.; Rodino-Janeiro, B.K.; Gavin, H.; Gomez, A.; et al. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 2021, 374, 488–492. [Google Scholar] [CrossRef]
- Modolon, F.; Barno, A.R.; Villela, H.D.M.; Peixoto, R.S. Ecological and biotechnological importance of secondary metabolites produced by coral-associated bacteria. J. Appl. Microbiol. 2020, 129, 1441–1457. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2016, 33, 382–431. [Google Scholar] [CrossRef]
- Rocha, J.; Peixe, L.; Gomes, N.C.M.; Calado, R. Cnidarians as a source of new marine bioactive compounds—An overview of the last decade and future steps for bioprospecting. Mar. Drugs 2011, 9, 1860–1886. [Google Scholar] [CrossRef]
- Bhanot, A.; Sharma, R.; Noolvi, M.N. Natural sources as potential anti-cancer agents: A review. Int. J. Phytomedicine 2011, 3, 9–26. [Google Scholar]
- Raimundo, I.; Silva, S.G.; Costa, R.; Keller-Costa, T. Bioactive secondary metabolites from octocoral—Associated microbes-new chances for blue growth. Mar. Drugs 2018, 16, 485. [Google Scholar] [CrossRef]
- Almeida, J.F.; Marques, M.; Oliveira, V.; Egas, C.; Mil-Homens, D.; Viana, R.; Cleary, D.F.R.; Huang, Y.M.; Fialho, A.M.; Teixeira, M.C.; et al. Marine sponge and octocoral-associated bacteria show versatile secondary metabolite biosynthesis potential and antimicrobial activities against human pathogens. Mar. Drugs 2022, 21, 34. [Google Scholar] [CrossRef]
- Stepniewska, Z.; Goraj, W.; Kuzniar, A.; Pytlak, A.; Ciepielski, J.; Fraczek, P. Biosynthesis of ectoine by the methanotrophic bacterial consortium Isolated from Bogdanka Coalmine (Poland). Appl. Biochem. Microbiol. 2014, 50, 594–600. [Google Scholar] [CrossRef]
- Nikolouli, K.; Mossialos, D. Bioactive compounds synthesized by non-ribosomal peptide synthetases and type-I polyketide synthases discovered through genome-mining and metagenomics. Biotechnol. Lett. 2012, 34, 1393–1403. [Google Scholar] [CrossRef]
- Tholl, D.; Rebholz, Z.; Morozov, A.V.; O’Maille, P.E. Terpene synthases and pathways in animals: Enzymology and structural evolution in the biosynthesis of volatile infochemicals. Nat. Prod. Rep. 2023, 40, 766–793. [Google Scholar] [CrossRef]
- Soucy, S.M.; Huang, J.; Gogarten, J.P. Horizontal gene transfer: Building the web of life. Nat. Rev. Genet. 2015, 16, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, H.; Ogawa, T.; Shiga, M.; Inoue, K. Inorganic sulfur oxidizing system in green sulfur bacteria. Photosynth. Res. 2010, 104, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Curson, A.R.J.; Williams, B.T.; Pinchbeck, B.J.; Sims, L.P.; Martinez, A.B.; Rivera, P.P.L.; Kumaresan, D.; Mercade, E.; Spurgin, L.G.; Carrion, O.; et al. DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nat. Microbiol. 2018, 3, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Wang, X.J.; Chen, X.L.; Sheng, Q.; Zhang, S.; Wang, P.; Quareshy, M.; Rihtman, B.; Shao, X.; Gao, C.; et al. A novel ATP dependent dimethylsulfoniopropionate lyase in bacteria that releases dimethyl sulfide and acryloyl-CoA. eLife 2021, 10, e64045. [Google Scholar] [CrossRef]
- Gage, D.A.; Rhodes, D.; Nolte, K.D.; Hicks, W.A.; Leustek, T.; Cooper, A.J.; Hanson, A.D. A new route for synthesis of dimethylsulphoniopropionate in marine algae. Nature 1997, 387, 891–894. [Google Scholar] [CrossRef] [PubMed]
- Kuek, F.W.I.; Motti, C.A.; Zhang, J.; Cooke, I.R.; Todd, J.D.; Miller, D.J.; Bourne, D.G.; Raina, J.-B. DMSP production by coral-associated bacteria. Front. Mar. Sci. 2022, 9, 869574. [Google Scholar] [CrossRef]
- Shao, X.; Cao, H.Y.; Zhao, F.; Peng, M.; Wang, P.; Li, C.Y.; Shi, W.L.; Wei, T.D.; Yuan, Z.; Zhang, X.H.; et al. Mechanistic insight into 3-methylmercaptopropionate metabolism and kinetical regulation of demethylation pathway in marine dimethylsulfoniopropionate-catabolizing bacteria. Mol. Microbiol. 2019, 111, 1057–1073. [Google Scholar] [CrossRef]
- Nie, Z.; Tang, K.; Wang, W.; Wang, P.; Guo, Y.; Wang, Y.; Kao, S.J.; Yin, J.; Wang, X. Comparative genomic insights into habitat adaptation of coral-associated Prosthecochloris. Front. Microbiol. 2023, 14, 1138751. [Google Scholar] [CrossRef]
- Jackman, S.D.; Vandervalk, B.P.; Mohamadi, H.; Chu, J.; Yeo, S.; Hammond, S.A.; Jahesh, G.; Khan, H.; Coombe, L.; Warren, R.L.; et al. ABySS 2.0: Resource-efficient assembly of large genomes using a Bloom filter. Genome Res. 2017, 27, 768–777. [Google Scholar] [CrossRef]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef]
- Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y.; et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 2012, 1, 18. [Google Scholar] [CrossRef]
- Besemer, J.; Borodovsky, M. GeneMark: Web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res. 2005, 33, W451–W454. [Google Scholar] [CrossRef]
- Pruitt, K.D.; Tatusova, T.; Maglott, D.R. NCBI reference sequences (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007, 35, D61–D65. [Google Scholar] [CrossRef]
- Consortium, U. UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef]
- Galperin, M.Y.; Makarova, K.S.; Wolf, Y.I.; Koonin, E.V. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2015, 43, D261–D269. [Google Scholar] [CrossRef]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE on-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef]
- Lagesen, K.; Hallin, P.; Rodland, E.A.; Staerfeldt, H.H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef]
- Huang, Y.; Niu, B.; Gao, Y.; Fu, L.; Li, W. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics 2010, 26, 680–682. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Phillippy, A.; Delcher, A.L.; Smoot, M.; Shumway, M.; Antonescu, C.; Salzberg, S.L. Versatile and open software for comparing large genomes. Genome Biol. 2004, 5, R12. [Google Scholar] [CrossRef] [PubMed]
- Hunt, M.; Silva, N.D.; Otto, T.D.; Parkhill, J.; Keane, J.A.; Harris, S.R. Circlator: Automated circularization of genome assemblies using long sequencing reads. Genome Biol. 2015, 16, 294. [Google Scholar] [CrossRef] [PubMed]
- Jain, C.; Rodriguez, R.L.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, gkad344. [Google Scholar] [CrossRef]
- Tang, K.; Wang, W.; Sun, Y.; Zhou, Y.; Wang, P.; Guo, Y.; Wang, X. Prophage Tracer: Precisely tracing prophages in prokaryotic genomes using overlapping split-read alignment. Nucleic Acids Res. 2021, 49, e128. [Google Scholar] [CrossRef]
- Tesson, F.; Herve, A.; Mordret, E.; Touchon, M.; d’Humieres, C.; Cury, J.; Bernheim, A. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat. Commun. 2022, 13, 2561. [Google Scholar] [CrossRef]
- Payne, L.J.; Todeschini, T.C.; Wu, Y.; Perry, B.J.; Ronson, C.W.; Fineran, P.C.; Nobrega, F.L.; Jackson, S.A. Identification and classification of antiviral defence systems in bacteria and archaea with PADLOC reveals new system types. Nucleic Acids Res. 2021, 49, 10868–10878. [Google Scholar] [CrossRef]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef]
- Xie, Y.; Wei, Y.; Shen, Y.; Li, X.; Zhou, H.; Tai, C.; Deng, Z.; Ou, H.Y. TADB 2.0: An updated database of bacterial type II toxin-antitoxin loci. Nucleic Acids Res. 2018, 46, D749–D753. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, Y. Not all predicted CRISPR-Cas systems are equal: Isolated cas genes and classes of CRISPR like elements. BMC Bioinform. 2017, 18, 92. [Google Scholar] [CrossRef]
- Voget, S.; Diaz Valerio, S.M.; von Hoyningen-Huene, A.J.; Nattramilarasu, P.K.; Vollheyde, K.; Xiao, S.; Daniel, R. Genome sequence of Jannaschia aquimarina GSW-M26, a member of the Roseobacter clade. Genome Announc. 2015, 3, e00353-15. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, C.; Wang, X.T.; Mu, D.S.; Du, Z.J. Jannaschia formosa sp. nov., isolated from marine saltern sediment. Int. J. Syst. Evol. Microbiol. 2019, 69, 2037–2042. [Google Scholar] [CrossRef]
- Park, S.; Chen, S.; Lee, J.S.; Kim, W.; Yoon, J.H. Description of Sulfitobacter sediminilitoris sp. nov., isolated from a tidal flat. FEMS Microbiol. Lett. 2020, 367, fnaa074. [Google Scholar] [CrossRef]
- Yang, Q.; Ge, Y.M.; Iqbal, N.M.; Yang, X.; Zhang, X.L. Sulfitobacter alexandrii sp. nov., a new microalgae growth-promoting bacterium with exopolysaccharides bioflocculanting potential isolated from marine phycosphere. Antonie Leeuwenhoek 2021, 114, 1091–1106. [Google Scholar] [CrossRef]
- Wang, C.N.; Liu, Y.; Wang, J.; Du, Z.J.; Wang, M.Y. Sulfitobacter algicola sp. nov., isolated from green algae. Arch. Microbiol. 2021, 203, 2351–2356. [Google Scholar] [CrossRef]
- Ivanova, E.P.; Gorshkova, N.M.; Sawabe, T.; Zhukova, N.V.; Hayashi, K.; Kurilenko, V.V.; Alexeeva, Y.; Buljan, V.; Nicolau, D.V.; Mikhailov, V.V.; et al. Sulfitobacter delicatus sp. nov. and Sulfitobacter dubius sp. nov., respectively from a starfish (Stellaster equestris) and sea grass (Zostera marina). Int. J. Syst. Evol. Microbiol. 2004, 54, 475–480. [Google Scholar] [CrossRef]
- Bartling, P.; Vollmers, J.; Petersen, J. The first world swimming championships of roseobacters—Phylogenomic insights into an exceptional motility phenotype. Syst. Appl. Microbiol. 2018, 41, 544–554. [Google Scholar] [CrossRef]
- Park, J.R.; Bae, J.W.; Nam, Y.D.; Chang, H.W.; Kwon, H.Y.; Quan, Z.X.; Park, Y.H. Sulfitobacter litoralis sp. nov., a marine bacterium isolated from the East Sea, Korea. Int. J. Syst. Evol. Microbiol. 2007, 57, 692–695. [Google Scholar] [CrossRef]
- Lian, F.B.; Li, Y.Q.; Zhang, J.; Jiang, S.; Du, Z.J. Sulfitobacter maritimus sp. nov., isolated from coastal sediment. Int. J. Syst. Evol. Microbiol. 2021, 71, 4659. [Google Scholar] [CrossRef] [PubMed]
- Sweet, M.; Villela, H.; Keller-Costa, T.; Costa, R.; Romano, S.; Bourne, D.G.; Cardenas, A.; Huggett, M.J.; Kerwin, A.H.; Kuek, F.; et al. Insights into the cultured bacterial fraction of corals. mSystems 2021, 6, e01249-20. [Google Scholar] [CrossRef] [PubMed]
- Kwak, M.J.; Lee, J.S.; Lee, K.C.; Kim, K.K.; Eom, M.K.; Kim, B.K.; Kim, J.F. Sulfitobacter geojensis sp. nov., Sulfitobacter noctilucae sp. nov., and Sulfitobacter noctilucicola sp. nov., isolated from coastal seawater. Int. J. Syst. Evol. Microbiol. 2014, 64, 3760–3767. [Google Scholar] [CrossRef] [PubMed]
- Mas-Llado, M.; Pina-Villalonga, J.M.; Brunet-Galmes, I.; Nogales, B.; Bosch, R. Draft genome sequences of two isolates of the Roseobacter group, Sulfitobacter sp. strains 3SOLIMAR09 and 1FIGIMAR09, from harbors of Mallorca Island (Mediterranean Sea). Genome Announc. 2014, 2, e00350-14. [Google Scholar] [CrossRef]
- Cantalapiedra, C.P.; Hernandez-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
Features | SCSIO W1865 | SCSIO W1866 | |||||||
---|---|---|---|---|---|---|---|---|---|
Chr. | Pla.1 | Pla. 2 | Pla. 3 | Pla. 4 | Chr. | Pla.1 | Pla. 2 | Pla. 3 | |
Topology | circular | circular | circular | circular | circular | circular | circular | circular | circular |
Assembly sizes (bp) | 3,242,317 | 287,790 | 209,188 | 182,751 | 103,482 | 3,148,875 | 210,697 | 146,560 | 100,908 |
G + C content (%) | 62.72 | 57.55 | 63.53 | 61.03 | 59.88 | 62.76 | 63.54 | 57.27 | 59.21 |
Protein coding genes | 3185 | 276 | 192 | 188 | 98 | 3122 | 195 | 152 | 116 |
tRNA genes | 49 | 0 | 0 | 0 | 0 | 49 | 0 | 0 | 0 |
rRNA genes | 12 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
Accession number | CP116423 | CP1164224 | CP116425 | CP116426 | CP116427 | CP116419 | CP116420 | CP116421 | CP116422 |
Name | Classification | Origin | Toxins | Start | Stop | Antitoxins | Start | Stop | Strand |
---|---|---|---|---|---|---|---|---|---|
TA systems | |||||||||
Doc/PhD | type II | Chr.W1865 | Doc | 2,486,830 | 2,487,207 | PhD | 2,486,585 | 2,486,833 | + |
Doc/PhD | type II | Chr.W1866 | Doc | 911,438 | 911,061 | PhD | 911,683 | 911,435 | − |
HipAB | type II | Pla.1 W1865 | HipA | 231,854 | 233,173 | HipB | 231,603 | 231,854 | + |
ParDE | type II | Pla.2 W1866 | ParE | 123,64 | 12,672 | ParD | 12,126 | 12,377 | + |
RelBE | type II | Pla.3 W1865 | RelE | 77,137 | 76,862 | RelB | 77,423 | 77,124 | − |
RelBE | type II | Pla.3 W1866 | RelE | 27,843 | 28,118 | RelB | 27,557 | 27,856 | + |
RelBE | type II | Pla.4 W1865 | RelE | 77,561 | 77,220 | RelB | 77,223 | 76,930 | − |
MazEF | type II | Pla.3 W1865 | MazF | 100,842 | 101,237 | MazE | 100,625 | 100,852 | + |
VapBC | type II | Pla.1 W1865 | VapC | 186,308 | 186,532 | VapB | 185,844 | 186,107 | + |
HNH/HigA | type II | Pla.1 W1865 | HNH endonuclease | 168,456 | 167,224 | HigA | 169,069 | 168,449 | − |
HNH/HigA | type II | Chr.W1866 | HNH endonuclease | 264,680 | 263,349 | HigA | 264,965 | 264,690 | − |
Orphan toxins | |||||||||
Doc | type II | Pla.3 W1865 | Doc | 83,972 | 83,811 | N/A | N/A | N/A | − |
HigB | type II | Chr.W1865 | HigB | 163,404 | 162,178 | N/A | N/A | N/A | − |
RatA | type II | Chr.W1865 | RatA | 2,005,676 | 2,005,224 | N/A | N/A | N/A | − |
RatA | typeII | Chr.W1866 | RatA | 1,402,847 | 1,403,299 | N/A | N/A | N/A | + |
Orphan antitoxins | |||||||||
SdhE | type II | Chr.W1865 | N/A | N/A | N/A | SdhE | 2,482,046 | 2,481,780 | − |
SdhE | type II | Chr.W1866 | N/A | N/A | N/A | SdhE | 916,222 | 916,488 | + |
Loci | Antiphage Systems | Start | Stop | Strand | |
---|---|---|---|---|---|
SCSIO W1865 Chr. | retron | msr-msd | 2,571,487 | 2,571,320 | − |
NDT | 2,571,402 | 2,570,368 | − | ||
RT | 2,570,375 | 2,569,410 | − | ||
type I RM | REases | 2,394,724 | 2,397,186 | + | |
MTases | 2,397,190 | 2,398,638 | + | ||
type II RM | MTases | 476,565 | 475,996 | − | |
REases | 476,012 | 475,281 | − | ||
PARIS | AAA_15 | 2,122,422 | 2,121,121 | − | |
DUF4435 | 2,121,124 | 2,120,267 | − | ||
spetu | PtuA_2 | 2,403,386 | 2,404,963 | + | |
PtuB_2 | 2,404,967 | 2,405,818 | + | ||
SCSIO W1865 Pla.3 | iteAS | PDLC02196 | 66,640 | 67,722 | + |
PDLC02198 | 67,775 | 70,093 | + | ||
SCSIO W1865 Pla.4 | Shango | SngA | 1 | 2544 | + |
SngB | 2522 | 3829 | + | ||
SngC | 3835 | 6012 | + | ||
AbiEii | AbiEi_3 | 102,238 | 101,408 | − | |
AbiEii | 101,418 | 100,612 | − | ||
PD-T7-2 | PD-T7-2_A | 25,827 | 24,583 | − | |
PD-T7-2_B | 24,586 | 22,769 | − | ||
SCSIO W1866 Chr. | type II RM | MTases | 271,000 | 269,702 | − |
REases | 269,691 | 268,174 | − | ||
REases | 268,177 | 265,946 | − | ||
REases | 264,680 | 263,349 | − | ||
type II RM | MTases | 2,822,081 | 2,822,650 | + | |
REases | 2,822,634 | 2,823,365 | + | ||
DMS_other | BrxA | 2,589,408 | 2,588,800 | − | |
BrxB | 2,588,798 | 2,588,196 | − | ||
BrxC | 2,588,192 | 2,584,668 | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Guo, Y.; Huang, Z.; Tang, K.; Wang, X. Comparative Genomic Analysis of Cold-Water Coral-Derived Sulfitobacter faviae: Insights into Their Habitat Adaptation and Metabolism. Mar. Drugs 2023, 21, 309. https://doi.org/10.3390/md21050309
Lin S, Guo Y, Huang Z, Tang K, Wang X. Comparative Genomic Analysis of Cold-Water Coral-Derived Sulfitobacter faviae: Insights into Their Habitat Adaptation and Metabolism. Marine Drugs. 2023; 21(5):309. https://doi.org/10.3390/md21050309
Chicago/Turabian StyleLin, Shituan, Yunxue Guo, Zixian Huang, Kaihao Tang, and Xiaoxue Wang. 2023. "Comparative Genomic Analysis of Cold-Water Coral-Derived Sulfitobacter faviae: Insights into Their Habitat Adaptation and Metabolism" Marine Drugs 21, no. 5: 309. https://doi.org/10.3390/md21050309
APA StyleLin, S., Guo, Y., Huang, Z., Tang, K., & Wang, X. (2023). Comparative Genomic Analysis of Cold-Water Coral-Derived Sulfitobacter faviae: Insights into Their Habitat Adaptation and Metabolism. Marine Drugs, 21(5), 309. https://doi.org/10.3390/md21050309