The Zooxanthellate Jellyfish Holobiont Cassiopea andromeda, a Source of Soluble Bioactive Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hydroalcoholic (80% Ethanol) Extraction
2.2. Fractionation of the Hydroalcoholic Extracts and Biochemical Characterization of Fractions
2.2.1. Spectroscopic Analysis: Absorbance and Fluorescence Spectra
2.2.2. Protein Content
2.2.3. Phenolic Compounds
2.3. Antioxidant Activity
2.4. Density of Zooxanthellae in Umbrella and Oral Arms
2.5. Fatty Acid Profile in Lipophilic Fraction (Upper Phase) of the 80% Ethanol Extract
2.6. Pigments Quantification in the Fractions
3. Materials and Methods
3.1. Chemicals, Materials, and Instruments
3.2. Jellyfish Samples
3.3. Hydroalcoholic Extraction
3.4. Fractionation of the Hydroalcoholic Extract
3.5. Spectroscopic Analysis
3.6. Protein Content
3.7. Phenol Content
3.8. In Vitro Antioxidant Capacity Assay
3.9. Symbiont Quantification
3.10. Lipid Extraction and Fatty Acid Identification in UP
3.11. Pigment Identification and Quantification
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bosch-Belmar, M.; Milisenda, G.; Basso, L.; Doyle, T.K.; Leone, A.; Piraino, S. Jellyfish Impacts on Marine Aquaculture and Fisheries. Rev. Fish. Sci. Aquac. 2020, 29, 242–259. [Google Scholar] [CrossRef]
- D’Amico, P.; Leone, A.; Giusti, A.; Armani, A. Jellyfish and humans: Not just negative interactions. In Jellyfish: Ecology, Distribution Patterns and Human Interactions; Mariottini, G.L., Ed.; US Nova Publishers: New York, NY, USA, 2017; pp. 331–352. [Google Scholar]
- Leone, A.; Lecci, R.; Durante, M.; Meli, F.; Piraino, S. The bright side of gelatinous blooms: Nutraceutical value and antioxidant properties of three mediterranean jellyfish (Scyphozoa). Mar. Drugs 2015, 13, 4654–4681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leone, A.; Lecci, R.M.; Durante, M.; Piraino, S. Extract from the zooxanthellate jellyfish Cotylorhiza tuberculata modulates gap junction intercellular communication in human cell cultures. Mar. Drugs 2013, 11, 1728–1762. [Google Scholar] [CrossRef] [Green Version]
- De Domenico, S.; De Rinaldis, G.; Paulmery, M.; Piraino, S.; Leone, A. Barrel Jellyfish (Rhizostoma pulmo) as Source of Antioxidant Peptides. Mar. Drugs 2019, 17, 134. [Google Scholar] [CrossRef] [Green Version]
- Merquiol, L.; Romano, G.; Ianora, A.; D’Ambra, I. Biotechnological Applications of Scyphomedusae. Mar. Drugs 2019, 17, 604. [Google Scholar] [CrossRef] [Green Version]
- De Rinaldis, G.; Leone, A.; De Domenico, S.; Bosch-Belmar, M.; Slizyte, R.; Milisenda, G.; Santucci, A.; Albano, C.; Piraino, S. Biochemical characterization of Cassiopea andromeda (Forsskål, 1775), another red sea jellyfish in the western mediterranean sea. Mar. Drugs 2021, 19, 498. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Lecci, R.M.; Milisenda, G.; Piraino, S. Mediterranean jellyfish as novel food: Effects of thermal processing on antioxidant, phenolic, and protein contents. Eur. Food Res. Technol. 2019, 245, 1611–1627. [Google Scholar] [CrossRef] [Green Version]
- Bleve, G.; Ramires, F.A.; Gallo, A.; Leone, A. Identification of Safety and Quality Parameters for Preparation of Jellyfish Based Novel Food Products. Foods 2019, 8, 263. [Google Scholar] [CrossRef] [Green Version]
- Bleve, G.; Ramires, F.A.; De Domenico, S.; Leone, A. An Alum-Free Jellyfish Treatment for Food Applications. Front. Nutr. 2021, 8, 718798. [Google Scholar] [CrossRef]
- Ramires, F.A.; Bleve, G.; De Domenico, S.; Leone, A. Combination of Solid State and Submerged Fermentation Strategies to Produce a New Jellyfish-Based Food. Foods 2022, 11, 3974. [Google Scholar] [CrossRef]
- Ramires, F.A.; De Domenico, S.; Migoni, D.; Fanizzi, F.P.; Angel, D.L.; Slizyte, R.; Klun, K.; Bleve, G.; Leone, A. Optimization of a Calcium-Based Treatment Method for Jellyfish to Design Food for the Future. Foods 2022, 11, 2697. [Google Scholar] [CrossRef]
- Bosch, T.C. Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annu. Rev. Microbiol. 2013, 67, 499–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweet, M.J.; Bulling, M.T. On the importance of the microbiome and pathobiome in coral health and disease. Front. Mar. Sci. 2017, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rohwer, F.; Seguritan, V.; Azam, F.; Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 2002, 243, 1–10. [Google Scholar] [CrossRef] [Green Version]
- LaJeunesse, T.C.; Parkinson, J.E.; Gabrielson, P.W.; Jeong, H.J.; Reimer, J.D.; Voolstra, C.R.; Santos, S.R. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. Cell. Press. 2018, 28, 2570–2580. [Google Scholar] [CrossRef] [Green Version]
- Verde, E.; McCloskey, L. Production, respiration, and photophysiology of the mangrove jellyfish Cassiopea xamachana symbiotic with zooxanthellae: Effect of jellyfish size and season. Mar. Ecol. Prog. Ser. 1998, 168, 147–162. [Google Scholar] [CrossRef] [Green Version]
- Maggio, T.; Allegra, A.; Bosch-Belmar, M.; Cillari, T.; Cuttitta, A.; Falautano, M.; Milisenda, G.; Nicosia, A.; Perzia, P.; Sinopoli, M.; et al. Molecular identity of the non-indigenous Cassiopea sp. from Palermo Harbour (central Mediterranean Sea). J. Mar. Biol. Ass. UK 2019, 99, 1765–1773. [Google Scholar] [CrossRef]
- Cillari, T.; Andaloro, F.; Castriota, L. First documented record of Cassiopea cf andromeda (Cnidaria: Scyphozoa) in Italian waters. Cah. De. Biol. Mar. 2018, 59, 193–195. [Google Scholar] [CrossRef]
- Killi, N.; Tarkan, A.S.; Kozic, S.; Copp, G.H.; Davison, P.I.; Vilizzi, L. Risk screening of the potential invasiveness of non-native jellyfishes in the Mediterranean Sea. Mar. Poll. Bull. 2020, 150, 110728. [Google Scholar] [CrossRef]
- Niggl, W.; Naumann, M.S.; Struck, U.; Manasrah, R.; Wild, C. Organic matter release by the benthic upside-down jellyfish Cassiopea sp. fuels pelagic food webs in coral reefs. J. Exp. Mar. Biol. Ecol. 2010, 384, 99–106. [Google Scholar] [CrossRef]
- Mammone, M.; Ferrier-Page ’s, C.; Lavorano, S.; Rizzo, L.; Piraino, S.; Rossi, S. High photosynthetic plasticity may reinforce invasiveness of upside-down zooxanthellate jellyfish in Mediterranean coastal waters. PLoS ONE 2021, 16, e0248814. [Google Scholar] [CrossRef]
- Lucas, C.H.; Pitt, K.A.; Purcell, J.E.; Lebrato, M.; Condon, R.H. What’s in a jellyfish? Proximate and elemental composition and biometric relationships for use in biogeochemical studies. Ecology 2011, 92, 1704. [Google Scholar] [CrossRef] [Green Version]
- Hubot, N.; Giering, S.L.C.; Lucas, C.H. Similarities between the biochemical composition of jellyfish body and mucus. J. Plankton Res. 2022, 44, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Ayed, Y.M.; Bousabbeh, H.B.; Mabrouk, M.; Morjen, N.; Marrakchi, H.B. Impairment of the cell-to-matrix adhesion and cytotoxicity induced by the Mediterranean jellyfish Pelagia noctiluca venom and its fractions in cultured glioblastoma cells. Lipids Health Dis. 2012, 11, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Song, C.; Zhao, J.; Shi, X.; Sun, M.; Liu, J.; Fu, Y.; Jin, W.; Zhu, B. Separation and characterization of antioxidative and angiotensin converting enzyme inhibitory peptide from jellyfish gonad hydrolysate. Molecules 2018, 23, 94. [Google Scholar] [CrossRef] [Green Version]
- Barzideh, Z.; Latiff, A.A.; Gan, C.; Alias, A.K. ACE inhibitory and antioxidant activities of collagen hydrolysates from the ribbon Jellyfish (Chrysaora sp.). Food Technol. Biotecnol. 2014, 52, 495–504. [Google Scholar] [CrossRef]
- Addad, S.; Esposito, J.Y.; Faye, C.; Ricard-Blum, S.; Lethias, C. Isolation, characterization, and biological evaluation of jellyfish collagen for use in biomedical applications. Mar. Drugs 2011, 9, 967–983. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.F.; Li, Y.Y.; Xu, J.J.; Su, X.R.; Gao, X.; Yue, F.P. Study on effect of jellyfish collagen hydrolysate on anti-fatigue and anti-oxidation. Food Hydrocoll. 2011, 25, 1350–1353. [Google Scholar] [CrossRef]
- Felician, F.F.; Yu, R.H.; Li, M.Z.; Li, C.J.; Chen, H.Q.; Jiang, Y.; Tang, T.; Qiab, W.Y.; Xu, H.M. The wound healing potential of collagen peptides derived from the jellyfish Rhopilema esculentum. Chin. J. Traumatol. 2019, 22, 12–20. [Google Scholar] [CrossRef]
- Sugahara, T.; Ueno, M.; Goto, Y.; Shiraishi, R.; Doi, M.; Akiyama, K.; Yamauchi, S. Immunostimulation Effect of Jellyfish Collagen. Biosci. Biotechnol. Biochem. 2006, 70, 2131–2137. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016, 22, 515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leone, A.; Longo, C.; Trosko, J.E. The chemopreventive role of dietary phytochemicals through gap junctional intercellular communication. Phytochem. Rev. 2012, 11, 285–307. [Google Scholar] [CrossRef]
- Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Asp. Med. 2003, 24, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Misawa, N.; Takemura, M.; Maoka, T. Carotenoid Biosynthesis in Animals: Case of Arthropods. Carotenoids: Biosynthetic and Biofunctional Approaches. Adv. Exp. Med. Biol. 2021, 1261, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism, and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid. Med. Cell. Longev. 2016, 9, 7432797. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 897484. [Google Scholar] [CrossRef] [Green Version]
- Arts, I.C.; Hollman, P.C. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005, 81, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Corona, G.; Deiana, M.; Incani, A.; Vauzour, D.; Dessi, M.A.; Spencer, J.P.E. Inhibition of p38/CREB phosphorylation and COX-2 expression by olive oil polyphenols underlies their anti-proliferative effects. Biochem. Biophys. Res. Commun. 2007, 362, 606–611. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Afaq, F.; Saleem, M.; Ahmad, N.; Mukhtar, H. Targeting multiple signalling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res. 2006, 66, 2500–2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corona, G.; Deiana, M.; Incani, A.; Vauzour, D.; Dessi, M.A.; Spencer, J.P.E. Hydroxytyrosol inhibits the proliferation of human colon adenocarcinoma cells through inhibition of ERK1/2 and cyclin D1. Mol. Nutr. Food Res. 2009, 53, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Heideman, L.; Chung, C.S.; Pelling, J.C.; Koehler, K.J.; Birt, D.F. Cell-cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma cell lines. Mol. Carcinog. 2000, 28, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Fini, L.; Hotchkiss, E.; Fogliano, V.; Graziani, G.; Romano, M.; De Vol, E.B.; Qin, H.; Selgrad, M.; Boland, C.R.; Ricciardiello, L. Chemopreventive properties of pinoresinol-rich olive oil involve a selective activation of the ATM-p53 cascade in colon cancer cell lines. Carcinogenesis 2008, 29, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Mantena, S.K.; Baliga, M.S.; Katiyar, S.K. Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells. Carcinogenesis 2006, 27, 1682–1691. [Google Scholar] [CrossRef] [Green Version]
- Fabiani, R.; De Bartolomeo, A.; Rosignoli, P.; Servili, M.; Montedoro, G.F.; Morozzi, G. Cancer chemoprevention by hydroxytyrosol isolated from virgin olive oil through G1 cell cycle arrest and apoptosis. Eur. J. Cancer Prev. 2002, 11, 351–358. [Google Scholar] [CrossRef]
- Adams, L.S.; Chen, S. Phytochemicals for breast cancer prevention by targeting aromatase. Front. Biosci. 2009, 14, 3846–3863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, R.; Capillo, G.; Albergamo, A.; Li Volsi, R.; Bartolomeo, G.; Bua, G.; Ferracane, A.; Savoca, S.; Gervasi, T.; Rando, R.; et al. A Multi-screening Evaluation of the Nutritional and Nutraceutical Potential of the Mediterranean Jellyfish Pelagia noctiluca. Mar. Drugs 2019, 17, 172. [Google Scholar] [CrossRef] [Green Version]
- Pierce, J. A system for mass culture of Upside-down jellyfish Cassiopea spp as a potential food item for medusivores in captivity. Int. Zoo. Yearb. 2006, 39, 62–69. [Google Scholar] [CrossRef]
- Coulter, C.B.; Stone, F.M.; Kabat, E.A. The structure of the ultraviolet absorption spectra of certain proteins and amino acids. J. Gen. Physiol. 1936, 19, 739. [Google Scholar] [CrossRef] [Green Version]
- Wetlaufer, D.B. Ultraviolet spectra of proteins and amino acids. Adv. Protein Chem. 1963, 17, 303–390. [Google Scholar]
- Hoepffner, N.; Sathyendranath, S. Effect of pigment composition on absorption properties of phytoplankton. Mar. Ecol. Prog. Ser. 1991, 73, 11–23. [Google Scholar] [CrossRef]
- Niedzwiedzki, D.M.; Jiang, J.; Lo, C.S.; Blankenship, R.E. Spectroscopic properties of the Chlorophyll a-Chlorophyll c (2)-Peridinin-Protein-Complex (acpPC) from the coral symbiotic dinoflagellate. Symbiodinium. Photosynth. Res. 2013, 120, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Wolf, F.T.; Stevens, M.V. The fluorescence of carotenoids. Photochem. Photobiol. 1967, 6, 597. [Google Scholar] [CrossRef]
- Lagorio, M.G.; Cordon, G.B.; Iriel, A. Reviewing the relevance of fluorescence in biological systems. Photochem. Photobiol. Sci. 2015, 14, 1538–1559. [Google Scholar] [CrossRef] [Green Version]
- Ferretto, N.; Tedetti, M.; Guigue, C.; Mounier, S.; Redon, R.; Goutx, M. Identification and quantification of known polycyclic aromatic hydrocarbons and pesticides in complex mixtures using fluorescence excitation–emission matrices and parallel factor analysis. Chemosphere 2014, 107, 344–353. [Google Scholar] [CrossRef]
- Zacharioudaki, D.E.; Fitilis, I.; Kotti, M. Review of Fluorescence Spectroscopy in Environmental Quality Applications. Molecules 2022, 27, 4801. [Google Scholar] [CrossRef]
- Kramar, M.K.; Tinta, T.; Lučić, D.; Malej, A.; Turk, V. Bacteria associated with moon jellyfish during bloom and post-bloom periods in the Gulf of Trieste (northern Adriatic). PLoS ONE 2019, 14, e0198056. [Google Scholar] [CrossRef] [Green Version]
- Schoefs, B. Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis, Trends Food Sci. Technol. 2002, 13, 361–371. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [Green Version]
- Jerez-Martel, I.; García-Poza, S.; Rodríguez-Martel, G.; Rico, M.; Afonso-Olivares, C.; Gómez-Pinchetti, J.L. Phenolic Profile and Antioxidant Activity of Crude Extracts from Microalgae and Cyanobacteria Strains. J. Food Qual. 2017, 2017, 2924508. [Google Scholar] [CrossRef] [Green Version]
- Jantzen, C.; Wild, C.; Rasheed, M.; El-Zibdah, M.; Richter, C. Enhanced pore-water nutrient fluxes by the upside-down jellyfish Cassiopea sp. in a Red Sea coral reef. Mar. Ecol. Prog. Ser. 2010, 411, 117–125. [Google Scholar] [CrossRef]
- Awai, K.; Matsuoka, R.; Shioi, Y. Lipid and fatty acid compositions of Symbiodinium strains. In Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9–13 July 2012; pp. 1–4. [Google Scholar]
- Mortillaro, J.M.; Pitt, K.A.; Lee, S.Y.; Meziane, T. Light intensity influences the production and translocation of fatty acids by z ooxanthellae in the jellyfish Cassiopea sp. J. Exp. Mar. Biol. Ecol. 2009, 378, 22–30. [Google Scholar] [CrossRef]
- Zhukova, N.V.; Aizdaicher, N.A. Fatty acid composition of 15 species of marine macroalgae. Phytochemistry 1995, 39, 351–356. [Google Scholar] [CrossRef]
- Leblond, J.D.; Evans, T.D.; Chapman, P.J. The biochemistry of dinoflagellate lipids, with particular reference to the fatty acid and sterol composition of a Karenia brevis bloom. Phycologia 2003, 42, 324–331. [Google Scholar] [CrossRef]
- Mooney, B.D.; Nichols, P.D.; De Salas, M.F.; Hallegraeff, G.M. Lipid, fatty acid, and sterol composition of eight species of Kareniaceae (Dinophyta): Chemotaxonomy and putative lipid phycotoxins. J. Phycol. 2007, 43, 101–111. [Google Scholar] [CrossRef]
- Hodgson, R.; Abbasi, T.; Clarkson, J. Effective mental health promotion: A literature review. Health Educ. J. 2016, 55, 1. [Google Scholar] [CrossRef]
- Roy, A.; Chardigny, J.M.; Bauchart, D.; Ferlay, A.; Lorenz, S.; Durand, D.; Gruffat, D.; Faulconnier, Y.; Sébédio, J.L.; Chilliard, Y. Butters rich either in trans-10-C18:1 or in trans-11-C18:1 plus cis-9, trans-11 CLA differentially affect plasma lipids and aortic fatty streak in experimental atherosclerosis in rabbits. Animal 2007, 1, 467–476. [Google Scholar] [CrossRef] [Green Version]
- Bratton, B.A.; Maly, I.V.; Hofmann, W.A. Effect of polyunsaturated fatty acids on proliferation and survival of prostate cancer cells. PLoS ONE 2019, 14, e0219822. [Google Scholar] [CrossRef] [Green Version]
- Corsetto, P.A.; Montorfano, G.; Zava, S.; Jovenitti, I.E.; Cremona, A.; Berra, B.; Rizzo, A.M. Effects of n-3 PUFAs on breast cancer cells through their incorporation in plasma membrane. Lipids Health Dis. 2011, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; McElroy, C.R.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Process. 2016, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, R.; Awai, K.; Shioi, Y. Pigment composition and pigment-protein complex from Symbiodinium sp. strain Y106. In Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9–13 July 2012; pp. 1–5. [Google Scholar]
- Fernández-Sevilla, J.M.; Acién, F.F.G.; Molina, E.G. Biotechnological production of lutein and its applications. Appl. Microbiol. Biotechnol. 2010, 86, 27–40. [Google Scholar] [CrossRef]
- Patel, A.K.; Rova, U.; Christakopoulos, P.; Matsakas, L. Microalgal lutein biosynthesis: Recent trends and challenges to enhance the lutein content in microalgal cell factories. Front. Mar. Sci. 2022, 9, 1015419. [Google Scholar] [CrossRef]
- Patel, A.K.; Albarico, J.B.F.P.; Perumal, P.K.; Vadrale, A.P.; Nian, C.T.; Chau, H.T.B.; Anwar, C.; Wani, H.M.; Pal, A.; Saini, R.; et al. Algae as an emerging source of bioactive pigments. Biores Technol. 2022, 351, 126910. [Google Scholar] [CrossRef] [PubMed]
- Kleppel, G.S.; Dodge, R.E.; Reese, C.J. Changes in Pigmentation Associated with the Bleaching of Stony Corals. Limnol. Ocean. 1989, 34, 1331–1335. [Google Scholar] [CrossRef]
- Ambarsari, I.; Brown, B.E.; Barlow, R.G.; Britton, G.; Cummings, D. Fluctuations in algal chlorophyll and carotenoid pigments during solar bleaching in the coral Goniastrea aspera at Phuket, Thailand. Mar. Ecol. Prog. Ser. 1997, 159, 303–307. [Google Scholar] [CrossRef] [Green Version]
- Dove, S.; Ortiz, J.C.; Enriquez, S.; Fine, M.; Fisher, P.; IglesiasPrieto, R.; Thornhill, D.; Hoegh-Guldberg, O. Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. Limnol. Ocean. 2006, 51, 1149–1158. [Google Scholar] [CrossRef] [Green Version]
- Venn, A.A.; Wilson, M.A.; Trapido-Rosenthal, H.G.; Keely, B.J.; Douglas, A.E. The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant. Cell. Environ. 2006, 29, 2133–2142. [Google Scholar] [CrossRef]
- Ishikawa, C.; Jomori, T.; Tanaka, J.; Senba, M.; Mori, N. Peridinin, a carotenoid, inhibits proliferation and survival of HTLV-1-infected T-cell lines. Int. J. Oncol. 2016, 49, 1713–1721. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.G.; Otero, P.; Echave, J.; Carreira-Casais, A.; Chamorro, F.; Collazo, N.; Jaboui, A.; Lourenço-Lopes, C.; Simal-Gandara, J.; Prieto, M.A. Xanthophylls from the Sea: Algae as Source of Bioactive Carotenoids. Mar. Drugs 2021, 19, 188. [Google Scholar] [CrossRef]
- Xu, X.R.; Zou, Z.Y.; Xiao, X.; Huang, Y.M.; Wang, X.; Lin, X.M. Effects of Lutein Supplement on Serum Inflammatory Cytokines, ApoE and Lipid Profiles in Early Atherosclerosis Population. J. Atheroscler. Thromb. 2013, 20, 170–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, L.P.; Chan, G.M.; Barrett-Reis, B.M.; Fulton, A.B.; Hansen, R.M.; Ashmeade, T.L.; Oliver, J.S.; MacKey, A.D.; Dimmit, R.A.; Hartmann, E.E.; et al. Effect of Carotenoid Supplementation on Plasma Carotenoids, Inflammation and Visual Development in Preterm Infants. J. Perinatol. 2012, 32, 418–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narisawa, T.; Fukaura, Y.; Hasebe, M.; Ito, M.; Aizawa, R.; Murakoshi, M.; Uemura, S.; Khachik, F.; Nishino, H. Inhibitory Effects of Natural Carotenoids, -Carotene, Lycopene and Lutein, on Colonic Aberrant Crypt Foci Formation in Rats. Cancer Lett. 1996, 107, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Szczygiel, M.; Urbanska, K.; Jurecka, P.; Stawoska, I.; Stochel, G.; Fiedor, L. Central metal determines pharmacokinetics of chlorophyll-derived xenobiotics. J. Med. Chem. 2008, 51, 4412–4418. [Google Scholar] [CrossRef]
- Endo, Y.; Usuki, R.; Kandena, T. Antioxidant effects of chlorophyll and pheophytin on the autooxidation of oils in the dark. I. Comparison of the inhibitory effects. JAOCS 1985, 2, 1375–1378. [Google Scholar] [CrossRef]
- Ferruzzi, M.G.; Failla, M.L.; Schwartz, S.J. Assessment of degradation and intestinal cell uptake of carotenoids and chlorophyll derivatives from spinach puree using an in vitro digestion and Caco-2 human cell model. J. Agric. Food Chem. 2001, 49, 2082–2089. [Google Scholar] [CrossRef]
- Zepka, L.Q.; Lopes, E.J.; Roca, M. Catabolism and bioactive properties of chlorophylls. Curr. Opin. Food Sci. 2019, 26, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Shao, G.; Agar, J.; Giese, R.W. Cold-induced aqueous acetonitrile phase separation: A salt-free way to begin quick, easy, cheap, effective, rugged, safe. J. Chromatogr. A 2017, 1506, 128–133. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Magalhaes, L.M.; Fernando, S.; Marcela, S.; Salette, R.; Lima José, L.F.C. Rapid microplate high-throughput methodology for assessment of Folin-Ciocalteu reducing capacity. Talanta 2010, 83, 441–447. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Guaratini, T.; Cardozo, K.H.M.; Pinto, E.; Colepicolo, P. Comparison of diode array and electrochemical detection in the C(30) reverse phase HPLC analysis of algae carotenoids. J. Braz. Chem. Soc. 2009, 20, 1609–1616. [Google Scholar] [CrossRef] [Green Version]
- Fraser, P.D.; Pinto, E.; Holloway, D.E.; Bramley, P.M. Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant. J. 2000, 24, 551–558. [Google Scholar] [CrossRef] [PubMed]
UMBRELLA (UMB) | ORAL ARMS (OA) | |||||
---|---|---|---|---|---|---|
Specimen | DW (g) | ExDW (g) | Yield (%DW) | DW (g) | ExDW (g) | Yield (%DW) |
Ca1 | 0.931 | 0.382 | 41.1 | 1.142 | 0.560 | 49.0 |
Ca2 | 0.615 | 0.204 | 33.2 | 0.761 | 0.356 | 46.8 |
Ca3 | 0.636 | 0.264 | 41.6 | 1.059 | 0.464 | 43.8 |
Ca4 | 0.393 | 0.164 | 41.7 | 0.946 | 0.408 | 43.2 |
Ca5 | 0.822 | 0.360 | 43.8 | 1.052 | 0.459 | 43.6 |
Ca6 | 0.852 | 0.356 | 41.8 | 0.950 | 0.423 | 44.5 |
Ca7 | 0.720 | 0.336 | 46.7 | 1.410 | 0.630 | 44.7 |
Ca8 | 0.710 | 0.330 | 46.5 | 1.640 | 0.690 | 42.1 |
Mean ± SD | 0.710± 0.168 | 0.300± 0.080 | 42.1± 4.2 | 1.120± 0.281 | 0.499± 0.116 | 44.7 ± 2.2 |
Total Protein Content | ||||
---|---|---|---|---|
Specimen | UMBRELLA | ORAL ARMS | ||
UMB-UP | UMB-LP | OA-UP | OA-LP | |
mg of Proteins/ g of ExDW (mean ± SD) | ||||
Ca1 | 1.94 ± 0.72 | 4.89 ± 0.78 | 3.52 ± 0.62 | 5.52 ± 0.47 |
Ca2 | 1.24 ± 0.03 | 1.53 ± 0.17 | 2.94 ± 0.18 | 5.97 ± 0.32 |
Ca3 | 2.10 ± 0.29 | 4.43 ± 0.27 | 6.98 ± 0.32 | 6.41 ± 0.64 |
Ca4 | 2.36 ± 0.01 | 3.78 ± 1.10 | 3.45 ± 0.07 | 5.26 ± 0.68 |
Ca5 | 2.24 ± 0.05 | 8.35 ± 0.10 | 6.64 ± 0.49 | 10.56 ± 0.11 |
Ca6 | 2.99 ± 0.06 | 10.11 ± 0.61 | 4.49 ± 0.01 | 13.51 ± 0.34 |
Ca7 | 0.34 ± 0.10 | 2.77 ± 1.41 | 3.05 ± 1.16 | 3.02 ± 0.31 |
Ca8 | 0.45 ± 0.35 | 3.74 ± 0.56 | 3.59 ± 0.09 | 3.41 ± 0.32 |
Mean ±SD | 1.71 ± 0.94 a | 4.95 ± 2.87 b | 4.33 ± 1.60 a | 6.71 ± 3.58 b |
Total Phenol Content | ||||
---|---|---|---|---|
Specimen | UMBRELLA | ORAL ARMS | ||
UMB-UP | UMB-LP | OA-UP | OA-LP | |
mg GAE/ g of ExDW (mean ± SD) | ||||
Ca3 | 615.3 ± 3.2 a | 1993.7 ± 67.4 c *** | 970.3 ± 25.1 b | 4169.9 ± 33.1 d *** |
Ca4 | 889.8 ± 20.9 a | 1830.9 ± 6.5 c *** | 1132.7 ± 9.4 b | 3164 ± 27.9 d *** |
Ca5 | 296.7 ± 6.7 a | 1415.5 ± 142.3 c *** | 758.9 ± 13.9 b | 2886.1 ± 108.3 d *** |
Ca6 | 362.3 ± 4.0 a | 1350.9 ± 45.2 c *** | 571.9 ± 4.2 b | 2573.7 ± 11.9 d *** |
Ca7 | 919.7 ± 234.6 a | 10,518.5 ± 120.1 c *** | 2208.9 ± 25.1 b | 11,429.4 ± 266.8 d *** |
Ca8 | 1248.3 ± 104.5 a | 4043.8 ± 118.1 c *** | 2712.8 ± 14.5 b | 15,234.0 ± 258.8 d *** |
Antioxidant Activity (AA) | ||||
---|---|---|---|---|
AA | UMBRELLA | ORAL ARMS | ||
UMB-UP | UMB-LP | OA-UP | OA-LP | |
Mean ± SD | ||||
nmol TE/g of jellyfish tissue | 639.2 ± 471.6 a | 5989.2 ± 4341.1 b | 1191.4 ± 720.8 a | 10,736.3 ± 7728.9 b |
nmol TE/g of ExDW) | 1514.5 ± 1143.3 a | 14126.7 ± 10288.7 b | 2583.0 ± 1555.8 a | 22,925.2 ± 16,029.5 b |
Fatty Acids in the Lipophilic Fraction of 80% Ethanol Extract of Cassiopea andromeda Jellyfish | |
---|---|
Fatty Acid (FA) | Upper Phase (UP) from 80% Ethanol Extract Separation |
Saturated FA (SFA) % | |
Lauric acid C12:0 | 8.5 ± 0.8 |
Myristic acid C14:0 | 2.5 ± 0.3 |
Palmitic acid C16:0 | 25.2 ± 2.5 |
Stearic acid C18:0 | 3.6 ± 0.4 |
Arachidic acid C20:0 | - |
Total SFA (%) | 39.8 ± 4.0 |
Mono-unsaturated FA (MUFA) % | |
Palmitoleic acid C16:1 (ω7) | 2.8 ± 0.3 |
Oleic acid C18:1 cis-9 (ω9) | - |
Isoleic acid C18:1 trans-10 | 3.0 ± 0.3 |
Total MUFA (%) | 5.8 ± 0.8 |
Polyunsaturated FA (PUFA) % | |
Linoleic acid C18:2 cis-9,12 (ω6) | - |
Isolinoleic acid C18:2 cis-6,9 (ω9) | - |
Linolenic acid C18:3 cis-9,12,15 (ω3) | 2.4 ± 0.3 |
Stearidonic acid C18:4 (ω3) | 16.3 ± 1.6 |
Eicosadienoic acid C20:2 (ω6) | 2.7 ± 0.3 |
Arachidonic acid C20:4 (ω6) | 14.4 ± 1.5 |
Eicosapentaenoic acid C20:5 (ω3) | 2.4 ± 0.3 |
Docosatetraenoic acid C22:4 (ω6) | - |
Docosapentaenoic acid C22:5 (ω3) | 2.2 ± 0.2 |
Docosahexaenoic acid C22:6 (ω3) | 14.0 ± 1.4 |
Total PUFA (%) | 54.4 ± 5.5 |
Total fatty acids | 100 |
Σω6 | 17.2 |
Σω3 | 37.3 |
Ratio ω6/ω3 | 0.5 |
Hydroalcoholic Extract (ExDW) | Lipophilic Fraction of ExDW | |||
---|---|---|---|---|
Pigment | UMB | OA | UMB-UP | OA-UP |
μg/g of ExDW | μg /g of UP-DW | |||
Chlorophyll-a | 722.3 ± 205.0 a | 1960.6 ± 601.3 b | 4420.3 ± 3178.9 | 2157.0 ± 574.5 |
β-carotene | 8.0 ± 0.7 | 7.6 ± 1.7 | n.d. | 28.4 ± 0.2 |
Diadinoxanthin | 26.5 ± 27.5 | 63.5 ± 28.6 | 106.4 ± 149.7 | 285.0 ± 68.4 |
Peridinin | 107.9 ± 37.9 | 324.5 ± 42.6 | 838.6 ± 1179.7 | 1683.6 ± 275.1 |
Lutein | 441.5 ± 15.1 c | 3066.4± 425.0 d | 2809.1 ± 3955.1 | 8978.0 ± 876.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Domenico, S.; De Rinaldis, G.; Mammone, M.; Bosch-Belmar, M.; Piraino, S.; Leone, A. The Zooxanthellate Jellyfish Holobiont Cassiopea andromeda, a Source of Soluble Bioactive Compounds. Mar. Drugs 2023, 21, 272. https://doi.org/10.3390/md21050272
De Domenico S, De Rinaldis G, Mammone M, Bosch-Belmar M, Piraino S, Leone A. The Zooxanthellate Jellyfish Holobiont Cassiopea andromeda, a Source of Soluble Bioactive Compounds. Marine Drugs. 2023; 21(5):272. https://doi.org/10.3390/md21050272
Chicago/Turabian StyleDe Domenico, Stefania, Gianluca De Rinaldis, Marta Mammone, Mar Bosch-Belmar, Stefano Piraino, and Antonella Leone. 2023. "The Zooxanthellate Jellyfish Holobiont Cassiopea andromeda, a Source of Soluble Bioactive Compounds" Marine Drugs 21, no. 5: 272. https://doi.org/10.3390/md21050272
APA StyleDe Domenico, S., De Rinaldis, G., Mammone, M., Bosch-Belmar, M., Piraino, S., & Leone, A. (2023). The Zooxanthellate Jellyfish Holobiont Cassiopea andromeda, a Source of Soluble Bioactive Compounds. Marine Drugs, 21(5), 272. https://doi.org/10.3390/md21050272