Chamigrane-Type Sesquiterpenes from Laurencia dendroidea as Lead Compounds against Naegleria fowleri
Abstract
:1. Introduction
2. Results
2.1. Chamigrane-Type Sesquiterpenes from Laurencia dendroidea
2.2. In Vitro Activity against Naegleria fowleri Trophozoites and Cytotoxicity Assays
2.3. In Vitro Activity against Naegleria fowleri Cysts
2.4. Programmed Cell Death (PCD) Induction Evaluation
2.4.1. (+)-Elatol (1) Induces Chromatin Condensation
2.4.2. Plasma Membrane Permeability
2.4.3. Reactive Oxygen Species Production
2.4.4. Analysis of Disorders in the Mitochondrial Function
3. Discussion
4. Materials and Methods
4.1. Biological Material
4.2. Cell and Culture Maintenance
4.3. In Vitro Activity Evaluation against Naegleria fowleri Trophozoites
4.4. In Vitro Cytotoxicity Determination
4.5. In Vitro Cysticidal Activity Evaluation
4.6. Evaluation of Programmed Cell Death Induction
4.6.1. Chromatin Condensation
4.6.2. Evaluation of Plasma Membrane Permeability
4.6.3. Oxidative Stress Induction
4.6.4. Mitochondrial Function Disruption
4.7. Statistical Analysis
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scheid, P. Free-living amoebae as human parasites and hosts for pathogenic microorganisms. Proceedings 2018, 2, 692. [Google Scholar]
- Peralta Rodríguez, M.L.; Ayala Oviedo, J.J. Amibas de vida libre en seres humanos. Salud Uninorte 2009, 25, 280–292. [Google Scholar]
- John, D.T.; Cole, T.B.; Marciano-Cabral, F.M. Sucker-like structures on the pathogenic amoeba Naegleria fowleri. Appl. Environ. Microbiol. 1984, 47, 12–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Jonckheere, J.F. Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri. Infect. Genet. Evol. 2011, 11, 1520–1528. [Google Scholar] [CrossRef] [PubMed]
- Stahl, L.M.; Olson, J.B. Environmental abiotic and biotic factors affecting the distribution and abundance of Naegleria fowleri. FEMS Microbiol. Ecol. 2020, 97, fiaa238. [Google Scholar] [CrossRef] [PubMed]
- Visvesvara, G.S.; Moura, H.; Schuster, F.L. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol. Med. Microbiol. 2007, 50, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Grace, E.; Asbill, S.; Virga, K. Naegleria fowleri: Pathogenesis, diagnosis, and treatment options. Antimicrob. Agents Chemother. 2015, 59, 6677–6681. [Google Scholar] [CrossRef] [Green Version]
- Baig, A.M. Primary amoebic meningoencephalitis: Neurochemotaxis and neurotropic preferences of Naegleria fowleri. ACS Chem. Neurosci. 2016, 7, 1026–1029. [Google Scholar] [CrossRef] [Green Version]
- Sohn, H.-J.; Song, K.-J.; Kang, H.; Ham, A.-J.; Lee, J.-H.; Chwae, Y.-J.; Kim, K.; Park, S.; Kim, J.-H.; Shin, H.-J. Cellular characterization of actin gene concerned with contact-dependent mechanisms in Naegleria fowleri. Parasite Immunol. 2019, 41, e12631. [Google Scholar] [CrossRef]
- Jahangeer, M.; Mahmood, Z.; Munir, N.; Waraich, U.-E.-A.; Tahir, I.M.; Akram, M.; Ali Shah, S.M.; Zulfqar, A.; Zainab, R. Naegleria fowleri: Sources of infection, pathophysiology, diagnosis, and management; a review. Clin. Exp. Pharmacol. Physiol. 2020, 47, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Ghanchi, N.K.; Jamil, B.; Khan, E.; Ansar, Z.; Samreen, A.; Zafar, A.; Hasan, Z. Case series of Naegleria fowleri primary ameobic meningoencephalitis from Karachi, Pakistan. Am. J. Trop. Med. Hyg. 2017, 97, 1600–1602. [Google Scholar] [CrossRef] [Green Version]
- Bellini, N.K.; Santos, T.M.; da Silva, M.T.A.; Thiemann, O.H. The therapeutic strategies against Naegleria fowleri. Exp. Parasitol. 2018, 187, 1–11. [Google Scholar] [CrossRef]
- Oncel, K.; Karaagac, L.; Dagcı, H.; Aykur, M. Real-time PCR confirmation of a fatal case of primary amoebic meningoencephalitis in Turkey caused by Naegleria fowleri or brain-eating amoeba. Acta Parasitol. 2022, 67, 697–704. [Google Scholar] [CrossRef]
- Monge-Maillo, B.; López-Vélez, R. Anfotericina B liposomal en el tratamiento de la leishmaniasis visceral. Rev. Iberoam. Micol. 2021, 38, 101–104. [Google Scholar] [CrossRef]
- Iqbal, K.; Abdalla, S.A.; Anwar, A.; Iqbal, K.M.; Shah, M.R.; Anwar, A.; Siddiqui, R.; Khan, N.A. Isoniazid conjugated magnetic nanoparticles loaded with amphotericin B as a potent antiamoebic agent against Acanthamoeba castellanii. Antibiotics 2020, 9, 276. [Google Scholar] [CrossRef]
- Roy, S.L.; Atkins, J.T.; Gennuso, R.; Kofos, D.; Sriram, R.R.; Dorlo, T.P.C.; Hayes, T.; Qvarnstrom, Y.; Kucerova, Z.; Guglielmo, B.J.; et al. Assessment of blood–brain barrier penetration of miltefosine used to treat a fatal case of granulomatous amebic encephalitis possibly caused by an unusual Balamuthia mandrillaris strain. Parasitol. Res. 2015, 114, 4431–4439. [Google Scholar] [CrossRef] [Green Version]
- Defillo, A.D.; Nussbaum, P.E.; Hariharan, P.; Mebane, A.; Nussbaum, E.S. Hypothermia as an adjunctive treatment in pediatric patients with Naegleria fowleri: A systematic review. J. Pediatr. Neurol. Neurosci. 2021, 5, 105–109. [Google Scholar]
- Estrella-Parra, E.A.; Arreola, R.; Álvarez-Sánchez, M.E.; Torres-Romero, J.C.; Rojas-Espinosa, O.; De la Cruz-Santiago, J.A.; Martinez-Benitez, M.B.; López-Camarillo, C.; Lara-Riegos, J.C.; Arana-Argáez, V.E.; et al. Natural marine products as antiprotozoal agents against amitochondrial parasites. Int. J. Parasitol. Drugs Drug Resist. 2022, 19, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Croft, S.L.; Weiss, C.R. Natural Products with Antiprotozoal Activity. Bioassay Methods Nat. Prod. Res. Drug Dev. 1999, 81–99. [Google Scholar]
- Kokkaliari, S.; Avalon, N.E.; Herrera, K.; Young, R.M.; Welsch, J.; Yang, B.; Dietrick, S.; Baker, B.J. Marine Natural Products with Bioactivity against Neglected Tropical Diseases bt- Marine Natural Products; Kiyota, H., Ed.; Springer: Singapore, 2021; pp. 209–251. [Google Scholar]
- Torres, F.A.E.; Passalacqua, T.G.; Velásquez, A.M.A.; de Souza, R.A.; Colepicolo, P.; Graminha, M.A.S. New drugs with antiprotozoal activity from marine algae: A review. Rev. Bras. Farmacogn. 2014, 24, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Wanke, T.; Philippus, A.C.; Zatelli, G.A.; Vieira, L.F.O.; Lhullier, C.; Falkenberg, M. C15 acetogenins from the Laurencia complex: 50 years of research—An overview. Rev. Bras. Farmacogn. 2015, 25, 569–587. [Google Scholar] [CrossRef] [Green Version]
- Harizani, M.; Ioannou, E.; Roussis, V. The Laurencia paradox: An endless source of chemodiversity. Prog. Chem. Org. Nat. Prod. 2016, 102, 91–252. [Google Scholar] [PubMed]
- García-Davis, S.; Sifaoui, I.; Reyes-Batlle, M.; Viveros-Valdez, E.; Piñero, J.E.; Lorenzo-Morales, J.; Fernández, J.J.; Díaz-Marrero, A.R. Anti-Acanthamoeba activity of brominated sesquiterpenes from Laurencia johnstonii. Mar. Drugs 2018, 16, 443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzo-Morales, J.; Díaz-Marrero, A.R.; Cen-Pacheco, F.; Sifaoui, I.; Reyes-Batlle, M.; Souto, M.L.; Hernández Daranas, A.; Piñero, J.E.; Fernández, J.J. Evaluation of oxasqualenoids from the red alga Laurencia viridis against Acanthamoeba. Mar. Drugs 2019, 17, 420. [Google Scholar] [CrossRef] [Green Version]
- Machado, F.L.d.S.; Lima, W.P.; Duarte, H.M.; Rossi-Bergmann, B.; Gestinari, L.M.; Fujii, M.T.; Kaiser, C.R.; Soares, A.R. Chemical diversity and antileishmanial activity of crude extracts of Laurencia complex (Ceramiales, Rhodophyta) from Brazil. Rev. Bras. Farmacogn. 2014, 24, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Marrero, A.R.; López-Arencibia, A.; Bethencout-Estrella, C.J.; Cen-Pacheco, F.; Sifaoui, I.; Hernández Creus, A.; Duque-Ramírez, M.C.; Souto, M.L.; Hernández Daranas, A.; Lorenzo-Morales, J.; et al. Antiprotozoal activities of marine polyether triterpenoids. Bioorg. Chem. 2019, 92, 103276. [Google Scholar] [CrossRef]
- Arberas-Jiménez, I.; García-Davis, S.; Rizo-Liendo, A.; Sifaoui, I.; Reyes-Batlle, M.; Chiboub, O.; Rodríguez-Expósito, R.L.; Díaz-Marrero, A.R.; Piñero, J.E.; Fernández, J.J.; et al. Laurinterol from Laurencia johnstonii eliminates Naegleria fowleri triggering PCD by inhibition of ATPases. Sci. Rep. 2020, 10, 17731. [Google Scholar] [CrossRef]
- Arberas-Jiménez, I.; García-Davis, S.; Rizo-Liendo, A.; Sifaoui, I.; Morales, E.Q.; Piñero, J.E.; Lorenzo-Morales, J.; Díaz-Marrero, A.R.; Fernández, J.J. Cyclolauranes as plausible chemical scaffold against Naegleria fowleri. Biomed. Pharmacother. 2022, 149, 112816. [Google Scholar] [CrossRef]
- Al-Massarani, S.M. Phytochemical and biological properties of sesquiterpene constituents from the marine red seaweed Laurencia: A review. Nat. Prod. Chem. Res. 2014, 2, 147. [Google Scholar]
- Cikoš, A.-M.; Jurin, M.; Čož-Rakovac, R.; Gašo-Sokač, D.; Jokić, S.; Jerković, I. Update on sesquiterpenes from red macroalgae of the Laurencia genus and their biological activities (2015–2020). Algal Res. 2021, 56, 102330. [Google Scholar] [CrossRef]
- Machado, F.L.; Duarte, H.M.; Gestinari, L.M.; Cassano, V.; Kaiser, C.R.; Soares, A.R. Geographic Distribution of Natural Products Produced by the Red Alga Laurencia dendroidea J. Agardh. Chem. Biodivers. 2016, 13, 845–851. [Google Scholar] [CrossRef]
- Nocchi, N.; Soares, A.R.; Souto, M.L.; Fernández, J.J.; Martin, M.N.; Pereira, R.C. Detection of a chemical cue from the host seaweed Laurencia dendroidea by the associated mollusc Aplysia brasiliana. PLoS ONE 2017, 12, e0187126. [Google Scholar] [CrossRef] [Green Version]
- Zahri, S.; Razavi, S.M.; Niri, F.H.; Mohammadi, S. Induction of programmed cell death by Prangos uloptera, a medicinal plant. Biol. Res. 2009, 42, 517–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cárdenas-Zúñiga, R.; Silva-Olivares, A.; Villalba-Magdaleno, J.D.A.; Sánchez-Monroy, V.; Serrano-Luna, J.; Shibayama, M. Amphotericin B induces apoptosis-like programmed cell death in Naegleria fowleri and Naegleria gruberi. Microbiology 2017, 163, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Proskuryakov, S.Y.; Konoplyannikov, A.G.; Gabai, V.L. Necrosis: A specific form of programmed cell death? Exp. Cell Res. 2003, 283, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Martín-Navarro, C.M.; López-Arencibia, A.; Sifaoui, I.A.; Reyes-Batlle, M.; Valladares, B.; Martínez-Carretero, E.; Piñero, J.E.; Maciver, S.K.; Lorenzo-Morales, J. Statins and voriconazole induce programmed cell death in Acanthamoeba castellanii. Antimicrob. Agents Chemother. 2015, 59, 2817–2824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petraitis, V.; Petraitiene, R.; Valdez, J.M.; Pyrgos, V.; Lizak, M.J.; Klaunberg, B.A.; Kalasauskas, D.; Basevicius, A.; Bacher, J.D.; Benjamin, D.K., Jr.; et al. Amphotericin B penetrates into the central nervous system through focal disruption of the blood brain barrier in experimental hematogenous Candida meningoencephalitis. Antimicrob. Agents Chemother. 2019, 63, e01626-19. [Google Scholar] [CrossRef]
- Bellettato, C.M.; Scarpa, M. Possible strategies to cross the blood–brain barrier. Ital. J. Pediatr. 2018, 44, 131. [Google Scholar] [CrossRef]
- Lang, K.L.; Silva, I.T.; Zimmermann, L.A.; Lhullier, C.; Arana, M.V.M.; Palermo, J.A.; Falkenberg, M.; Simões, C.M.O.; Schenkel, E.P.; Durán, F.J. Cytotoxic activity of semi-synthetic derivatives of elatol and isoobtusol. Mar. Drugs 2012, 10, 2254–2264. [Google Scholar] [CrossRef] [Green Version]
- Arberas-Jiménez, I.; Rizo-Liendo, A.; Sifaoui, I.; Chao-Pellicer, J.; Piñero, J.E.; Lorenzo-Morales, J. A fluorometric assay for the in vitro evaluation of activity against Naegleria fowleri Cysts. Microbiol. Spectr. 2022, 10, e0051522. [Google Scholar] [CrossRef]
Compound | N. fowleri ATCC 30808™ | N. fowleri ATCC 30215™ | Murine Macrophages J774.A1 |
---|---|---|---|
(+)-Elatol (1) | 1.08 ± 0.09 | 1.14 ± 0.09 | 61.52 ± 12.97 |
(−)-Elatol (2) | 36.77 ± 8.03 | 38.03 ± 7.61 | >150 |
(+)-Debromoelatol (3) | >98.11 | - | - |
(+)-Dechloroelatol (4) | >83.54 | - | - |
(−)-Rogiolol (5) | 22.50 ± 5.81 | 9.71 ± 0.82 | 142.42 ± 17.19 |
(−)-3,10-Dibromo-4-chloro-alpha-chamigrane (6) | >62.71 | - | - |
(+)-Dendroidiol (7) | >71.08 | - | - |
(−)-Cartilagineol (8) | >60.30 | - | - |
(+)-Obtusol (9) | >60.30 | - | - |
(+)-Obtusane (10) | >62.71 | - | - |
Amphotericin B * | 0.12 ± 0.03 | 0.17 ± 0,03 | > 200 |
Miltefosine * | 38.74 ± 4.23 | 81.57 ± 7.23 | 127.88 ± 8.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arberas-Jiménez, I.; Nocchi, N.; Chao-Pellicer, J.; Sifaoui, I.; Soares, A.R.; Díaz-Marrero, A.R.; Fernández, J.J.; Piñero, J.E.; Lorenzo-Morales, J. Chamigrane-Type Sesquiterpenes from Laurencia dendroidea as Lead Compounds against Naegleria fowleri. Mar. Drugs 2023, 21, 224. https://doi.org/10.3390/md21040224
Arberas-Jiménez I, Nocchi N, Chao-Pellicer J, Sifaoui I, Soares AR, Díaz-Marrero AR, Fernández JJ, Piñero JE, Lorenzo-Morales J. Chamigrane-Type Sesquiterpenes from Laurencia dendroidea as Lead Compounds against Naegleria fowleri. Marine Drugs. 2023; 21(4):224. https://doi.org/10.3390/md21040224
Chicago/Turabian StyleArberas-Jiménez, Iñigo, Nathália Nocchi, Javier Chao-Pellicer, Ines Sifaoui, Angélica Ribeiro Soares, Ana R. Díaz-Marrero, José J. Fernández, José E. Piñero, and Jacob Lorenzo-Morales. 2023. "Chamigrane-Type Sesquiterpenes from Laurencia dendroidea as Lead Compounds against Naegleria fowleri" Marine Drugs 21, no. 4: 224. https://doi.org/10.3390/md21040224
APA StyleArberas-Jiménez, I., Nocchi, N., Chao-Pellicer, J., Sifaoui, I., Soares, A. R., Díaz-Marrero, A. R., Fernández, J. J., Piñero, J. E., & Lorenzo-Morales, J. (2023). Chamigrane-Type Sesquiterpenes from Laurencia dendroidea as Lead Compounds against Naegleria fowleri. Marine Drugs, 21(4), 224. https://doi.org/10.3390/md21040224