Potential Activity of Arthrospira platensis as Antioxidant, Cytotoxic and Antifungal against Some Skin Diseases: Topical Cream Application
Abstract
:1. Introduction
2. Results
2.1. Cultivation and Growth Curve of Arthrospira platensis
2.2. In Vitro Study
Antifungal Activity of the Cyanobacterial Extracts
2.3. Minimal Inhibitory Concentration (MIC) Assay
2.4. Treated Candida albicans under Transmission Electron Microscopy (TEM)
2.5. In Vivo Study
Effect of Arthrospira platensis Extract on the Treatment of Wounded Mice Artificially Infected with Candida albicans
2.6. Histopathological Examination of Mouse Skin Tissues
2.7. Antioxidant Potential of Arthrospira platensis Methanolic Extract
DPPH Radical Scavenging Activity
2.8. Cytotoxicity Assay
2.9. GC-MS Analysis of Arthrospira platensis Methanolic Extract
3. Discussion
4. Materials and Methods
4.1. Cultivation of the Cyanobacteria Arthrospira platensis
4.2. Cyanobacterial Extract Preparation
4.3. Antifungal Activity of Cyanobacterial Extracts
Minimal Inhibitory Concentration (MIC) Assay
4.4. Treated Tested Fungi under Transmission Electron Microscopy (TEM)
4.5. Molecular Identification of Tested Fungus (Candida albicans)
4.5.1. DNA Extraction
4.5.2. PCR and ITS Sequencing
4.5.3. Phylogenetic and Alignment Analysis
4.6. In Vivo Study
4.6.1. Artificial Infection of Mice by Tested Candida albicans
4.6.2. Preparation of Arthrospira platensis Extract Cream
4.6.3. Measurement of Wound Healing
4.6.4. Treatment of Wounds Infected with the Yeast Candida albicans Using Arthrospira platensis Methanolic Extract Cream
4.6.5. Histopathological Examination of Mice Skin Tissues after Fungal Skin Infections
Separation of Mice Skin Tissues
Skin Sections Preparation
Preparation of Paraffin Blocks with Skin Sample
Skin Section Staining
4.6.6. Histological Section Examination under Light Microscope
4.7. Antioxidant Activity of Arthrospira platensis Extract
DPPH Assay
4.8. Cytotoxicity Assay of Arthrospira platensis Extract
MTT Assay
4.9. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Arthrospira platensis Extract
5. Statistical Methodology
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meena, S.; Samal, S. Alternaria host-specific (HSTs) toxins: An overview of chemical characterisation, target sites, regulation and their toxic effects. Toxicol. Rep. 2019, 6, 745–758. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Kregiel, D.; Mahady, G.; Sharifi-Rad, J.; Martins, N.; Rodrigues, C.F. Management of Streptococcus mutans-Candida spp. Oral Biofilms’ Infections: Paving the Way for Effective Clinical Interventions. J. Clin. Med. 2020, 9, 517. [Google Scholar] [CrossRef] [Green Version]
- Kornitzer, D. Regulation of Candida albicans Hyphal Morphogenesis by Endogenous Signals. J. Fungi 2019, 5, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soliman, A.M.; Fahmy, S.R.; Mohamed, W.A. Therapeutic efficacy of chitosan against invasive candidiasis in mice. J. Basic Appl. Zool. 2015, 72, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Frazzini, S.; Scaglia, E.; Dell’Anno, M.; Reggi, S.; Panseri, S.; Giromini, C.; Lanzoni, D.; Rossi, C.A.S.; Rossi, L. Antioxidant and Antimicrobial Activity of Algal and Cyanobacterial Extracts: An In Vitro Study. Antioxidants 2022, 11, 992. [Google Scholar] [CrossRef] [PubMed]
- Vicente, T.F.L.; Lemos, M.F.L.; Félix, R.; Valentão, P.; Félix, C. Marine Macroalgae, a Source of Natural Inhibitors of Fungal Phytopathogens. J. Fungi 2021, 7, 1006. [Google Scholar] [CrossRef]
- Gheda, S.F.; Ismail, G.A. Natural Products from Some Soil Cyanobacterial Extracts with Potent Antimicrobial, Antioxidant and Cytotoxic Activities. An. Acad. Bras. Cienc. 2020, 92, e20190934. [Google Scholar] [CrossRef]
- Gheda, S.F.; Abo-Shady, A.; Abdel-Karim, O.; Ismail, G. Antioxidant and Antihyperglycemic Activity of Arthrospira platensis (Spirulina platensis) Methanolic Extract: In Vitro and in Vivo Study. Egypt. J. Bot. 2021, 61, 71–93. [Google Scholar] [CrossRef]
- Negara, B.; Oktoviani, E.; Kusuma, A.; Kontesa, R.; Putra, E.; Siallagan, D.; Herliany, N.; Purnama, D. The Utilization of Seaweeds as An Inexpensive Source of New Drugs Agent. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 593, p. 012033. [Google Scholar] [CrossRef]
- Ismail, G.A.; El-Sheekh, M.M.; Samy, R.M.; Gheda, S.F. Antimicrobial, Antioxidant, and Antiviral Activities of Biosynthesized Silver Nanoparticles by Phycobiliprotein Crude Extract of the Cyanobacteria Spirulina platensis and Nostoc linckia. BioNanoScience 2021, 11, 355–370. [Google Scholar] [CrossRef]
- Mohamed, S.; Saber, A. Antifungal Potential of the Bioactive Constituents in Extracts of the Mostly Untapped Brown Seaweed Hormophysa cuneiformis from The Egyptian Coastal Waters. Egypt. J. Bot. 2019, 59, 695–708. [Google Scholar] [CrossRef]
- Kokabi, M.; Yousefzadi, M.; Ahmadi, A.A.; Feghhi, M.A.; Keshavarz, M. Antioxidant activity of extracts of selected algae from the Persian Gulf, Iran. J. Persian Gulf 2013, 4, 45–50. [Google Scholar]
- Ismail, G.A.; Gheda, S.F.; Abo-Shady, A.M.; Abdel-Karim, O.H. In vitro potential activity of some seaweeds as antioxidants and inhibitors of diabetic enzymes. Food Sci. Technol. 2020, 40, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Wijesekara, I.; Senevirathne, M.; Li, Y.; Kim, S. Functional ingredients from marine algae as potential antioxidants in the food industry. In Handbook of Marine Macroalgae; Wiley Publishing: New York, NY, USA, 2011; pp. 398–402. [Google Scholar]
- Silva-Stenico, M.E.; Kaneno, R.; Zambuzi, F.A.; Vaz, M.G.; Alvarenga, D.O.; Fiore, M.F. Natural products from cyanobacteria with antimicrobial and antitumor activity. Curr. Pharm. Biotechnol. 2013, 14, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Konícková, R.; Vanková, K.; Vaníková, J.; Vánová, K.; Muchová, L.; Subhanová, I.; Zadinová, M.; Zelenka, J.; Dvorák, A.; Kolár, M.; et al. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Ann. Hepato. 2014, 13, 273–283. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Menakha, M. Pharmaceutical applications of cyanobacteria: A review. J. Acute Med. 2015, 5, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Moneim, A.-M.E.; El-Saadony, M.T.; Shehata, A.M.; Saad, A.M.; Aldhumri, S.A.; Ouda, S.M.; Mesalam, N.M. Antioxidant and Antimicrobial Activities of Spirulina platensis Extracts and Biogenic Selenium Nanoparticles Against Selected Pathogenic Bacteria and Fungi. Saudi J. Biol. Sci. 2022, 29, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- Maryati, M.; Saifudin, A.; Wahyuni, S.; Rahmawati, J.; Arrum, A.; Priyunita, O.; Aulia, A.; Putra, F.; As’hari, Y.; Rasyidah, U.; et al. Cytotoxic Effect of Spirulina platensis Extract and Ulva compressa Linn. on Cancer Cell Lines. Food Res. 2020, 4, 1018–1023. [Google Scholar] [CrossRef]
- Musbah, H.; Abouelkhair, W.; Yousef, S.; Moustafa, E.; Hasan, A. Screening of Antifungal Activities of Five Algal Crude Extracts. J. Sci. Res. Sci. 2019, 36, 318–338. [Google Scholar] [CrossRef] [Green Version]
- Usharani, G.; Srinivasan, G.; Sivasakthi, S.; Saranraj, P. Antimicrobial activity of Spirulina platensis Solvent Extracts Against Pathogenic Bacteria and Fungi. Adv. Biol. Res. 2015, 9, 292–298. [Google Scholar] [CrossRef]
- Gouda, M.K.G.; Kavitha, M.D.; Sarada, R. Antihyperglycemic, Antioxidant and Antimicrobial Activities of the Butanol Extract from Spirulina platensis. J. Food Biochem. 2015, 39, 594–602. [Google Scholar] [CrossRef]
- Al-Saif, S.S.A.-l.; Abdel-Raouf, N.; El-Wazanani, H.A.; Aref, I.A. Antibacterial Substances from Marine Algae Isolated from Jeddah Coast of Red Sea, Saudi Arabia. Saudi J. Biol. Sci. 2014, 21, 57–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshouny, W.; El-Sheekh, M.; Sabae, S.; Khalil, M.; Badr, H. Antimicrobial Activity of Spirulina platensis against Aquatic Bacterial Isolates. J. Microbiol. Biotechnol. Food Sci. 2017, 6, 1203–1208. [Google Scholar] [CrossRef]
- Abedin, A.; Taha, A. Antibacterial and Antifungal Activity of Cyanobacteria and Green Microalgae. Evaluation of Medium Components by Placket-Burman Design for Antimicrobial Activity of Spirulina platensis. Glob. J. Biotechnol. Biochem. 2008, 3, 22–31. [Google Scholar]
- Ibraheem, I.; Moussa, S.; Abd, A.; Farag, M.F.; Abdel-Raouf, N. Antimicrobial Activities of Some Brown Macroalgae Against Some Soil Borne Plant Pathogens and In Vivo Management of Solanum melongena Root Diseases. Aust. J. Basic Appl. Sci. 2017, 11, 157–168. [Google Scholar]
- Phillips, A.J.; Sudbery, I.; Ramsdale, M. Apoptosis Induced by Environmental Stresses and Amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. USA 2003, 100, 14327–14332. [Google Scholar] [CrossRef] [Green Version]
- Mady, O.Y.; Donia, A.M.; Al-Madboly, L.A. Miconazole-Urea in a Buccal Film as a New Trend for Treatment of Resistant Mouth Fungal White Patches. Front. Microbiol. 2018, 9, 837. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Verma, R.; Murari, A.; Agrawal, A. Oral Candidiasis: An Overview. J. Oral Maxillofac. Pathol. 2014, 18, S81–S85. [Google Scholar] [CrossRef]
- Abo Baker, S. Antifungal Effect of Spirulina plantensis in Rat Tongue Mucosa. Saudi J. Oral. Dent. 2019, 4, 366–371. [Google Scholar] [CrossRef]
- Marangoni, A.; Foschi, C.; Palomino, R.A.N.M.; Toschi, T.G.; Vitali, B.; Corazza, I. In Vitro activity of Spirulina platensis Water Extract against Different Candida Species Isolated from Vulvo-Vaginal Candidiasis Cases. PLoS ONE 2017, 12, e0188567. [Google Scholar] [CrossRef] [Green Version]
- Zamani, N.; Fazilati, M.; Salavati, H.; Izadi, M.; Koohi-Dehkordi, M. The Topical Cream Produced from Phycocyanin of Spirulina platensis Accelerates Wound Healing in Mice Infected with Candida albicans. Appl. Biochem. Microbiol. 2020, 56, 583–589. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Daboor, S.M.; Swelim, M.A.; Mohamed, S. Production and Characterization of Antimicrobial Active Substance from Spirulina platensis. Iran. J. Microbiol. 2014, 6, 112–119. [Google Scholar] [PubMed]
- Scaglioni, P.T.; Quadros, L.; de Paula, M.; Furlong, V.B.; Abreu, P.C.; Badiale-Furlong, E. Inhibition of Enzymatic and Oxidative Processes by Phenolic Extracts from Spirulina sp. and Nannochloropsis sp. Food Technol. Biotechnol. 2018, 56, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Mashjoor, S.; Yousefzadi, M.; Esmaeili, M.A.; Rafiee, R. Cytotoxicity and Antimicrobial Activity of Marine Macro Algae (Dictyotaceae and Ulvaceae) from the Persian Gulf. Cytotechnology 2016, 68, 1717–1726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, F.Y.F.; Khandual, S.; López, I.G.R. Cytotoxic Effect of Spirulina platensis Extracts on Human Acute Leukemia Kasumi-1 and Chronic Myelogenous Leukemia K-562 Cell Lines. Asian Pac. J. Trop. Med. 2017, 7, 14–19. [Google Scholar] [CrossRef]
- Deviyani-Zakaria, A.; Basah, K.; Bahtiar, A. Cytotoxic Activity of Extract and Active Fraction of Turbinaria decurrens Bory on Colon Cancer Cell Line HCT-116. Int. J. Morphol. 2018, 36, 979–983. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Shen, J.; Pan, W.; Shen, S.; Das, U.N. Effects of Polyunsaturated Fatty Acids on the Growth of Gastric Cancer Cells In Vitro. Lipids Health Dis. 2013, 12, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, W.; El Semary, N.; Om, A.G.E.; Mofed, D. Bioactivity and Cytotoxic Effect of Cyanobacterial Toxin Against Hepatocellular Carcinoma. J. Cancer Sci. Ther. 2017, 9, 505–511. [Google Scholar] [CrossRef]
- Ahmed, B.E.; Badawi, M.H.; Mostafa, S.S.; Higazy, M.A. Human Anticancers and Antidiabetic Activities of the Cyanobacterium Fischerella sp. BS1-EG Isolated from River Nile, Egypt. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3473–3485. [Google Scholar] [CrossRef]
- Kalaivani, G.; Hemalatha, N.; Poongothai, E. Screening of Marine Brown Algae Associated Potential Bacteria Producing Antagonistic Bioactive Compounds Against Uti Pathogens. Int. J. Pharma. Bio. Sci. 2016, 7, 395–405. [Google Scholar]
- Yuan, Y.V.; Bone, D.E.; Carrington, M.F. Antioxidant Activity of Dulse (Palmaria palmata) extract Evaluated In Vitro. Food Chem. 2005, 91, 485–494. [Google Scholar] [CrossRef]
- Srivastava, N.; Saurav, K.; Mohanasrinivasan, V.; Kannabiran, K.; Singh, M. Antibacterial potential of macroalgae collected from the Madappam coast, India. Br. J. Pharmacol. 2010, 1, 72–76. [Google Scholar]
- Caf, F.; Yilmaz, O.; Durucan, F.; Ozdemir, N.Ş. Biochemical Components of Three Marine Macroalgae (Padina pavonica, Ulva lactuca and Taonia atomaria) from the Levantine Sea Coast of Antalya, Turkey. J. Biodivers. Environ. Sci. 2015, 6, 401–411. [Google Scholar]
- El-Sheekh, M.M.; Ahmed, A.Y.; Soliman, A.S.; Abdel-Ghafour, S.E.; Sobhy, H.M. Biological Control of Soil Borne Cucumber Diseases Using Green Marine Macroalgae. Egypt J. Biol. Pest Control 2021, 31, 72. [Google Scholar] [CrossRef]
- Lotfi, A.; Kottb, M.; Elsayed, A.; Shafik, H. Antifungal Activity of Some Mediterranean Seaweed against Macrophomina phaseolina and Fusarium oxysporum In Vitro. Alfarama J. Basic Appl. Sci. 2020, 2, 81–96. [Google Scholar] [CrossRef]
- Zarrouk, C. Contribution a l’Etude d’une Cyanophycee. Influence de Divers Facteurs Physiques et Chimiques sur la Croissance et Photosynthese de Spirulina maxima (Setch et Gardner) Geitler. Ph.D. Thesis, University of Paris, Paris, France, 1966; p. 85. [Google Scholar]
- Rogers, S.L.; Burns, R.G. Changes in Aggregate Stability, Nutrient Status, Indigenous Microbial Populations, and Seedling Emergence, Following Inoculation of Soil with Nostoc muscorum. Biol. Fert. Soils 1994, 18, 209–215. [Google Scholar] [CrossRef]
- Kumar, M.; Kulshreshtha, J.; Singh, G.P. Growth and Biopigment Accumulation of Cyanobacterium Spirulina platensis at Different Light Intensities and Temperature. Braz. J. Microbiol. 2011, 42, 1128–1135. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, P.; Chauhan, A. In vitro Antibacterial Activity of Laboratory Grown Culture of Spirulina platensis. Indian J. Microbiol. 2008, 48, 348–352. [Google Scholar] [CrossRef] [Green Version]
- Magaldi, S.; Rios, A.; Hartung, C.; Verde, G.; Spencer, L.; Mata, S. In Vitro Susceptibility to Fluconazole of Candida spp. Isolates Comparing Three Different Methods. J. Mycol. Med. 2001, 11, 123–126. [Google Scholar]
- Perez, C.; Pauli, M.; Bazerque, P. An Antibiotic Assay by the Agar Well Diffusion Method. Acta Biol. Med. Exp. 1990, 5, 113–115. [Google Scholar]
- Ardenne, M.B.v.; Beischer, D. Untersuchung von Metalloxyd-Rauchen mit dem Universal-Elektronenmikroskop. Zeitsschrift Elektrochem. Angew. Phys. Chem. 1940, 46, 270–277. [Google Scholar]
- Moubasher, H.; Abd El-Ghani, M.; Kamel, W.; Mansi, M.; El-Bous, M. Taxonomic considerations among and within some Egyptian taxa of Capparis and related genera (Capparaceae) as revealed by RAPD fingerprinting. Collect Bot. 2011, 30, 29–35. [Google Scholar] [CrossRef]
- White, T.; Bruns, T.; Lee, S.; Taylor, J.; Innis, M.; Gelfand, D.; Sninsky, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. PCR Protocols; Academic Press, Inc.: Cambridge, MA, USA, 1990; Volume 31, pp. 315–322. [Google Scholar]
- Al-Bedak, O.A.; Moubasher, A.H. Aspergillus gaarensis, a New Addition to Section Circumdati from Soil of Lake El-Gaar in Wadi-El-Natron, Egypt. Stud. Fungi 2020, 5, 59–65. [Google Scholar] [CrossRef]
- Criscuolo, A.; Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): A New Software for Selection of Phylogenetic Informative Regions from Multiple Sequence Alignments. BMC Evol. Biol. 2020, 10, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Lefort, V.; Longueville, J.E.; Gascuel, O. SMS: Smart Model Selection in PhyML. Mol. Biol. Evol. 2017, 34, 2422–2424. [Google Scholar] [CrossRef] [Green Version]
- Dash, G.K.; Suresh, P.; Ganapaty, S. Studies on Hypoglycaemic and Wound Healing Activities of Lantana camara Linn. J. Nat. Remedies 2001, 1, 105–110. [Google Scholar] [CrossRef]
- El-Shouny, W.A.; Abd El Zaher, H.F.; Khalil, M.A.; Abd El-Salam, O. Antimicrobial activity of chamomile acetone extract against some experimentally-induced skin infections in mice. Egypt J. Environ. Res. 2014, 2, 58–70. [Google Scholar]
- Purushothamrao, K.; Sagare, P.; Kharat, S.; Alpana, K. Formulation and Evaluation of Vanishing Cream for Scalp Psoriasis. Int. J. Pharm. Sci. 2010, 4, 32–41. [Google Scholar]
- Leedy, P.D.; Ormrod, J.E. Practical Research: Planning and Design, 11th ed.; Pearson Education Limited: Boston, MA, USA, 2015; pp. 232–233. ISBN 978-0-13-374132-2. Available online: https://pce-fet.com/common/library/books/51/2590_%5BPaul_D._Leedy,_Jeanne_Ellis_Ormrod%5D_Practical_Res(b-ok.org).pdf (accessed on 14 December 2022).
- Mahmoud, Y.A.; Al-Ghamdi, A.Y.; Abd El-Zaher, E.H. A Protective Mechanism in Lungs of Rats Experimentally Infected with Aspergillus fumigatus. Mycobiology 2011, 39, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Klajnert, B.; Walach, W.; Bryszewska, M.; Dworak, A.; Shcharbin, D. Cytotoxicity, Haematotoxicity and Genotoxicity of High Molecular Mass Arborescent Polyoxyethylene Polymers with Polyglycidol-Block-Containing Shells. Cell Biol. Int. 2006, 30, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Sparkman, O.D.; Penton, Z.; Kitson, F.G. Gas Chromatography and Mass Spectrometry: A Practical Guide, 2nd ed.; Academic Press: Cambridge, MA, USA, 2011; p. 632. [Google Scholar] [CrossRef]
- Broughton-Pipkin, F. Medical Statistics Made Easy; WB Saunders: St. Louis, MO, USA, 1984; p. 137. [Google Scholar]
Algal Extract | Solvents | Diameter of Inhibition Zone (mm) | ||
---|---|---|---|---|
Candida albicans13531 | Malassezia furfur11710 | Trichophyton rubrum1804 | ||
Arthrospira platensis | Ethanol | 11.3 ± 3.11 c | 12 ± 2.12 b | 10 ± 1.11 a |
Methanol | 19.2 ± 3.45 a | 17.3 ± 2.14 a | 11 ± 1.12 a | |
Ethyl acetate | 16 ± 2.17 b | 12.6 ± 2.15 b | NA | |
Acetone | 16.3 ± 3.18 b | 10.7 ± 2.12 c | NA | |
F-value | 10.55 ** | 10.5 ** | 6.45 ** | |
Clotrimazole | 24 ± 0.01 a | 20 ± 0.02 b | 15 ± 0.01 c | |
F-value | 11.12 ** | |||
p Value | 0.005 ** |
Scores of Inflammation and Wound Healing | |||||||
---|---|---|---|---|---|---|---|
Treatments | Groups | After 4 Days | After 13 Days | After17 Days | |||
Redness | Hair Growth | Redness | Hair Growth | Redness | Hair Growth | ||
Control | G1 | Non-infected | |||||
Placebo cream | G2 | ++++ | - | +++ | - | ++ | - |
Nystatin cream | G3 | ++++ | - | ++ | +++ | - | +++ |
A. platensis extract cream | G4 | ++ | ++ | - | +++ | - | ++++ |
Radical Scavenging % | |||||||
---|---|---|---|---|---|---|---|
Conc (µg/mL) | 10 | 20 | 30 | 40 | 50 | 60 | IC50 |
Ascorbic acid | 43.5 ± 0.06 | 49.2 ± 0.06 | 59.1 ± 0.1 | 74.2 ± 0.1 | 77.3 ± 0.1 | 79.2 ± 0.3 | 22 ± 0.2 |
Arthrospira platensis | 25.3 ± 0.25 | 30.1 ± 0.26 | 53.4 ± 0.3 | 66.2 ± 0.45 | 75.5 ± 0.4 | 79.7 ± 0.21 | 28 ± 0.12 |
Compound | In Vitro Cytotoxicity IC50 (µg/mL) | |||
---|---|---|---|---|
WI38 | HePG2 | Hela | MCF7 | |
DOX | 6.72 ± 0.5 | 4.50 ± 0.2 | 5.57 ± 0.4 | 4.17 ± 0.2 |
Arthrospira platensis | 65.82 ± 3.5 | 20.56 ± 1.7 | 38.91 ± 2.4 | 27.99 ± 2.1 |
RT | Compound Name | Norm% | MF | Biological Activity ** |
---|---|---|---|---|
10.921 | Ethanone, 1-(3-methylphenyl)- | 0.89 | C9H10O2 | Antifungal |
13.632 | (Hydroxymethyl)ethylene acetate | 0.58 | C7H12O5 | Antifungal, Antioxidant |
13.977 | Triacetin | 2.34 | C9H14O6 | Antifungal, Anti-tumor, Antioxidant and Anti-inflammatory |
14.377 | 4-Hydroxy-4-methyl-4H-naphthalen-1-one | 1.46 | C11H10O2 | Antimicrobial, Antioxidant and Anti-inflammatory |
16.138 | Tetradecane, 2,6,10-trimethyl- | 0.45 | C17H36 | Antioxidant, Antimicrobial |
16.483 | 3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1- yl)-, (E) | 0.55 | C13H20O | Antifungal |
16.833 | Butylated Hydroxytoluene | 0.58 | C15H24O | Antifungal, Antioxidant, Anticancer and Anti-inflammatory |
17.303 | (Dihydroactinidiolide) 2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4,7atrimethyl-, (R)- | 1.33 | C11H16O2 | Antimicrobial, Antioxidant, Anticancer and Anti-inflammatory |
18.309 | Hexadecane | 0.89 | C16H34 | Antifungal, Antioxidant |
19.329 | 11-Hexadecyn-1-ol | 0.44 | C16H30O | Antimicrobial |
19.439 | 8-Heptadecene | 0.78 | C17H34 | Antimicrobial, Antioxidant and Anti-inflammatory |
19.809 | Heptadecane | 100.00 | C17H36 | Antimicrobial, Antioxidant, Anticancer and Anti-inflammatory |
20.375 | Tetradecane, 2,6,10-trimethyl- | 0.98 | C17H36 | Mentioned before |
21.510 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 2.35 | C20H40O | Antimicrobial, Antioxidant, Anticancer and Anti-inflammatory |
21.600 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 14.34 | C20H40O | Mentioned before |
21.670 | 1-Eicosanol | 1.89 | C20H42O | Antifungal, Antioxidant, Anticancer and Anti-inflammatory |
21.835 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 0.40 | C20H40O | Mentioned before |
21.910 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 2.74 | C20H40O | Mentioned before |
22.070 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 0.49 | C20H40O | Mentioned before |
22.150 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 4.93 | C20H40O | Mentioned before |
22.726 | (Methyl palmitate) Hexadecanoic acid, methyl ester | 1.54 | C17H34O2 | Antifungal, Antioxidant, Anticancer and Anti-inflammatory |
24.956 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 0.68 | C20H40O | Mentioned before |
Mice Groups | Days | Treatment |
---|---|---|
G1 | 1st | Injected with 1 mL saline |
2nd–17th | no topical application | |
G2 | 1st | Injected with 106 CFU/mL of tested yeast |
2nd–17th | Topical application of placebo cream base (twice daily) | |
G3 | 1st | Injected with 106 CFU/mL of tested yeast |
2nd–17th | Topical application of nystatin cream (twice daily) | |
G4 | 1st | Injected with 106 CFU/mL of tested yeast |
2nd–17th | Topical application of A. platensis methanolic extract cream (twice daily) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheda, S.; Abd El-Zaher, E.H.F.; Abou-Zeid, A.M.; Bedair, N.A.; Pereira, L. Potential Activity of Arthrospira platensis as Antioxidant, Cytotoxic and Antifungal against Some Skin Diseases: Topical Cream Application. Mar. Drugs 2023, 21, 160. https://doi.org/10.3390/md21030160
Gheda S, Abd El-Zaher EHF, Abou-Zeid AM, Bedair NA, Pereira L. Potential Activity of Arthrospira platensis as Antioxidant, Cytotoxic and Antifungal against Some Skin Diseases: Topical Cream Application. Marine Drugs. 2023; 21(3):160. https://doi.org/10.3390/md21030160
Chicago/Turabian StyleGheda, Saly, Eman H. F. Abd El-Zaher, Alaa M. Abou-Zeid, Nesma A. Bedair, and Leonel Pereira. 2023. "Potential Activity of Arthrospira platensis as Antioxidant, Cytotoxic and Antifungal against Some Skin Diseases: Topical Cream Application" Marine Drugs 21, no. 3: 160. https://doi.org/10.3390/md21030160
APA StyleGheda, S., Abd El-Zaher, E. H. F., Abou-Zeid, A. M., Bedair, N. A., & Pereira, L. (2023). Potential Activity of Arthrospira platensis as Antioxidant, Cytotoxic and Antifungal against Some Skin Diseases: Topical Cream Application. Marine Drugs, 21(3), 160. https://doi.org/10.3390/md21030160