Production of Antioxidants and High Value Biomass from Nannochloropsis oculata: Effects of pH, Temperature and Light Period in Batch Photobioreactors
Abstract
:1. Introduction
2. Results
2.1. Growth
2.2. Biomass Composition
2.3. Fatty Acid Profile
2.4. Extraction
2.5. Linear Regression Results
2.5.1. Effects of Growth Conditions on Growth Parameters
2.5.2. Effects of Growth Conditions on Biomass Composition
2.5.3. Effects on Extraction
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Microalgal Species and Cultivation Conditions
4.3. Analytical Measurements
4.4. Biomass Composition Analysis
4.4.1. Biomass Harvesting
4.4.2. Moisture and Ash Content Determination
4.4.3. Protein Content Determination
4.4.4. Carbohydrate Content Determination
4.4.5. Lipid Profiling and Quantification
4.4.6. Pigment Content Determination
4.5. Ultrasound Assisted Extraction with 100% EtOH
4.6. Folin–Ciocalteu (F–C) Assay
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fawley, M.W.; Jameson, I.; Fawley, K.P. The Phylogeny of the Genus Nannochloropsis (Monodopsidaceae, Eustigmatophyceae), with Descriptions of N. Australis Sp. Nov. and Microchloropsis Gen. Nov. Phycologia 2019, 54, 545–552. [Google Scholar] [CrossRef]
- Zanella, L.; Vianello, F. Microalgae of the Genus Nannochloropsis: Chemical Composition and Functional Implications for Human Nutrition. J. Funct. Foods 2020, 68, 103919. [Google Scholar] [CrossRef]
- Gkioni, M.D.; Andriopoulos, V.; Koutra, E.; Hatziantoniou, S.; Kornaros, M.; Lamari, F.N. Ultrasound-Assisted Extraction of Nannochloropsis Oculata with Ethanol and Betaine: 1,2-Propanediol Eutectic Solvent for Antioxidant Pigment-Rich Extracts Retaining Nutritious the Residual Biomass. Antioxidants 2022, 11, 1103. [Google Scholar] [CrossRef]
- Andriopoulos, V.; Gkioni, M.D.; Koutra, E.; Mastropetros, S.G.; Lamari, F.N.; Hatziantoniou, S.; Kornaros, M. Total Phenolic Content, Biomass Composition, and Antioxidant Activity of Selected Marine Microalgal Species with Potential as Aquaculture Feed. Antioxidants 2022, 11, 1320. [Google Scholar] [CrossRef]
- Goiris, K.; Muylaert, K.; Fraeye, I.; Foubert, I.; De Brabanter, J.; De Cooman, L. Antioxidant Potential of Microalgae in Relation to Their Phenolic and Carotenoid Content. J. Appl. Phycol. 2012, 24, 1477–1486. [Google Scholar] [CrossRef]
- Sanjeewa, K.K.A.; Fernando, I.P.S.; Samarakoon, K.W.; Lakmal, H.H.C.; Kim, E.A.; Kwon, O.N.; Dilshara, M.G.; Lee, J.B.; Jeon, Y.J. Anti-Inflammatory and Anti-Cancer Activities of Sterol Rich Fraction of Cultured Marine Microalga Nannochloropsis Oculata. Algae 2016, 31, 277–287. [Google Scholar] [CrossRef]
- Nuño, K.; Villarruel-López, A.; Puebla-Pérez, A.M.; Romero-Velarde, E.; Puebla-Mora, A.G.; Ascencio, F. Effects of the Marine Microalgae Isochrysis Galbana and Nannochloropsis Oculata in Diabetic Rats. J. Funct. Foods 2013, 5, 106–115. [Google Scholar] [CrossRef]
- Wang, X.; Fosse, H.K.; Li, K.; Chauton, M.S.; Vadstein, O.; Reitan, K.I. Influence of Nitrogen Limitation on Lipid Accumulation and EPA and DHA Content in Four Marine Microalgae for Possible Use in Aquafeed. Front. Mar. Sci. 2019, 6, 95. [Google Scholar] [CrossRef]
- Gnanakani, P.E.; Santhanam, P.; Premkumar, K.; Kumar, K.E.; Dhanaraju, M.D. Nannochloropsis Extract–Mediated Synthesis of Biogenic Silver Nanoparticles, Characterization and In Vitro Assessment of Antimicrobial, Antioxidant and Cytotoxic Activities. Asian Pac. J. Cancer Prev. 2019, 20, 2353. [Google Scholar] [CrossRef]
- Cha, S.-H.; Kim, M.-J.; Yang, H.-Y.; Jin, C.-B.; Jeon, Y.-J.; Oda, T.; Kim, D. ACE, α-Glucosidase and Cancer Cell Growth Inhibitory Activities of Extracts and Fractions from Marine Microalgae, Nannochloropsis Oculata. Korean J. Fish. Aquat. Sci. 2010, 43, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Carrasco-Reinado, R.; Escobar-Niño, A.; Fajardo, C.; Morano, I.M.; Amil-Ruiz, F.; Martinez-Rodríguez, G.; Fuentes-Almagro, C.; Capilla, V.; Tomás-Cobos, L.; Soriano-Romaní, L.; et al. Article Development of New Antiproliferative Compound against Human Tumor Cells from the Marine Microalgae Nannochloropsis Gaditana by Applied Proteomics. Int. J. Mol. Sci. 2021, 22, 96. [Google Scholar] [CrossRef]
- Converti, A.; Casazza, A.A.; Ortiz, E.Y.; Perego, P.; Del Borghi, M. Effect of Temperature and Nitrogen Concentration on the Growth and Lipid Content of Nannochloropsis Oculata and Chlorella Vulgaris for Biodiesel Production. Chem. Eng. Process. Process Intensif. 2009, 48, 1146–1151. [Google Scholar] [CrossRef]
- Van Vooren, G.; Le Grand, F.; Legrand, J.; Cuiné, S.; Peltier, G.; Pruvost, J. Investigation of Fatty Acids Accumulation in Nannochloropsis Oculata for Biodiesel Application. Bioresour. Technol. 2012, 124, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.Y.; Kao, C.Y.; Tsai, M.T.; Ong, S.C.; Chen, C.H.; Lin, C.S. Lipid Accumulation and CO2 Utilization of Nannochloropsis Oculata in Response to CO2 Aeration. Bioresour. Technol. 2009, 100, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Mehra, A.; Jutur, P.P. Application of Response Surface Methodology (RSM) for Optimizing Biomass Production in Nannochloropsis Oculata UTEX 2164. J. Appl. Phycol. 2022, 34, 1893–1907. [Google Scholar] [CrossRef]
- Manisali, A.Y.; Sunol, A.K.; Philippidis, G.P. Effect of Macronutrients on Phospholipid Production by the Microalga Nannochloropsis Oculata in a Photobioreactor. Algal Res. 2019, 41, 101514. [Google Scholar] [CrossRef]
- Optimization of Culture Media for Lipid Production by Nannochloropsis Oculata for Biodiesel Production by Mohammad Malakootian, Behnam Hatami, Shidwash Dowlatshahi, Ahmad Rajabizadeh: SSRN. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2685007 (accessed on 21 July 2022).
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Optimization of Nannochloropsis Oculata Growth Using the Response Surface Method. J. Chem. Technol. Biotechnol. 2006, 81, 1049–1056. [Google Scholar] [CrossRef]
- Malakootian, M.; Hatami, B.; Dowlatshahi, S.; Rajabizadeh, A. Growth and Lipid Accumulation in Response to Different Cultivation Temperatures in Nannochloropsis Oculata for Biodiesel Production. Available online: https://ssrn.com/abstract=2773186 (accessed on 21 July 2022).
- Aussant, J.; Guihéneuf, F.; Stengel, D.B. Impact of Temperature on Fatty Acid Composition and Nutritional Value in Eight Species of Microalgae. Appl. Microbiol. Biotechnol. 2018, 102, 5279–5297. [Google Scholar] [CrossRef]
- Gutierrez, J.; Kwan, T.A.; Zimmerman, J.B.; Peccia, J. Ammonia Inhibition in Oleaginous Microalgae. Algal Res. 2016, 19, 123–127. [Google Scholar] [CrossRef]
- Larsdotter, K.; La Cour Jansen, J.; Dalhammar, G. Biologically Mediated Phosphorus Precipitation in Wastewater Treatment with Microalgae. Environ. Technol. 2010, 28, 953–960. [Google Scholar] [CrossRef]
- Gao, K. Approaches and Involved Principles to Control PH/PCO2 Stability in Algal Cultures. J. Appl. Phycol. 2021, 33, 3497–3505. [Google Scholar] [CrossRef]
- Wang, J.; Curtis, W.R. Proton Stoichiometric Imbalance during Algae Photosynthetic Growth on Various Nitrogen Sources: Toward Metabolic PH Control. J. Appl. Phycol. 2016, 28, 43–52. [Google Scholar] [CrossRef]
- Cañavate, J.P.; Fernández-Díaz, C. An Appraisal of the Variable Response of Microalgal Lipids to Culture Salinity. Rev. Aquac. 2022, 14, 192–212. [Google Scholar] [CrossRef]
- Ren, Y.; Sun, H.; Deng, J.; Huang, J.; Chen, F. Carotenoid Production from Microalgae: Biosynthesis, Salinity Responses and Novel Biotechnologies. Mar. Drugs 2021, 19, 713. [Google Scholar] [CrossRef]
- Abidin, A.A.Z.; Yusof, Z.N.B.; Yokthongwattana, C. Carotenogenesis in Nannochloropsis Oculata under Oxidative and Salinity Stress. Sains Malays. 2021, 50, 327–337. [Google Scholar] [CrossRef]
- Palacios, Y.M.; Vonshak, A.; Beardall, J. Photosynthetic and Growth Responses of Nannochloropsis Oculata (Eustigmatophyceae) during Batch Cultures in Relation to Light Intensity. Phycologia 2019, 57, 492–502. [Google Scholar] [CrossRef]
- Wang, B.; Jia, J. Photoprotection Mechanisms of Nannochloropsis Oceanica in Response to Light Stress. Algal Res. 2020, 46, 101784. [Google Scholar] [CrossRef]
- Wahidin, S.; Idris, A.; Shaleh, S.R.M. The Influence of Light Intensity and Photoperiod on the Growth and Lipid Content of Microalgae Nannochloropsis Sp. Bioresour. Technol. 2013, 129, 7–11. [Google Scholar] [CrossRef]
- Peng, X.; Meng, F.; Wang, Y.; Yi, X.; Cui, H. Effect of PH, Temperature, and CO2 Concentration on Growth and Lipid Accumulation of Nannochloropsis Sp. MASCC 11. J. Ocean Univ. China 2020, 19, 1183–1192. [Google Scholar] [CrossRef]
- Shene, C.; Chisti, Y.; Vergara, D.; Burgos-Díaz, C.; Rubilar, M.; Bustamante, M. Production of Eicosapentaenoic Acid by Nannochloropsis Oculata: Effects of Carbon Dioxide and Glycerol. J. Biotechnol. 2016, 239, 47–56. [Google Scholar] [CrossRef]
- Rasdi, N.W.; Qin, J.G. Effect of N:P Ratio on Growth and Chemical Composition of Nannochloropsis Oculata and Tisochrysis Lutea. J. Appl. Phycol. 2015, 27, 2221–2230. [Google Scholar] [CrossRef]
- Hong, S.-J.; Park, Y.S.; Han, M.-A.; Kim, Z.-H.; Cho, B.-K.; Lee, H.; Choi, H.-K.; Lee, C.-G. Enhanced Production of Fatty Acids in Three Strains of Microalgae Using a Combination of Nitrogen Starvation and Chemical Inhibitors of Carbohydrate Synthesis. Biotechnol. Bioprocess Eng. 2017, 22, 60–67. [Google Scholar] [CrossRef]
- Shene, C.; Chisti, Y.; Bustamante, M.; Rubilar, M. Effect of CO2 in the Aeration Gas on Cultivation of the Microalga Nannochloropsis Oculata: Experimental Study and Mathematical Modeling of CO2 Assimilation. Algal Res. 2016, 13, 16–29. [Google Scholar] [CrossRef]
- Kumar, S.S. Effect of Salinity and PH Ranges on the Growth and Biochemical Composition of Marine Microalga-Nannochloropsis Salina. Int. J. Agric. Environ. Biotechnol. 2018, 11, 651–660. [Google Scholar] [CrossRef]
- Gu, N.; Lin, Q.; Li, G.; Tan, Y.; Huang, L.; Lin, J. Effect of Salinity on Growth, Biochemical Composition, and Lipid Productivity of Nannochloropsis Oculata CS 179. Eng. Life Sci. 2012, 12, 631–637. [Google Scholar] [CrossRef]
- Chen, M.; Chen, X.; Liu, T.; Zhang, W. Subcritical Ethanol Extraction of Lipid from Wet Microalgae Paste of Nannochloropsis Sp. J. Biobased Mater. Bioenergy 2011, 5, 385–389. [Google Scholar] [CrossRef]
- Zaher, S.S.; Helal, A.M. How Culture Medium Ph Range Influence Phytoplankton Growth Performance and Biochemical Content. Egypt. J. Aquat. Biol. Fish. 2020, 24, 103–116. [Google Scholar] [CrossRef]
- APHA. Standard Methods for Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998; ISBN 1873-3336. [Google Scholar]
- Zhu, C.J.; Lee, Y.K. Determination of Biomass Dry Weight of Marine Microalgae. J. Appl. Phycol. 1997, 9, 189–194. [Google Scholar] [CrossRef]
- Do, B.C.; Dang, T.T.; Berrin, J.G.; Haltrich, D.; To, K.A.; Sigoillot, J.C.; Yamabhai, M. Cloning, Expression in Pichia Pastoris, and Characterization of a Thermostable GH5 Mannan Endo-1,4-Beta-Mannosidase from Aspergillus Niger BK01. Available online: https://www.scienceopen.com/document?vid=8f3823b9-b461-49b4-8e91-a93572357775 (accessed on 17 May 2021).
- Levine, R.B.; Costanza-Robinson, M.S.; Spatafora, G.A. Neochloris Oleoabundans Grown on Anaerobically Digested Dairy Manure for Concomitant Nutrient Removal and Biodiesel Feedstock Production. Biomass Bioenergy 2011, 35, 40–49. [Google Scholar] [CrossRef]
- Koutra, E.; Grammatikopoulos, G.; Kornaros, M. Microalgal Post-Treatment of Anaerobically Digested Agro-Industrial Wastes for Nutrient Removal and Lipids Production. Bioresour. Technol. 2017, 224, 473–480. [Google Scholar] [CrossRef]
- Porra, R.J.; Thompson, W.A.; Kriedemann, P.E. Determination of Accurate Extinction Coefficients and Simultaneous Equations for Assaying Chlorophylls a and b Extracted with Four Different Solvents: Verification of the Concentration of Chlorophyll Standards by Atomic Absorption Spectroscopy. BBA-Bioenerg. 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
Conditions * | (A) LP 12:12/ pH 6.5/ T 35 °C | (B) LP 12:12/ pH 8/ T 27.5 °C | (C) LP 12:12/ pH 9.5/ T 20 °C | (D) LP 24:0/ pH 6.5/ T 20 °C | (E) LP 24:0/ pH 8/ T 27.5 °C | (F) LP 24:0/ pH 9.5/ T 35 °C |
---|---|---|---|---|---|---|
μmax (day−1) | 0.00 ± 0 b | 0.09 ± 0.03 ab | 0.17 ± 0.03 ab | 0.18 ± 0.03 ab | 0.23 ± 0.06 a | 0.07 ± 0.02 ab |
TSS (g L−1 AFDW) | 0.16 ± 0.03 c | 0.33 ± 0.01 bc | 0.47 ± 0.02 ab | 0.42 ± 0.09 ab | 0.66 ± 0.02 a | 0.35 ± 0.03 bc |
Chla (mg L−1) | 5.17 ± 0.3 cd | 7.9 ± 0.59 bcd | 9.1 ± 0.05 bc | 11.37 ± 6.08 b | 19.13 ± 0.47 a | 4.21 ± 1.2 d |
Cc+x (mg L−1) | 1.95 ± 0.13 bc | 2.25 ± 0.21 bc | 2.63 ± 0.09 bc | 3.27 ± 1.44 b | 5.29 ± 0.16 a | 1.7 ± 0.32 c |
N consumption (mg N L−1) | 0 ± 0 b | 14.89 ± 10.06 a | 15.22 ± 5.61 a | 18.94 ± 0.43 a | 23.60 ± 1.53 a | 8.58 ± 9.42 a |
P consumption (μg P L−1) | 4043.35 ± 128.49 | 4130.57 ± 364.72 | 4936.64 ± 73.87 | 4527.11 ± 178.28 | 4694.49 ± 22.56 | 4980.89 ± 3.01 |
Conditions * | (A) LP 12:12/ pH 6.5/ T 35 °C | (B) LP 12:12/ pH 8/ T 27.5 °C | (C) LP 12:12/ pH 9.5/ T 20 °C | (D) LP 24:0/ pH 6.5/ T 20 °C | (E) LP 24:0/ pH 8/ T 27.5 °C | (F) LP 24:0/ pH 9.5/ T 35 °C |
---|---|---|---|---|---|---|
Carbs % AFDW | 8.79 ± 0.2 d | 18.02 ± 0.98 a | 9.49 ± 0.05 cd | 14.2 ± 0.54 b | 12.72 ± 1.11 bc | 6.73 ± 0.12 d |
Protein % AFDW | 51.58 ± 1.12 a | 56.73 ± 1.85 a | 25.49 ± 3.52 b | 57.19 ± 4.98 a | 47.68 ± 4.72 a | 25.58 ± 4.63 b |
FA % AFDW | 15.21 ± 0.13 a | 16.75 ± 0.6 a | 8.62 ± 2.3b | 16.94 ± 0.77 a | 14.43 ± 0.11 a | 11.92 ± 0.27 ab |
Other % ** | 16.54 ± 1.22 a | 1.77 ± 0.9 b | 17.38 ± 0.93 a | 7.1 ± 4 ab | 15.77 ± 4.01 a | 19.31 ± 0.64 a |
EPA % AFDW | 3.36 ± 0.03 cd | 4.81 ± 0.02 a | 2.36 ± 0.09 d | 4.43 ± 0.39 ab | 3.5 ± 0.06 bc | 1.7 ± 0.21 d |
Chla % AFDW | 3.42 ± 0.41 b | 5.51 ± 0.41 a | 2.23 ± 0.2 bc | 3.26 ± 0.36 b | 6.56 ± 0.03 a | 1.26 ± 0.21 c |
Cc+x % AFDW | 1.24 ± 0.13 ab | 1.05 ± 0.07 abc | 0.45 ± 0.07 c | 0.74 ± 0.18 bc | 1.58 ± 0.16 a | 0.45 ± 0.07 c |
Conditions * | (A) LP 12:12/ pH 6.5/ T 35 °C | (B) LP 12:12/ pH 8/ T 27.5 °C | (C) LP 12:12/ pH 9.5/ T 20 °C | (D) LP 24:0/ pH 6.5/ T 20 °C | (E) LP 24:0/ pH 8/ T 27.5 °C | (F) LP 24:0/ pH 9.5/ T 35 °C |
---|---|---|---|---|---|---|
Chla extract (mg L−1) | 160.29 ± 39.6 ab | 354.58 ± 40.55 a | 205.06 ± 169.69 ab | 156.25 ± 67.48 b | 174 ± 80.96 b | 69.33 ± 28.08 b |
Cc+x extract (mg L−1) | 58.92 ± 16.4 ab | 81.92 ± 17.27 a | 42.64 ± 26.78 ab | 41.76 ± 15.37 b | 48.81 ± 22.92 b | 34.41 ± 7.91 b |
GAE extract (mg L−1) | 43.51 ± 16.2 ab | 87.08 ± 7.8 a | 52.57 ± 38.67 ab | 41.5 ± 24.82 ab | 51.38 ± 31.28 ab | 30.75 ± 7.35 b |
% Chla extraction | 24.77 ± 4.87 ab | 36.29 ± 2.36 ab | 41.74 ± 16.09 a | 26.9 ± 15.43 ab | 14.09 ± 6.85 b | 28.15 ± 3.5 ab |
% Cc+x extraction | 24.69 ± 3.97 bc | 43.95 ± 8.12 abc | 50.29 ± 23.84 ab | 32.76 ± 20.12 bc | 16.47 ± 10.08 c | 43.15 ± 9.83 a |
Optimized Parameters * | LP | pH | T (°C) |
---|---|---|---|
μmax (day−1) | 24:0 | 9.5 | 20 |
TSS (g L−1 AFDW) | 24:0 | 9.5 | 20 |
Chla (mg L−1) | 24:0 | 9.5 | 20 |
Cc+x (mg L−1) | 24:0 | 9.5 | 20 |
Carbs % AFDW | 12:12 | 6.5 | 20 |
Protein % AFDW | 12:12 | 6.5 | 20 |
FA % AFDW | 12:12 | 6.5 | 20 |
EPA % AFDW | 12:12 | 6.5 | 20 |
Chla % AFDW | 24:0 | 8.0 | 27.5 |
Cc+x % AFDW | 24:0 | 6.5 | 35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andriopoulos, V.; Lamari, F.N.; Hatziantoniou, S.; Kornaros, M. Production of Antioxidants and High Value Biomass from Nannochloropsis oculata: Effects of pH, Temperature and Light Period in Batch Photobioreactors. Mar. Drugs 2022, 20, 552. https://doi.org/10.3390/md20090552
Andriopoulos V, Lamari FN, Hatziantoniou S, Kornaros M. Production of Antioxidants and High Value Biomass from Nannochloropsis oculata: Effects of pH, Temperature and Light Period in Batch Photobioreactors. Marine Drugs. 2022; 20(9):552. https://doi.org/10.3390/md20090552
Chicago/Turabian StyleAndriopoulos, Vasilis, Fotini N. Lamari, Sophia Hatziantoniou, and Michael Kornaros. 2022. "Production of Antioxidants and High Value Biomass from Nannochloropsis oculata: Effects of pH, Temperature and Light Period in Batch Photobioreactors" Marine Drugs 20, no. 9: 552. https://doi.org/10.3390/md20090552
APA StyleAndriopoulos, V., Lamari, F. N., Hatziantoniou, S., & Kornaros, M. (2022). Production of Antioxidants and High Value Biomass from Nannochloropsis oculata: Effects of pH, Temperature and Light Period in Batch Photobioreactors. Marine Drugs, 20(9), 552. https://doi.org/10.3390/md20090552