Antibacterial Molecules from Marine Microorganisms against Aquatic Pathogens: A Concise Review
Abstract
:1. Introduction
2. Marine Bacterial Compounds against Aquatic Pathogenic Bacteria
3. Marine Fungal Compounds against Aquatic Pathogenic Bacteria
3.1. Marine Aspergillus
3.2. Marine Penicillium
3.3. Marine Fungi Belonging to Genera Other Than Aspergillus and Penicillium
4. Concluding Remarks and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Guo, L.; Wang, C. Optimized production and isolation of antibacterial agent from marine Aspergillus flavipes against Vibrio harveyi. 3 Biotech 2017, 7, 383. [Google Scholar] [CrossRef]
- Guo, L.; Wang, C.; Zhu, W.; Xu, F. Bioassay-guided fractionation and identification of active substances from the fungus Aspergillus tubingensis against Vibrio anguillarum. Biotechnol. Biotechnol. Equip. 2016, 30, 602–606. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Lu, Y.; Wang, L.; Li, X.; Li, S.; Che, J.; Xu, Y. Research progress of antibiotic alternatives therapy against bacteriosis in aquaculture. Feed Livest. 2015, 4, 18–22. (In Chinese) [Google Scholar]
- Ge, H.; Ni, Q.; Chen, Z.; Li, J.; Zhao, F. Effects of short period feeding polysaccharides from marine macroalga, Ulva prolifera on growth and resistance of Litopenaeus vannamei against Vibrio parahaemolyticus infection. J. Appl. Phycol. 2019, 31, 2085–2092. [Google Scholar] [CrossRef]
- Xu, F.; Peng, L.; Cai, T.; Hu, L.; Zhou, Z.; Zhu, S. Research progress of the antimicrobial effects of Chinese herbal medicines to aquatic animal pathogens. J. Aquac. 2016, 37, 48–52. (In Chinese) [Google Scholar]
- Wagner, B.A. The epidemiology of bacterial diseases in food-size channel catfish. J. Aquat. Anim. Health 2002, 14, 263–272. [Google Scholar] [CrossRef]
- Schrader, K.K.; Ibrahim, M.A.; Abd-Alla, H.I.; Cantrell, C.L.; Pasco, D.S. Antibacterial activities of metabolites from Vitis rotundifolia (Muscadine) roots against fish pathogenic bacteria. Molecules 2018, 23, 2761. [Google Scholar] [CrossRef] [Green Version]
- Teng, T.; Liang, L.G.; Xie, J. Research progress on pathogenic bacteria of conventional freshwater fish. Jiangsu Agric. Sci. 2015, 43, 8–12. (In Chinese) [Google Scholar]
- Peng, B.; Yang, G.Y.; Chen, X.L.; Zhan, A.S.; He, M.L. Isolation and identification of Micrococcus luteus in rice field eel (Monopterus albus) in Sichuan province. J. Shanghai Ocean Univ. 2011, 20, 405–411. (In Chinese) [Google Scholar]
- Guo, L.; Guo, J.; Xu, F. Optimized extraction process and identification of antibacterial substances from Rhubarb against aquatic pathogenic Vibrio harveyi. 3 Biotech 2017, 7, 377. [Google Scholar] [CrossRef]
- Choudhary, A.; Naughton, L.M.; Montánchez, I.; Dobson, A.D.W.; Rai, D.K. Current status and future prospects of marine natural products (MNPs) as antimicrobials. Mar. Drugs 2017, 15, 272. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wang, L.; Li, X.; Xu, X.; Guo, J.; Wang, X.; Yang, W.; Xu, F.; Li, F. Enhanced production of questin by marine-derived Aspergillus flavipes HN4-13. 3 Biotech 2020, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.M.; Rong, Y.J.; Zhao, M.X.; Song, B.; Chi, Z.M. Antibacterial activity of the lipopetides produced by Bacillus amyloliquefaciens M1 against multidrug-resistant Vibrio spp. isolated from diseased marine animals. Appl. Microbiol. Biotechnol. 2014, 98, 127–136. [Google Scholar] [CrossRef]
- Chakraborty, K.; Thilakan, B.; Raola, V.K.; Joy, M. Antibacterial polyketides from Bacillus amyloliquefaciens associated with edible red seaweed Laurenciae papillosa. Food Chem. 2017, 218, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, K.; Thilakan, B.; Raola, V.K. Previously undescribed antibacterial polyketides from heterotrophic Bacillus amyloliquefaciens associated with seaweed Padina gymnospora. Appl. Biochem. Biotechnol. 2018, 184, 716–732. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, K.; Thilakan, B.; Kizhakkekalam, V.K. Antibacterial aryl-crowned polyketide from Bacillus subtilis associated with seaweed Anthophycus longifolius. J. Appl. Microbiol. 2018, 124, 108–125. [Google Scholar] [CrossRef]
- Cuong, P.V.; Cuc, N.T.K.; Quyen, V.T.; Binh, P.T.; Kiem, P.V.; Nam, N.H.; Dat, N.T. Antimicrobial constituents from the Bacillus megaterium IC isolated from marine sponge Haliclona oculata. Nat. Prod. Sci. 2014, 20, 202–205. [Google Scholar]
- Chakraborty, K.; Thilakan, B.; Chakraborty, R.D.; Raola, V.K.; Joy, M. O-heterocyclic derivatives with antibacterial properties from marine bacterium Bacillus subtilis associated with seaweed, Sargassum myriocystum. Appl. Microbiol. Biotechnol. 2017, 101, 569–583. [Google Scholar] [CrossRef]
- Raina, J.B.; Tapiolas, D.; Motti, C.A.; Foret, S.; Seemann, T.; Tebben, J.; Willis, B.L.; Bourne, D.G. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ 2016, 4, e2275. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Tian, X.; Kuang, S.; Liu, G.; Zhang, C.; Sun, C. Antagonistic activity and mode of action of phenazine-1-carboxylic acid, produced by marine bacterium Pseudomonas aeruginosa PA31x, against Vibrio anguillarum in vitro and in a Zebrafish in vivo model. Front. Microbiol. 2017, 8, 289. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Kong, F.; Zhou, S.; Huang, D.; Zheng, J.; Zhu, W. Streptomyces tirandamycinicus sp. nov. a novel marine sponge-derived actinobacterium with antibacterial potential against Streptococcus agalactiae. Front. Microbiol. 2019, 10, 482. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Cao, X.; Yang, S.; Wang, X.; Wen, Y.; Zhang, F.; Chen, H.; Wang, L. Characterization, solubility and antibacterial activity of inclusion complex of questin with hydroxypropyl-β-cyclodextrin. 3 Biotech 2019, 9, 123. [Google Scholar] [CrossRef]
- Li, D.; Xu, Y.; Shao, C.L.; Yang, R.Y.; Zheng, C.J.; Chen, Y.Y.; Fu, X.M.; Qian, P.Y.; She, Z.G.; de Voogd, N.J.; et al. Antibacterial bisabolane-type sesquiterpenoids from the sponge-derived fungus Aspergillus sp. Mar. Drugs 2012, 10, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Li, X.M.; Meng, L.H.; Wang, B.G. Polyketides from the marine mangrove-derived fungus Aspergillus ochraceus MA-15 and their activity against aquatic pathogenic bacteria. Phytochem. Lett. 2015, 12, 232–236. [Google Scholar]
- Li, H.L.; Li, X.M.; Yang, S.Q.; Meng, L.H.; Li, X.; Wang, B.G. Prenylated phenol and benzofuran derivatives from Aspergillus terreus EN-539, an endophytic fungus derived from marine red alga Laurencia okamurai. Mar. Drugs 2019, 17, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.D.; Li, X.M.; Yin, X.L.; Li, X.; Wang, B.G. Antimicrobial sesquiterpenoid derivatives and monoterpenoids from the deep-sea sediment-derived fungus Aspergillus versicolor SD-330. Mar. Drugs 2019, 17, 563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.D.; Li, X.M.; Li, X.; Xu, G.M.; Liu, Y.; Wang, B.G. Aspewentins D-H, 20-nor-isopimarane derivatives from the deep sea sediment-derived fungus Aspergillus wentii SD-310. J. Nat. Prod. 2016, 79, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Li, X.D.; Li, X.; Li, X.M.; Xu, G.M.; Liu, Y.; Wang, B.G. 20-nor-isopimarane epimers produced by Aspergillus wentii SD-310, a fungal strain obtained from deep sea sediment. Mar. Drugs 2018, 16, 440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Q.; Li, X.M.; Hu, X.Y.; Li, X.; Chi, L.P.; Li, H.L.; Wang, B.G. Antibacterial metabolites from Ascidian-derived fungus Aspergillus clavatus AS-107. Phytochem. Lett. 2019, 34, 30–34. [Google Scholar] [CrossRef]
- Zhu, A.; Zhang, X.W.; Zhang, M.; Li, W.; Ma, Z.Y.; Zhu, H.J.; Cao, F. Aspergixanthones I-K, new anti-Vibrio prenylxanthones from the marine-derived fungus Aspergillus sp. ZA-01. Mar. Drugs 2018, 16, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Debbab, A.; Wray, V.; Lin, W.H.; Schulz, B.; Trepos, R.; Pile, C.; Hellio, C.; Proksch, P.; Aly, A.H. Marine bacterial inhibitors from the sponge-derived fungus Aspergillus sp. Tetrahedron Lett. 2014, 55, 2789–2792. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Liao, Y.; Tang, C.; Huang, X.; Luo, Z.; Chen, J.; Cai, P. Cytotoxic and antibacterial compounds from the coral-derived fungus Aspergillus tritici SP2-8-1. Mar. Drugs 2017, 15, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Guo, S.; Chen, H.; Zhang, Z.; Li, X.; Wang, W.; Guo, L. Bioassay-guided isolation and characterization of antibacterial compound from Aspergillus fumigatus HX-1 associated with Clam. 3 Biotech 2021, 11, 193. [Google Scholar] [CrossRef] [PubMed]
- Chi, L.; Yang, S.Q.; Li, X.M.; Li, X.D.; Wang, B.G.; Li, X. A new steroid with 7β,8β-epoxidation from the deep sea-derived fungus Aspergillus penicillioides SD-311. J. Asian Nat. Prod. Res. 2021, 23, 884–891. [Google Scholar] [CrossRef]
- Li, X.D.; Li, X.M.; Xu, G.M.; Zhang, P.; Wang, B.G. Antimicrobial phenolic bisabolanes and related derivatives from Penicillium aculeatum SD-321, a deep sea sediment-derived fungus. J. Nat. Prod. 2015, 78, 844–849. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.M.; Meng, L.H.; Jiang, W.L.; Xu, G.M.; Huang, C.G.; Wang, B.G. Bisthiodiketopiperazines and acorane sesquiterpenes produced by the marine-derived fungus Penicillium adametzioides AS-53 on different culture media. J. Nat. Prod. 2015, 78, 1294–1299. [Google Scholar] [CrossRef]
- Meng, L.H.; Li, X.M.; Liu, Y.; Wang, B.G. Polyoxygenated dihydropyrano [2,3-c]pyrrole-4,5-dione derivatives from the marine mangrove-derived endophytic fungus Penicillium brocae MA-231 and their antimicrobial activity. Chin. Chem. Lett. 2015, 26, 610–612. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.M.; Liu, Y.; Zhang, P.; Wang, J.N.; Wang, B.G. Chermesins A-D: Meroterpenoids with a drimane-type spirosesquiterpene skeleton from the marine algal-derived endophytic fungus Penicillium chermesinum EN-480. J. Nat. Prod. 2016, 79, 806–811. [Google Scholar] [CrossRef]
- Hu, X.Y.; Li, X.M.; Yang, S.Q.; Liu, H.; Meng, L.H.; Wang, B.G. Three new sesquiterpenoids from the algal-derived fungus Penicillium chermesinum EN-480. Mar. Drugs 2020, 18, 194. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Liao, Y.; Zhang, B.; Gao, M.; Ke, W.; Li, F.; Shao, Z. Citrinin monomer and dimer derivatives with antibacterial and cytotoxic activities isolated from the deep sea-derived fungus Penicillium citrinum NLG-S01-P1. Mar. Drugs 2019, 17, 46. [Google Scholar] [CrossRef] [Green Version]
- He, K.Y.; Zhang, C.; Duan, Y.; Huang, G.L.; Yang, C.Y.; Lu, X.R.; Zheng, C.J.; Chen, G.Y. New chlorinated xanthone and anthraquinone produced by a mangrove-derived fungus Penicillium citrinum HL-5126. J. Antibiot. 2017, 70, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Li, X.M.; Li, X.; Yang, S.Q.; Shi, X.S.; Li, H.L.; Wang, B.G. Antibacterial alkaloids and polyketide derivatives from the deep sea-derived fungus Penicillium cyclopium SD-413. Mar. Drugs 2020, 18, 553. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Li, X.M.; Wang, B.G. Penicisimpins A–C, three new dihydroisocoumarins from Penicillium. Phytochem. Lett. 2016, 17, 114–118. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, L.; Fang, F.; He, S. Penicillilactone A, a novel antibacterial 7-membered lactone derivative from the sponge-associated fungus Penicillium sp. LS54. Nat. Prod. Res. 2019, 33, 2466–2470. [Google Scholar] [CrossRef]
- Li, H.L.; Li, X.M.; Mándi, A.; Antus, S.; Li, X.; Zhang, P.; Liu, Y.; Kurtán, T.; Wang, B.G. Characterization of cladosporols from the marine algal-derived endophytic fungus Cladosporium cladosporioides EN-399 and configurational revision of the previously reported Cladosporol derivatives. J. Org. Chem. 2017, 82, 9946–9954. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.Z.; Li, X.M.; Li, X.; Yang, S.Q.; Meng, L.H.; Wang, B.G. Polyketides from the mangrove-derived endophytic fungus Cladosporium cladosporioides. Mar. Drugs 2019, 17, 296. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.Z.; Li, X.M.; Yang, S.Q.; Meng, L.H.; Wang, B.G. Thiocladospolides A-D, 12-membered macrolides from the mangrove-derived endophytic fungus Cladosporium cladosporioides MA-299 and structure revision of pandangolide 3. J. Nat. Prod. 2019, 82, 1535–1541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.Z.; Li, X.M.; Meng, L.H.; Wang, B.G. Cladocladosin A, an unusual macrolide with bicyclo 5/9 ring system, and two thiomacrolides from the marine mangrove-derived endophytic fungus, Cladosporium cladosporioides MA-299. Bioorg. Chem. 2020, 101, 103950. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liao, Y.; Chen, R.; Hou, Y.; Ke, W.; Zhang, B.; Gao, M.; Shao, Z.; Chen, J.; Li, F. Chlorinated azaphilone pigments with antimicrobial and cytotoxic activities isolated from the deep sea derived fungus Chaetomium sp. NA-S01-R1. Mar. Drugs 2018, 16, 61. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Chen, R.; Luo, Z.; Wang, W.; Chen, J. Two new benzoate derivatives and one new phenylacetate derivative from a marine-derived fungus Engyodontium album. Nat. Prod. Res. 2017, 31, 758–764. [Google Scholar] [CrossRef]
- Wang, X.; Sun, K.; Wang, B. Bioactive pimarane diterpenes from the Arctic fungus Eutypella sp. D-1. Chem. Biodivers. 2018, 15, 1700501. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Qiao, L.; Zhang, X.; Sun, C.; Che, Q.; Zhang, G.; Zhu, T.; Gu, Q.; Li, D. Fusaricates H-K and fusolanones A-B from a mangrove endophytic fungus Fusarium solani HDN15-410. Phytochemistry 2019, 158, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Mou, P.; Zhang, Q.; Peng, J.; Jiang, X.; Zhang, L.; Zhou, Z.; Zhang, C.; Zhu, Y. Antibacterial phenylspirodrimanes from the marine-derived fungus Stachybotrys sp. SCSIO 40434. Fitoterapia 2021, 152, 104937. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Hou, X.L.; Song, Y.P.; Wang, B.G.; Ji, N.Y. Cyclonerane sesquiterpenes and an isocoumarin derivative from the marine-alga-endophytic fungus Trichoderma citrinoviride A-WH-20-3. Fitoterapia 2020, 141, 104469. [Google Scholar] [CrossRef]
- Gerwick, W.H.; Fenner, A.M. Drug discovery from marine microbes. Microb. Ecol. 2013, 65, 800–806. [Google Scholar] [CrossRef]
- Barzkar, N.; Tamadoni Jahromi, S.; Poorsaheli, H.B.; Vianello, F. Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. Mar. Drugs 2019, 17, 464. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Zhang, F.; Wang, X.; Chen, H.; Wang, Q.; Guo, J.; Cao, X.; Wang, L. Antibacterial activity and action mechanism of questin from marine Aspergillus flavipes HN4-13 against aquatic pathogen Vibrio harveyi. 3 Biotech 2019, 9, 14. [Google Scholar] [CrossRef]
Compound | Source Organisms | Activity against | MIC/Zone of Inhibition | References |
---|---|---|---|---|
Surfactin (1) | B. amyloliquefaciens M1 | V. anguillarum | 1.5 μg/mL | [13] |
3-(octahydro-9-isopropyl-2H-benzo[h]chromen-4-yl)-2-methylpropyl benzoate (2) | B. amyloliquefaciens | V. vulnificus | 18.00 ± 1.00 mm | [14] |
Methyl 8-(2-(benzoyloxy)-ethyl)-hexahydro-4-((E)-pent-2-enyl)-2H-chromene-6-carboxylate (3) | 16.67 ± 0.58 mm | |||
11-(15-butyl-13-ethyl-tetrahydro-12-oxo-2H-pyran-13-yl) propyl-2-methylbenzoate (4) | B. amyloliquefaciens | V. vulnificus | 16.33 ± 0.58 mm | [15] |
9-(tetrahydro-12-isopropyl-11-oxofuran-10-yl)-ethyl-4-ethoxy-2-hydroxybenzoate (5) | A. hydrophila | 14.67 ± 1.15 mm | ||
12-(aminomethyl)-11-hydroxyhexanyl-10-phenylpropanoate (6) | V. vulnificus | 17.33 ± 1.00 mm | ||
7-O-6′-(2”-acetylphenyl)-5′-hydroxyhexanoate-macrolactin (7) | B. subtilis MTCC 10403 | V. vulnificus | 3.12 μg/mL | [16] |
A. hydrophilla | 6.25 μg/mL | |||
V. parahaemolyticus | 12.5 μg/mL | |||
P. aeruginosa | 12.5 μg/mL | |||
7,7-bis(3-indolyl)-p-cresol (8) | B. megaterium LC | V. vulnificus M. luteus | 0.05 μg/mL 0.005 μg/mL | [17] |
Cyclo-(S-Pro-R-Val) (9) | V. parahaemolyticus | 0.05 μg/mL | ||
2-(7-(2-Ethylbutyl)-2,3,4,4a,6,7-hexahydro-2-oxopyrano-[3,2b]-pyran-3-yl)-ethyl benzoate (10) | B. subtilis MTCC 10407 | A. hydrophilla | 17.66 ± 0.58 mm | [18] |
2-((4Z)-2-ethyl-octahydro-6-oxo-3-((E)-pent-3-enylidene)-pyrano-[3,2b]-pyran-7-yl)-ethyl benzoate (11) | 15.3 ± 1.0 mm | |||
Tropodithietic acid (12) | Pseudovibrio sp. P12 | V. coralliilyticus V. owensii | 0.5 μg/mL | [19] |
Phenazine-1-carboxylic acid (13) | P. aeruginosa PA31x | V. anguillarum | 50 μg/mL | [20] |
Tirandamycin A (14) | S. tirandamycinicus sp. nov. | Streptococcus agalactiae | 2.52 μg/mL | [21] |
Tirandamycin B (15) | 2.55 μg/mL |
Compound | Source Organisms | Activity against | MIC | References |
---|---|---|---|---|
(−)-sydonic acid (16) | Aspergillus sp. | V. Parahaemolyticus | 10.0 μM | [23] |
V. anguillarum | 5.00 μM | |||
Asperochrin A (17) | A. ochraceus MA-15 | A. hydrophilia | 8 μg/mL | [24] |
V. anguillarum | 16 μg/mL | |||
V. harveyi | 8 μg/mL | |||
Terreprenphenol A (18) | A. terreus EN-539 | A. hydrophila | 2 μg/mL | [25] |
P. aeruginosa | 2 μg/mL | |||
V. harveyi | 4 μg/mL | |||
Ent-aspergoterpenin C (19) | A. versicolor SD-330 | E. tarda | 8 μg/mL | [26] |
P. aeruginosa | 8 μg/mL | |||
V. harveyi | 8 μg/mL | |||
V. parahaemolyticus | 8 μg/mL | |||
7-O-methylhydroxysydonic acid (20) | E. tarda | 4 μg/mL | ||
V. anguillarum | 4 μg/mL | |||
A. hydrophilia | 8 μg/mL | |||
V. harveyi | 8 μg/mL | |||
V. parahaemolyticus | 8 μg/mL | |||
Hydroxysydonic acid (21) | A. hydrophilia | 4 μg/mL | ||
E. tarda | 4 μg/mL | |||
V. anguillarum | 4 μg/mL | |||
V. harveyi | 4 μg/mL | |||
Aspewentin D (22) | A. wentii SD-310 | M. luteus | 4 μg/mL | [27,28] |
Aspewentin F (23) | E. tarda | 4 μg/mL | ||
V. harveyi | 4 μg/mL | |||
Aspewentin G (24) | V. harveyi | 4 μg/mL | ||
Aspewentin H (25) | P. aeruginosa | 4 μg/mL | ||
Aspewentin A (26) | V. parahaemolyticus | 4 μg/mL | ||
Aspewentin I (27) | E. tarda | 8 μg/mL | ||
V. harveyi | 8 μg/mL | |||
V. parahaemolyticus | 8 μg/mL | |||
Aspewentin J (28) | E. tarda | 8 μg/mL | ||
V. harveyi | 8 μg/mL | |||
V. parahaemolyticus | 8 μg/mL | |||
Seco-clavatustide B (29) | A. clavatus AS-107 | A. hydrophilia | 8.2 μM | [29] |
Clavatustide B (30) | P. aeruginosa | 8.8 μM | ||
Aspergixanthone I (31) | Aspergillus sp. ZA-01 | V. parahemolyticus | 1.56 μM | [30] |
V. anguillarum | 1.56 μM | |||
V. alginolyticus | 3.12 μM | |||
3-((1-hydroxy-3-(2-methylbut-3-en-2-yl)-2-oxoindolin-3-yl)methyl)-1-methyl-3,4-dihydrobenzo[e][1,4]diazepine-2,5-dione (32) | Aspergillus sp. | V. harveyi | 1 μg/mL | [31] |
V. natriegens | 1 μg/mL | |||
Austalide R (33) | Aspergillus sp. | V. harveyi | 0.1 μg/mL | |
4-methyl-3”-prenylcandidusin A (34) | A. tritici SP2-8-1 | V. vulnificus | 7.77 μg/mL | [32] |
V. rotiferianus | 7.75 μg/mL | |||
V. campbellii | 15.6 μg/mL | |||
Questin (35) | A. flavipes HN4-13 | V. harveyi | 31.25 μg/mL | [1] |
Trypacidin (36) | A. fumigatus HX-1 | V. harveyi | 31.25 µg/mL | [33] |
7β,8β-epoxy-(22E,24R)-24-methylcholesta-4,22-diene-3,6-dione (37) | A. penicillioides SD-311 | V. anguillarum | 32.0 µg/mL | [34] |
ergosta-4, 6, 8(14), 22-tetraene-3-one (38) | E. tarda | 16.0 µg/mL | ||
M. luteus |
Compound | Source Organisms | Activity against | MIC | References |
---|---|---|---|---|
Peniciaculin A (39) | P. aculeatum SD-321 | V. alginolyticus | 2.0 μg/mL | [35] |
Peniciaculin B (40) | E. tarda | 8.0 μg/mL | ||
1-hydroxyboivinianin A (41) | V. harveyi | 4.0 μg/mL | ||
(7S,11S)-(+)-12-hydroxysydonic acid (42) | V. parahemolyticus | 0.5 μg/mL | ||
Adametizine A (43) | P. adametzioides AS-53 | A. hydrophilia | 8 μg/mL | [36] |
V. harveyi | 32 μg/mL | |||
V. parahaemolyticus | 8 μg/mL | |||
Pyranonigrin F (44) | P. brocae MA-231 | V. harveyi | 0.5 μg/mL | [37] |
V. parahaemolyticus | 0.5 μg/mL | |||
Pyranonigrin A (45) | V. harveyi | 0.5 μg/mL | ||
V. parahaemolyticus | 0.5 μg/mL | |||
Chermesin A (46) | P. chermesinum EN-480 | Micrococcus luteus | 8 μg/mL | [38] |
Chermesin B (47) | Micrococcus luteus | 8 μg/mL | ||
Chermesiterpenoid B (48) | V. anguillarum | 0.5 μg/mL | [39] | |
V. parahaemolyticus | 16 μg/mL | |||
M. luteus | 64 μg/mL | |||
Chermesiterpenoid C (49) | V. anguillarum | 1 μg/mL | ||
V. parahaemolyticus | 32 μg/mL | |||
M. luteus | 64 μg/mL | |||
(3S,4S)-sclerotinin A (50) | P. citrinum NLG-S01-P1 | V. vulnificus | 16.6 μg/mL | [40] |
V. campbellii | 15.3 μg/mL | |||
Citrinin H2 (51) | V. vulnificus | 15.7 μg/mL | ||
V. campbellii | 15.6 μg/mL | |||
20-acetoxy-7-chlorocitreorosein (52) | P. citrinum HL-5126 | V. parahaemolyticus | 10 μM | [41] |
9-dehydroxysargassopenilline A (53) | P. cyclopium SD-413 | E. tarda | 16 μg/mL | [42] |
M. luteus | 4 μg/mL | |||
V. anguillarum | 32 μg/mL | |||
1,2-didehydropeaurantiogriseol E (54) | M. luteus | 32 μg/mL | ||
V. harveyi | 4 μg/mL | |||
V. anguillarum | 4 μg/mL | |||
Penicisimpin A (55) | P. simplicissimum MA-332 | P. aeruginosa | 4 μg/mL | [43] |
V. parahaemolyticus | 4 μg/mL | |||
V. harveyi | 4 μg/mL | |||
M. luteus | 8 μg/mL | |||
V. alginolyticus | 8 μg/mL | |||
Penicisimpin B (56) | P. aeruginosa | 32 μg/mL | ||
V. parahaemolyticus | 32 μg/mL | |||
V. harveyi | 16 μg/mL | |||
M. luteus | 64 μg/mL | |||
V. alginolyticus | 32 μg/mL | |||
A. hydrophilia | 32 μg/mL | |||
Penicisimpin C (57) | P. aeruginosa | 8 μg/mL | ||
V. parahaemolyticus | 8 μg/mL | |||
V. harveyi | 8 μg/mL | |||
M. luteus | 16 μg/mL | |||
V. alginolyticus | 16 μg/mL | |||
A. hydrophilia | 16 μg/mL | |||
Penicillilactone A (58) | Penicillium sp. LS54 | V. harveyi | 8 μg/mL | [44] |
Compounds | Source Organisms | Activity against | MIC | References |
---|---|---|---|---|
Cladosporol F (59) | C. cladosporioides EN-399 | M. luteus | 64 μg/mL | [45] |
V. harveyi | 32 μg/mL | |||
Cladosporol G (60) | M. luteus | 128 μg/mL | ||
V. harveyi | 64 μg/mL | |||
Cladosporol H (61) | M. luteus | 64 μg/mL | ||
V. harveyi | 4 μg/mL | |||
Cladosporol I (62) | M. luteus | 64 μg/mL | ||
V. harveyi | 16 μg/mL | |||
Cladosporol C (63) | M. luteus | 32 μg/mL | ||
V. harveyi | 16 μg/mL | |||
Cladosporol J (64) | M. luteus | 64 μg/mL | ||
V. harveyi | 32 μg/mL | |||
Pandangolide 1 (65) | C. cladosporioides MA-299 | E. ictaluri | 4 μg/mL | [46] |
Thiocladospolide A (66) | E. tarda | 1 μg/mL | [47] | |
Thiocladospolide D (67) | E. ictaluri | 1 μg/mL | ||
Cladocladosin A (68) | E. tarda | 1 μg/mL | [48] | |
P. aeruginosa | 4 μg/mL | |||
V. anguillarum | 2 μg/mL | |||
Thiocladospolide F (69) | E. tarda | 2 μg/mL | ||
V. anguillarum | 2 μg/mL | |||
Thiocladospolide G (70) | E. tarda | 2 μg/mL | ||
V. anguillarum | 4 μg/mL | |||
Chaetoviridide A (71) | Chaetomium sp. NA-S01-R1 | V. rotiferianus | 7.3 μg/mL | [49] |
Chaetoviridide B (72) | V. vulnificus | 7.4 μg/mL | ||
Ethyl 3,5-dimethoxy-2-propionylphenylacetate (73) | Engyodontium album | V. vulnificus | 15.6 μg/mL | [50] |
Libertellenone M (74) | Eutypella sp. D-1 | V. vulnificus | 16 μg/mL | [51] |
Libertellenone A (75) | V. vulnificus | 16 μg/mL | ||
Fusolanone B (76) | Fusarium solani HDN15-410 | V. parahaemolyticus | 6.25 μg/mL | [52] |
Stachybomycin E (77) | Stachybotrys sp. SCSIO 40434 | M. luteus | 8 μg/mL | [53] |
Stachybotrylactam acetate (78) | M. luteus | 8 μg/mL | ||
Trichophenol A (79) | Trichoderma citrinoviride A-WH-20-3 | Pseudoalteromonas citrea | 16 μg/mL | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Zhang, Z.; Guo, L. Antibacterial Molecules from Marine Microorganisms against Aquatic Pathogens: A Concise Review. Mar. Drugs 2022, 20, 230. https://doi.org/10.3390/md20040230
Guo S, Zhang Z, Guo L. Antibacterial Molecules from Marine Microorganisms against Aquatic Pathogens: A Concise Review. Marine Drugs. 2022; 20(4):230. https://doi.org/10.3390/md20040230
Chicago/Turabian StyleGuo, Siya, Zongyi Zhang, and Lei Guo. 2022. "Antibacterial Molecules from Marine Microorganisms against Aquatic Pathogens: A Concise Review" Marine Drugs 20, no. 4: 230. https://doi.org/10.3390/md20040230
APA StyleGuo, S., Zhang, Z., & Guo, L. (2022). Antibacterial Molecules from Marine Microorganisms against Aquatic Pathogens: A Concise Review. Marine Drugs, 20(4), 230. https://doi.org/10.3390/md20040230