Physicochemical Evaluation of Personal Care Products Developed with Chondrus crispus Fractions Processed by Ecofriendly Methodologies
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Personal Care Product Formulations
4.2. Physicochemical Analysis
4.2.1. Accelerated Oxidative Determination
4.2.2. Color Characterization
4.2.3. Rheological Profiles
4.3. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ariede, M.B.; Candido, T.M.; Jacome, A.L.M.; Velasco, M.V.; de Carvalho, J.C.M.; Baby, A.R. Cosmetic attributes of algae—A review. Algal Res. 2017, 25, 483–487. [Google Scholar] [CrossRef]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, S.A. A practical guide for designing effective nutraceutical combinations in the form of foods, beverages, and dietary supplements against chronic degenerative diseases. Trends Food Sci. Technol. 2019, 88, 179–193. [Google Scholar] [CrossRef]
- Couteau, C.; Coiffard, L. Seaweed Application in Cosmetics. In Seaweed in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2016; pp. 423–441. [Google Scholar]
- David, S.R.; Baharulnizam, N.B.; Rajabalaya, R. A review on biological assays of red algae marine compounds: An insight into skin whitening activities. J. Herbal Med. 2022, 35, 100585. [Google Scholar] [CrossRef]
- Bezerra, K.G.O.; Rufino, R.D.; Luna, J.M.; Sarubbo, L.A. Saponins and microbial biosurfactants: Potential raw materials for the formulation of cosmetics. Biotechnol. Prog. 2018, 34, 1482–1493. [Google Scholar] [CrossRef] [PubMed]
- Aslam, A.; Bahadar, A.; Liaquat, R.; Saleem, M.; Waqas, A.; Zwawi, M. Algae as an attractive source for cosmetics to counter environmental stress. Sci. Total Environ. 2021, 772, 144905. [Google Scholar] [CrossRef]
- Collén, J.; Cornish, M.L.; Craigie, J.; Ficko-Blean, E.; Hervé, C.; Krueger-Hadfield, S.A.; Leblanc, C.; Michel, G.; Potin, P.; Tonon, T.; et al. Chondrus crispus—A present and historical model organism for red seaweeds. Adv. Bot. Res. 2014, 71, 53–59. [Google Scholar]
- Shafie, M.H.; Kamal, M.L.; Zulkiflee, F.F.; Hasan, S.; Uyup, N.H.; Abdullah, S.; Mohamed Hussin, N.A.; Tan, Y.C.; Zafarina, Z. Application of carrageenan extract from red seaweed (Rhodophyta) in cosmetic products: A review. J. Indian Chem. Soc. 2022, 99, 100613. [Google Scholar] [CrossRef]
- Houlden, R.J. The Influence of Rheology on Sunscreen Performance and SPF—Are Highly Thixtotropic Products Not Providing Enough Protection? Househ. Pers. Care Today 2018, 13. Available online: https://www.teknoscienze.com/tks_article/the-influence-of-rheology-on-sunscreen-performance-and-spf-are-highly-thixtotropic-products-not-providing-enough-protection/ (accessed on 10 April 2022).
- Houlden, R.J. Viscosity vs. Rheology: Why It Is Important to Formulators. Pers. Care 2017. Available online: https://www.personalcaremagazine.com/story/24670/viscosity-vs-rheology-why-it-is-important-to-formulators (accessed on 10 April 2022).
- Wang, H.; Gong, X.; Guo, X.; Liu, C.; Fan, Y.-Y.; Zhang, J.; Niu, B.; Li, W. Characterization, release, and antioxidant activity of curcumin-loaded sodium alginate/ZnO hydrogel beads. Int. J. Biol. Macromol. 2019, 121, 1118–1125. [Google Scholar] [CrossRef] [PubMed]
- Adekunte, A.O.; Tiwari, B.K.; Cullen, P.J.; Scannell, A.G.M.; O’Donnell, C.P. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Gfatter, R.; Hackl, P.; Braun, F. Effects of soap and detergents on skin surface pH, stratum corneum hydration and fat content in infants. Dermatology 1997, 195, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Lukić, M.; Pantelić, I.; Savić, S.D. Towards optimal pH of the skin and topical formulations: From the current state of the art to tailored products. Cosmetics 2021, 8, 69. [Google Scholar] [CrossRef]
- Berthele, H.; Sella, O.; Lavarde, M.; Mielcarek, C.; Pense-Lheritier, A.-M.; Pirnay, S. Determination of the influence of factors (ethanol, pH and aw) on the preservation of cosmetics using experimental design. Int. J. Cosmet. Sci. 2014, 31, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Skowyra, M.; Gallego, M.G.; Segovia, F.; Almajano, M.P. Antioxidant properties of Artemisia annua extracts in model food emulsions. Antioxidants 2014, 3, 116–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohd Azman, N.A.; Gallego, M.G.; Segovia, F.; Abdullah, S.; Shaarani, S.M.; Almajano, M.P. Study of the properties of bearberry leaf extract as a natural antioxidant in model foods. Antioxidants 2016, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Khanum, T.; Thevanayagam, H. Lipid peroxidation: Its effects on the formulation and use of pharmaceutical emulsions. Asian J. Pharm. Sci. 2017, 12, 401–411. [Google Scholar] [CrossRef]
- Malherbi, N.M.; Grando, R.C.; Fakhouri, F.M.; Velasco, J.I.; Tormen, L.; da Silva, G.H.R.; Yamashita, F.; Bertan, L.C. Effect of the addition of Euterpe oleracea Mart. extract on the properties of starch-based sachets and the impact on the shelf-life of olive oil. Food Chem. 2022, 394, 133503. [Google Scholar] [CrossRef] [PubMed]
- Bom, S.; Jorge, J.; Ribeiro, H.M.; Marto, J. A step forward on sustainability in the cosmetics industry: A review. J. Clean. Prod. 2019, 225, 270–290. [Google Scholar] [CrossRef]
- López-Hortas, L.; Caleja, C.; Pinela, J.; Petrović, J.; Soković, M.; Ferreira, I.C.F.R.; Torres, M.D.; Domínguez, H.; Pereira, E.; Barros, L. Comparative evaluation of physicochemical profile and bioactive properties of red edible seaweed Chondrus crispus subjected to different drying method. Food Chem. 2022, 383, 132450. [Google Scholar] [CrossRef]
- Nooeaid, P.; Chuysinuan, P.; Techasakul, S. Alginate/gelatine hydrogels: Characterisation and application of antioxidant release. Green Mater. 2017, 5, 153–164. [Google Scholar] [CrossRef]
- Moreira, R.; Chenlo, F.; Torres, M.D. Rheological properties of commercial chestnut flour doughs with different gums. Int. J. Food Sci. Technol. 2011, 46, 2085–2095. [Google Scholar] [CrossRef]
- Álvarez-Viñas, M.; González-Ballesteros, N.; Torres, M.D.; López-Hortas, L.; Vanini, C.; Domingo, G.; Rodríguez-Argüelles, M.C.; Domínguez, H. Efficient extraction of carrageenans from Chondrus crispus for the green synthesis of gold nanoparticles and formulation of printable hydrogels. Int. J. Biol. Macromol. 2022, 206, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Ponthier, E.; Domínguez, H.; Torres, M.D. The microwave assisted extraction sway on the features of antioxidant compounds and gelling biopolymers from Mastocarpus stellatus. Algal Res. 2020, 51, 102081. [Google Scholar] [CrossRef]
- Torres, M.D.; Flórez-Fernández, N.; Domínguez, H. Chondrus crispus treated with ultrasound as a polysaccharides source with improved antitumoral potential. Carbohydr. Polym. 2021, 273, 118588. [Google Scholar] [CrossRef] [PubMed]
- Leche Corporal Base. Available online: https://www.granvelada.com/es/bases-para-hacer-cremas-cosmetica-artesanal/4994-leche-corporal-natural.html (accessed on 29 August 2022).
- Soto, M.L.; Parada, M.; Falqué, E.; Domínguez, H. Personal-care products formulated with natural antioxidant extracts. Cosmetics 2018, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- López-Hortas, L.; Le Juge, C.; Falqué, E.; Domínguez, H.; Torres, M.D. Bioactive extracts from edible nettle leaves using microwave hydrodiffusion and gravity and distillation extraction techniques. Process Biochem. 2020, 94, 66–78. [Google Scholar] [CrossRef]
- Desta, M.; Molla, A.; Yusuf, Z. Characterization of physico-chemical properties and antioxidant activity of oil from seed, leaf and stem of purslane (Portulaca oleracea L.). Biotechnol. Rep. 2020, 27, e00512. [Google Scholar] [CrossRef] [PubMed]
- Atolani, O.; Olabiyi, E.T.; Issa, A.A.; Azeez, H.T.; Onoja, E.G.; Ibrahim, S.O.; Zubair, M.F.; Oguntoye, O.S.; Olatunji, G.A. Green synthesis and characterisation of natural antiseptic soaps from the oils of underutilised tropical seed. Sustain. Chem. Pharm. 2016, 4, 32–39. [Google Scholar] [CrossRef]
- Scheffler, S.L.; Wang, X.; Huang, L.; Gonzalez, F.S.-M.; Yao, Y. Phytoglycogen octenyl succinate, an amphiphilic carbohydrate nanoparticle, and ε-polylysine to improve lipid oxidative stability of emulsions. J. Agric. Food Chem. 2010, 28, 660–667. [Google Scholar] [CrossRef]
Parameter | Extracts (0 days) | |||||
Distilled Water | AH | MAE | UAE | BHT | α-Tocopherol | |
Lightness (L*) | 85.42 ± 0.01 a | 85.27 ± 0.01 a | 85.35 ± 0.01 a | 85.43 ± 0.02 a | 85.37 ± 0.01 a | 85.40 ± 0.01 a |
Coordinate green-red (a*) | −4.17 ± 0.01 c | −4.17 ± 0.01 c | −4.14 ± 0.01 c | −4.17 ± 0.02 c | −4.46 ± 0.01 b | −4.80 ± 0.01 a |
Coordinate blue-yellow (b*) | 3.59 ± 0.02 d | 3.80 ± 0.01 c | 3.50 ± 0.02 d | 3.55 ± 0.05 d | 4.16 ± 0.01 b | 5.35 ± 0.00 a |
Hue angle (h*, °) | −40.70 ± 0.01 c | −42.32 ± 0.01 b | −40.22 ± 0.02 c | −40.36 ± 0.02 c | −43.01 ± 0.01 b | −48.12 ± 0.01 a |
Chroma (C*) | 5.50 ± 0.01 c | 5.64 ± 0.01 c | 5.43 ± 0.01 c | 5.48 ± 0.02 c | 6.10 ± 0.01 b | 7.19 ± 0.03 a |
Saturation (S*) | 0.06 ± 0.01 a | 0.07 ± 0.01 a | 0.06 ± 0.01 a | 0.06 ± 0.01 a | 0.07 ± 0.01 a | 0.08 ± 0.01 a |
Total color difference (ΔE*) vs. distilled water | -- | 0.26 | 0.11 | 0.04 | 0.65 | 1.87 |
Parameter | Extracts (15 days) | |||||
Distilled Water | AH | MAE | UAE | BHT | α-Tocopherol | |
Lightness (L*) | 85.45 ± 0.01 a | 85.43 ± 0.01 a | 85.63 ± 0.01 a | 85.86 ± 0.01 a | 85.92 ± 0.01 a | 86.02 ± 0.01 a |
Coordinate green-red (a*) | −3.78 ± 0.01 c | −3.93 ± 0.01 c | −3.80 ± 0.01 c | −3.85 ± 0.01 c | −6.79 ± 0.01 a | −5.22 ± 0.01 b |
Coordinate blue-yellow (b*) | 4.75 ± 0.01 e | 5.62 ± 0.01 c | 4.39 ± 0.01 f | 5.15 ± 0.03 d | 10.94 ± 0.03 a | 8.37 ± 0.01 b |
Hue angle (h*, °) | −51.49 ± 0.01 d | −55.01 ± 0.01 b | −49.10 ± 0.01 e | −53.21 ± 0.01 c | −58.18 ± 0.02 a | −58.06 ± 0.01 a |
Chroma (C*) | 6.07 ± 0.01 e | 6.86 ± 0.01 c | 5.81 ± 0.01 f | 6.43 ± 0.01 d | 12.88 ± 0.02 a | 9.86 ± 0.01 b |
Saturation (S*) | 0.07 ± 0.01 b | 0.08 ± 0.01 b | 0.07 ± 0.01 b | 0.07 ± 0.02 b | 0.15 ± 0.02 a | 0.11 ± 0.01 a |
Total color difference (ΔE*) vs. distilled water | -- | 0.88 | 0.40 | 0.58 | 6.90 | 3.93 |
Parameter | Comparison 0 days versus 15 days | |||||
Distilled Water | AH | MAE | UAE | BHT | α-Tocopherol | |
Total color difference (ΔE*) | 1.22 | 1.84 | 0.99 | 1.69 | 7.19 | 3.11 |
Parameter | Extracts (0 days) | |||||
Distilled Water | AH | MAE | UAE | BHT | α-Tocopherol | |
Lightness (L*) | 90.32 ± 0.01 a | 90.26 ± 0.01 a | 90.42 ± 0.01 a | 90.15 ± 0.01 a | 89.82 ± 0.01 b | 90.61 ± 0.01 a |
Coordinate green-red (a*) | −2.96 ± 0.01 a | −2.95 ± 0.01 a | −2.92 ± 0.01 a | −2.94 ± 0.01 a | −3.00 ± 0.01 a | −3.01 ± 0.03 a |
Coordinate blue-yellow (b*) | 1.22 ± 0.01 b | 1.25 ± 0.01 b | 1.30 ± 0.01 a,b | 1.19 ± 0.00 b | 1.31 ± 0.02 a | 1.43 ± 0.08 a |
Hue angle (h*, °) | −22.32 ± 0.01 e | −23.00 ± 0.01 d | −24.08 ± 0.01 b | −22.01 ± 0.01 e | −23.54 ± 0.01 c | −25.44 ± 0.01 a |
Chroma (C*) | 3.20 ± 0.01 a | 3.21 ± 0.01 a | 3.19 ± 0.01 a | 3.17 ± 0.01 a | 3.27 ± 0.01 a | 3.33 ± 0.03 a |
Saturation (S*) | 0.04 ± 0.01 a | 0.04 ± 0.01 a | 0.04 ± 0.01 a | 0.04 ± 0.01 a | 0.04 ± 0.01 a | 0.04 ± 0.01 a |
Total color difference (ΔE*) vs. distilled water | -- | 0.07 | 0.14 | 0.18 | 0.51 | 0.37 |
Parameter | Extracts (15 days) | |||||
Distilled Water | AH | MAE | UAE | BHT | α-Tocopherol | |
Lightness (L*) | 90.56 ± 0.01 a | 90.44 ± 0.01 a | 90.43 ± 0.01 a | 90.56 ± 0.01 a | 90.41 ± 0.01 a | 90.74 ± 0.01 a |
Coordinate green-red (a*) | −2.64 ± 0.02 a | −2.67 ± 0.01 a | −2.82 ± 0.01 a | −2.75 ± 0.01 a | −2.60 ± 0.02 a | −2.72 ± 0.01 a |
Coordinate blue-yellow (b*) | 0.59 ± 0.01 c | 0.70 ± 0.01 b | 1.24 ± 0.01 a | 1.21 ± 0.01 a | 0.60 ± 0.01 c | 0.76 ± 0.01 b |
Hue angle (h*, °) | −12.60 ± 0.01 c | −14.61 ± 0.01 b | −23.76 ± 0.01 a | −23.78± 0.01 a | −12.91 ± 0.01 c | −15.69 ± 0.01 b |
Chroma (C*) | 2.71 ± 0.01 b | 2.76 ± 0.01 b | 3.08 ± 0.01 a | 3.00 ± 0.01 a | 2.67 ± 0.01 b | 2.82 ± 0.01 a |
Saturation (S*) | 0.03 ± 0.01 a | 0.03 ± 0.01 a | 0.03 ± 0.01 a | 0.03 ± 0.01 a | 0.03 ± 0.01 a | 0.03 ± 0.01 a |
Total color difference (ΔE*) vs. distilled water | -- | 0.16 | 0.68 | 0.63 | 0.15 | 0.26 |
Parameter | Comparison 0 days versus 15 days | |||||
Distilled Water | AH | MAE | UAE | BHT | α-Tocopherol | |
Total color difference (ΔE*) | 0.75 | 0.64 | 0.95 | 0.45 | 1.01 | 0.74 |
Parameter | Extracts (0 days) | |||||
Distilled Water | AH | MAE | UAE | BHT | α-Tocopherol | |
Lightness (L*) | 89.28 ± 0.01 b | 89.82 ± 0.01 b | 90.86 ± 0.01 a | 90.26 ± 0.01 a | 84.20 ± 0.01 c | 81.91 ± 0.01 d |
Coordinate green-red (a*) | −2.72 ± 0.01 a | −2.83 ± 0.02 a | −2.56 ± 0.01 b | −2.58 ± 0.01 b | −2.48 ± 0.01 b | −2.76 ± 0.03 a |
Coordinate blue-yellow (b*) | 0.20 ± 0.01 e | 1.06 ± 0.01 b | 0.81 ± 0.01 c | 0.44 ± 0.01 d | 0.96 ± 0.01 b | 2.08 ± 0.01 a |
Hue angle (h*, °) | −4.14 ± 0.01 e | −20.45± 0.01 b | −17.47 ± 0.01 c | −9.62 ± 0.01 d | −21.09 ± 0.01 b | −37.04 ± 0.01 a |
Chroma (C*) | 2.72 ± 0.01 c | 3.02 ± 0.01 b | 2.69 ± 0.01 c | 2.61 ± 0.01 c | 2.66 ± 0.01 c | 3.45 ± 0.02 a |
Saturation (S*) | 0.03 ± 0.01 a | 0.03 ± 0.01 a | 0.03 ± 0.01 a | 0.03 ± 0.01 a | 0.03 ± 0.01 a | 0.04 ± 0.01 a |
Total color difference (ΔE*) vs. distilled water | -- | 1.02 | 1.69 | 1.01 | 5.15 | 7.61 |
Parameter | Extracts (15 days) | |||||
Distilled Water | AH | MAE | UAE | BHT | α-Tocopherol | |
Lightness (L*) | 89.22 ± 0.01 b | 90.02 ± 0.01 a | 89.89 ± 0.01 a | 89.01 ± 0.00 b | 84.57 ± 0.01 c | 80.63 ± 0.02 d |
Coordinate green-red (a*) | −0.67 ± 0.03 d | −2.18 ± 0.01 b | −2.02 ± 0.02 b,c | −1.93 ± 0.01 c | −1.93 ± 0.01 c | −2.69 ± 0.02 a |
Coordinate blue-yellow (b*) | −0.16 ± 0.00 e | 0.35 ± 0.00 b | −0.01 ± 0.00 d | −0.39 ± 0.01 f | 0.10 ± 0.01 c | 8.23 ± 0.03 a |
Hue angle (h*, °) | 13.50 ± 0.01 b | −9.11 ± 0.01 f | 0.28 ± 0.01 d | 11.31 ± 0.01 c | −3.06 ± 0.01 e | −71.91 ± 0.01 a |
Chroma (C*) | 0.69 ± 0.01 c | 2.21 ± 0.01 b | 2.02 ± 0.01 b | 1.97 ± 0.01 b | 1.94 ± 0.01 b | 8.66 ± 0.01 a |
Saturation (S*) | 0.01 ± 0.01 b | 0.02 ± 0.01 b | 0.02 ± 0.01 b | 0.02 ± 0.01 b | 0.02 ± 0.01 b | 0.11 ± 0.01 a |
Total color difference (ΔE*) vs. distilled water | -- | 1.79 | 1.52 | 1.30 | 4.83 | 12.18 |
Parameter | Comparison 0 days versus 15 days | |||||
Distilled Water | AH | MAE | UAE | BHT | α-Tocopherol | |
Total color difference (ΔE*) | 2.08 | 0.98 | 1.38 | 1.64 | 1.09 | 6.28 |
Parameter | Extracts (0 days) | |||
0.00% | 0.75% | 1.50% | 2.25% | |
Lightness (L*) | 76.41 ± 0.02 a | 61.56 ± 0.10 b | 57.74 ± 0.01 c | 50.83 ± 0.02 d |
Coordinate green-red (a*) | −4.21 ± 0.01 a | −2.44 ± 0.02 b | −2.05 ± 0.02 c | −1.15 ± 0.01 d |
Coordinate blue-yellow (b*) | 4.46 ± 0.01 c | 5.35 ± 0.02 b | 6.80 ± 0.01 a | 6.92 ± 0.01 a |
Hue angle (h*, °) | −46.61 ± 0.21 d | −65.44 ± 0.08 c | −73.19 ± 0.01 b | −80.56 ± 0.01 a |
Chroma (C*) | 6.13 ± 0.01 b | 5.88 ± 0.01 c | 7.10 ± 0.01 a | 7.01 ± 0.01 a |
Saturation (S*) | 0.08 ± 0.01 b | 0.10 ± 0.01 a,b | 0.12 ± 0.01 a | 0.14 ± 0.01 a |
Total color difference (ΔE*) vs. distilled water | -- | 14.98 | 18.95 | 25.89 |
Parameter | Extracts (15 days) | |||
0.00% | 0.75% | 1.50% | 2.25% | |
Lightness (L*) | 71.03 ± 0.02 a | 63.97 ± 0.01 b | 58.19 ± 0.01 c | 57.54 ± 0.01 c |
Coordinate green-red (a*) | −3.38 ± 0.01 a | −2.63 ± 0.01 b | −1.62 ± 0.03 c | −1.57 ± 0.03 c |
Coordinate blue-yellow (b*) | 3.30 ± 0.01 d | 6.73 ± 0.02 c | 7.42 ± 0.04 b | 7.89 ± 0.02 a |
Hue angle (h*, °) | −44.31 ± 0.01 c | −68.66 ± 0.01 b | −77.70 ± 0.03 a | −78.73 ± 0.01 a |
Chroma (C*) | 4.72 ± 0.01 c | 7.23 ± 0.01 b | 7.59 ± 0.02 b | 8.05 ± 0.01 a |
Saturation (S*) | 0.07 ± 0.01 c | 0.11 ± 0.01 b | 0.13 ± 0.01 a | 0.14 ± 0.01 a |
Total color difference (ΔE*) vs. distilled water | -- | 7.89 | 13.61 | 14.37 |
Parameter | Comparison 0 days versus 15 days | |||
0.00% | 0.75% | 1.50% | 2.25% | |
Total color difference (ΔE*) | 5.57 | 2.78 | 0.88 | 6.79 |
Extracts | AH [24] | MAE [25] | UAE [26] | MHG [21] |
---|---|---|---|---|
Extraction conditions (T, t, S, SLR) | 200 °C, -, W, 1:30 | 170 °C, 3 min, W, 1:30 | 80 °C, 3 min, W, 1.5:100 | 800 W, 2 min and 100, W, 30 min |
Yield (%) | 89.73 ± 0.12 | 55.62 ± 0.95 | 44.30 ± 0.35 | 28.00 ± 0.54 |
GAE content (mg/g) | 1.85 ± 0.01 | 9.21 ± 0.12 | 12.98 | - |
TEAC (mg/g) | 3.91 ± 0.02 | 85.10 ± 1.83 | 178 | - |
Protein content (mg/g) | 7.72 ± 0.03 | 22.43 ± 2.41 | 21–22 | 13.1 ± 0.4 |
Carbohydrate content (%) | 39.51 ± 0.21 | 43.30 ± 0.61 | - | 54.6 ± 1.5 |
Ash content (%) | - | - | 24.4 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Hortas, L.; Torres, M.D.; Falqué, E.; Domínguez, H. Physicochemical Evaluation of Personal Care Products Developed with Chondrus crispus Fractions Processed by Ecofriendly Methodologies. Mar. Drugs 2022, 20, 695. https://doi.org/10.3390/md20110695
López-Hortas L, Torres MD, Falqué E, Domínguez H. Physicochemical Evaluation of Personal Care Products Developed with Chondrus crispus Fractions Processed by Ecofriendly Methodologies. Marine Drugs. 2022; 20(11):695. https://doi.org/10.3390/md20110695
Chicago/Turabian StyleLópez-Hortas, Lucía, María Dolores Torres, Elena Falqué, and Herminia Domínguez. 2022. "Physicochemical Evaluation of Personal Care Products Developed with Chondrus crispus Fractions Processed by Ecofriendly Methodologies" Marine Drugs 20, no. 11: 695. https://doi.org/10.3390/md20110695
APA StyleLópez-Hortas, L., Torres, M. D., Falqué, E., & Domínguez, H. (2022). Physicochemical Evaluation of Personal Care Products Developed with Chondrus crispus Fractions Processed by Ecofriendly Methodologies. Marine Drugs, 20(11), 695. https://doi.org/10.3390/md20110695