Healing and Preventive Effects of Calcium Alginate on Carbon Tetrachloride Induced Liver Injury in Rats
Abstract
:Introduction
Results and Discussion
Calcium alginate substrate
Healing effects of calcium alginate on toxic liver injury in rats (Experiment 1)
Preventive effects of calcium alginate on toxic liver injury in rats (Experiment 2)
Conclusions
Experimental
Calcium alginate preparation
Calcium and sodium alginate analysis
Animals and diet
Experimental design
Biochemical analysis
Statistical analysis
Group | ALT (μkat/L plasma) | AST (μcat/L plasma) | Total bilirubin (μmol/L plasma) | Conjugated bilirubin (μmol/L plasma) | Glycogen (μmol/g liver tissue) |
---|---|---|---|---|---|
Control 1 (− CCl4) n=6 | 0.69±0.06 | 0.38±0.03 | 11.82±0.96 | 5.21±0.43 | 237.0±24.6 |
Control 1 (+CCl4) n=5 | 4.86±0.36 | 3.06±0.24 | 39.21±4.18 | 24.32±2.04 | 93.1±8.3 |
Control 2 (− CCl4) n=5 | 0.61±0.05 | 0.35±0.03 | 12.67±1.48 | 4.34±0.38 | 250.2±25.7 |
Control 2 (+CCl4) n=8 | 4.39±0.31 | 2.94±0.22 | 45.65±4.73 | 20.82±1.71 | 112.3±12.8 |
Ca alginate 10 n=8 | 4.42±0.34 | 2.86±0.19 | 38.63±3.50 | 23.26±2.27 | 117.3±14.4 |
Ca alginate 50 n=8 | 2.62±0.25c | 1.42±0.13c | 30.35±3.58a | 14.70±1.79a | 177.2±16.5b |
Ca alginate 250 n=8 | 1.63±0.19c | 1.13±0.11c | 16.30±1.57c | 11.25±1.37b | 192.7±20.1b |
Group | MDA nmol/mg protein | MDA (nmol/ml plasma) | Conjugated dienes (nmol/ml plasma) | GSH (μg/mg protein) | Thiol groups (μg/mg protein) | AOA (%) |
---|---|---|---|---|---|---|
Control 1 (− CCl4) n=6 | 2.14±0.20 | 3.95±0.37 | 4.17±0.35 | 13.26±1.12 | 46.22±4.85 | 60.62±5.83 |
Control 1 (+CCl4) n=5 | 6.84±0.69 | 11.49±1.10 | 9.20±0.86 | 5.72±0.48 | 21.35±1.87 | 21.46±2.04 |
Control 2 (− CCl4) n=5 | 1.68±0.17 | 4.14±0.37 | 3.54±0.32 | 15.19±1.50 | 44.85±4.29 | 56.30±4.98 |
Control 2 (+CCl4) n=8 | 5.38±0.45 | 11.26±1.16 | 7.76±0.68 | 5.68±0.55 | 25.28±2.36 | 29.35±3.34 |
Ca alginate 10 n=8 | 5.18±0.49 | 8.14±0.81a | 7.82±0.81 | 5.24±0.51 | 24.59±2.72 | 36.29±3.28 |
Ca alginate 50 n=8 | 2.95±0.38b | 6.92±0.68b | 5.28±0.50a | 9.47±1.03b | 28.22±2.71 | 45.61±4.70a |
Ca alginate 250 n=8 | 2.48±0.31c | 5.63±0.58c | 3.88±0.44c | 10.63±1.19b | 36.8±3.88b | 50.82±5.78b |
Group | ALT (μkat/L plasma) | AST (μkat/L plasma) | Total bilirubin (μmol/L plasma) | Conjugated bilirubin (μmol/L plasma) |
---|---|---|---|---|
Control 1 (− CCl4) n=6 | 0.81±0.07 | 0.32±0.03 | 12.24±1.44 | 6.13±0.59 |
Ca alginate 10 n=5 | 0.79±0.08 | 0.34±0.03 | 13.52±1.08 | 7.74±0.62 |
Ca alginate 50 n=5 | 0.73±0.07 | 0.36±0.04 | 12.64±0.98 | 7.51±0.60 |
Ca alginate 250 n=6 | 0.77±0.08 | 0.37±0.05 | 13.17±1.36 | 6.39±0.62 |
Control 2 (− CCl4) n=6 | 0.83±0.08 | 0.37±0.04 | 14.22±1.38 | 6.58±0.65 |
Control 2 (+CCl4) n=8 | 4.12±0.31 | 2.38±0.20 | 35.65±3.28 | 18.36±1.66 |
Ca alginate 10 n=8 | 4.03±0.34 | 1.96±0.19 | 36.37±3.61 | 16.22±1.73 |
Ca alginate 50 n=8 | 3.13±0.28a | 1.65±0.22a | 30.46±2.94 | 14.28±1.57 |
Ca alginate 250 n=8 | 1.56±0.17c | 0.97±0.10b | 24.91±2.74a | 12.44±1.36a |
Group | MDA nmol/mg protein | MDA (nmol/ml plasma) | Conjugated dienes (nmol/ml plasma) | GSH (μg/mg protein) | Thiol groups (μg/mg protein) | AOA (%) |
---|---|---|---|---|---|---|
Control 1 (− CCl4) n=6 | 2.64±0.23 | 4.55±0.49 | 4.55±0.39 | 12.64±0.93 | 48.76±3.63 | 56.36±5.29 |
Ca alginate 10 n=5 | 2.55±0.24 | 5.11±0.53 | 5.11±0.48 | 12.28±0.98 | 44.32±3.89 | 54.39±5.11 |
Ca alginate 50 n=5 | 2.71±0.26 | 4.56±0.42 | 5.73±0.56 | 13.25±1.22 | 49.27±4.85 | 59.26±5.81 |
Ca alginate 250 n=6 | 1.96±0.18d | 3.04±0.31d | 4.42±0.45 | 11.79±0.92 | 44.38±4.74 | 53.36±5.03 |
Control 2 (− CCl4) n=6 | 2.79±0.27 | 4.22±0.40 | 4.84±0.52 | 12.31±1.03 | 47.26±4.82 | 59.21±6.02 |
Control 2 (+CCl4) n=8 | 7.97±0.74 | 12.37±1.23 | 8.65±0.77 | 5.13±0.49 | 21.73±2.36 | 27.10±2.75 |
Ca alginate 10 n=8 | 7.13±0.68 | 10.34±1.28 | 8.15±0.73 | 5.48±0.31 | 20.46±1.98 | 27.64±2.29 |
Ca alginate 50 n=8 | 6.44±0.57 | 9.94±0.78 | 7.28±0.67 | 8.19±0.81b | 28.29±2.44 | 37.72±3.34a |
Ca alginate 250 n=8 | 4.58±0.42b | 5.83±0.59c | 5.07±0.49b | 9.06±0.87b | 34.17±3.67a | 46.38±4.85b |
- Sample Availability: Samples are available from the authors.
References and Notes
- Rossel, K.G.; Srivastava, L.M. Seasonal variation in the chemical constituents of the brown algae Marocystis integrifolia and Noveocystic luetkeana. Can. J. Bot 1984, 62, 2229–2236. [Google Scholar]
- Okazaki, M.; Furuya, K.; Tsukayama, K.; Nisizawa, K. Isolation and identification of alginic acid from calcareous red alga Serraticardia maxima. Bot. Mar 1982, 25, 123–131. [Google Scholar]
- Sabra, W.; Zeng, A.P.; Deckwer, D. Bacterial alginate: physiology, product quality and process aspects. Appl. Microbiol. Biotechnol 2001, 56, 315–325. [Google Scholar]
- Sidsrod, O.; Draget, K.I. Chemistry and physical properties of alginates. Carbohydr. Eur 1996, 14, 6–13. [Google Scholar]
- Skjak-Brak, G. Alginate: biosynthesis and structure-function relationship relevant to biomedical and biotechnological applications. Biochem. Plant Polysacch 1992, 20, 27–33. [Google Scholar]
- Pilnic, W.; Rombouts, F. Polysaccharides and food processing. Carbohydr. Res 1985, 142, 93–105. [Google Scholar]
- Chan, L.W.; Lee, H.Y.; Heng, P.W.S. Production of alginate microspheres by internal gelation using an emulsification method. Int. J. Pharmac 2002, 242, 259–262. [Google Scholar]
- Coppi, G.; Iannuccelli, V.; Bernabei, M.T.; Cameroni, R. Alginate microparticles for enzyme peroral administration. Int. J. Pharmac 2002, 242, 263–266. [Google Scholar]
- Blandino, A.; Macias, A.; Cantero, D. Calcium alginate gel as encapsulation matrix for coimmobilized enzyme systems. Appl. Biochem. Biotechnol 2003, 110, 53–60. [Google Scholar]
- Norton, S.; Watson, K.; Damore, T. Ethanol tolerance of immobilized brewers’ yeast cells. Appl. Microbiol. Biotechnol 1995, 43, 18–24. [Google Scholar]
- Declerck, S.; Strullu, D.; Plenchette, C.; Guillemette, T. Entrapment of in vitro produced spores of Glomus versiforme in alginate beads: in vitro and in vivo inoculum potentials. J. Biotechnol 1996, 48, 51–57. [Google Scholar]
- Torre, M.L.; Maggi, L.; Vigo, D.; Galli, A.; Bornaghi, V.; Maffeo, G.; Conte, U. Controlled release of swine semen encapsulated in calcium alginate beads. Biomaterials 2000, 21, 1493–1498. [Google Scholar]
- Tatarkiewicz, K.; Garcia, M.; Lopez-Avalos, M.; BonnerWeir, S.; Weir, G.C. Porcine neonatal pancreatic cell clusters in tissue culture: Benefits of serum and immobilization in alginate hydrogel. Transplantation 2001, 71, 1518–1526. [Google Scholar]
- Simpson, N.E.; Grant, S.C.; Blackband, S.J.; Constantinidis, I. NMR properties of alginate microbeads. Biomaterials 2003, 24, 4941–4948. [Google Scholar]
- Tonnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Develop. Indust. Pharmacy 2002, 28, 621–630. [Google Scholar]
- Ain, Q.; Sharma, S.; Khuller, G.K.; Garg, S.K. Alginate-based oral drug delivery system for tuberculosis: pharmacokinetics and therapeutic effects. J. Antimicrob. Chemother 2003, 51, 931–938. [Google Scholar]
- Murata, Y.; Kofuji, K.; Kawashima, S. Preparation of floating alginate gel beads for drug delivery to the gastric mucosa. J. Biomater. Sci. Polymer Edition 2003, 14, 581–588. [Google Scholar]
- Kim, B.; Bowersock, T.; Griebel, P.; Kidane, A.; Babiuk, L.A.; Sanchez, M.; Attah-Poku, S.; Kaushik, R.S.; Mutwiri, G.K. Mucosal immune responses following oral immunization with rotavirus antigens encapsulated in alginate microspheres. J. Control. Release 2002, 85, 191–202. [Google Scholar]
- Ross, C.J.D.; Chang, P.L. Development of small alginate microcapsules for recombinant gene product delivery to the rodent brain. J. Biomater. Sci.- Polymer Edition 2002, 13, 953–962. [Google Scholar]
- Alsberg, E.; Anderson, K.W.; Albeiruti, A.; Franceschi, R.T.; Mooney, D.J. Cell-interactive alginate hydrogels for bone tissue engineering. J. Dental Res 2001, 80, 2025–2029. [Google Scholar]
- Ueyama, Y.; Ishikawa, K.; Mano, T.; Koyama, T.; Nagatsuka, H.; Suzuki, K.; Ryoke, K. Usefulness as guided bone regeneration membrane of the alginate membrane. Biomaterials 2002, 23, 2027–2033. [Google Scholar]
- Hashimoto, T.; Suzuki, Y.; Kitada, M.; Kataoka, K.; Wu, S.; Suzuki, K.; Endo, K.; Nishimura, Y.; Ide, C. Peripheral nerve regeneration through alginate gel: analysis of early outgrowth and late increase in diameter of regenerating axons. Exp. Brain Res 2002, 146, 356–368. [Google Scholar]
- Seal, C.J.; Mathers, J.C. Comparative gastrointestinal and plasma cholesterol responses of rats fed on cholesterol-free diets supplemented with guar gum and sodium alginate. Br. J. Nutr 2001, 85, 317–324. [Google Scholar]
- Khotimchenko, Yu.S.; Kovalev, V.V.; Savchenko, O.V.; Ziganshina, O.A. Physicalchemical properties, physiological activity, and usage of alginates, the polysaccharides of brown algae. Rus. J. Mar. Biol 2001, 27, S53–S64. [Google Scholar]
- Fujihara, M.; Nagumo, T. An influence of the structure of alginate on the chemotactic activity of macrophages and the antitumor activity. Carbohydr. Res 1993, 243, 211–216. [Google Scholar]
- Son, E.H.; Moon, E.Y.; Rhee, D.K.; Pyo, S. Stimulation of various functions in murine peritoneal macrophages by high mannuronic acid-containing alginate (HMA) exposure in vivo. Int. Immunopharmacol 2001, 1, 147–154. [Google Scholar]
- Sano, Y. Antiviral activity of alginate against infection by tobacco mosaic virus. Carbohydr. Polym 1999, 38, 183–186. [Google Scholar]
- Segal, H.C.; Hunt, B.J.; Gilding, K. The effect of alginate and non-alginate wound dressings on blood coagulation and platelet activation. J. Biomater. Appl 1998, 12, 249–257. [Google Scholar]
- Huang, R.H.; Du, Y.M.; Yang, J.H. Preparation and in vitro anticoagulant activities of alginate sulfate and its quaterized derivatives. Carbohydr. Polym 2003, 52, 19–24. [Google Scholar]
- Torsdottir, I.; Alpsten, M.; Holm, G.; Sandberg, A. S.; Tolli, J. A small dose of soluble alginate-fiber affects posprandial glycemia and gastric emptying in humans with diabetes. J. Nutr 1991, 121, 795–799. [Google Scholar]
- Nishiya, M.; Hareyama, H.; Makinoda, S.; Fujimoto, S. A study on the hemostatic effect of sodium alginate on uterocervical hemorrhage. Asia Oceania J. Obstet. Gynecol 1994, 20, 203–208. [Google Scholar]
- Davis, M.S.; Flannery, M.C.; McCollum, C.N. Calcium alginate as haemostatic swabs in hip fracture surgery. J. R. Coll. Surg. Edinb 1997, 42, 31–32. [Google Scholar]
- Nagaoka, M.; Shibata, H.; Kimura-Takagi, I.; Hashimoto, S.; Aiyama, R.; Ueyama, S.; Yokokura, T. Anti-ulcer effects and biological activities of polysaccharides from marine algae. BioFactors 2000, 12, 267–274. [Google Scholar]
- Rechnagel, R.O.; Glende, E.A., Jr. Carbon tetrachloride hepatotoxicity: an example of lethal cleavage. CRC Crit Rev Toxicol 1973, 2, 263–297. [Google Scholar]
- Zimmerman, H. J. Hepatotoxicity; Appleton-Century-Crofts: N. Y, 1978. [Google Scholar]
- Kim, S.; Chung, H.; Cho, J. Molecular mechanism for aklyl sulfide-modulated carbon tetrachloride-induced hepatotoxicity: the role of cytochrome P4502E1, P4502B and glutathione S-transpherase expression. J. Pharmacol. Exp. Ther 1996, 277, 1058–1066. [Google Scholar]
- Boll, M.; Weber, L.W.D.; Becker, E.; Stampfl, A. Mechanism of carbon tetrachlorideinduced hepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites. J. Biosci 2001, 56, 649–659. [Google Scholar]
- Hemmings, S.J.; Pulga, V.B.; Tran, S.T.; Uwiera, R.R.E. Differential inhibitory effects of carbon tetrachloride on the hepatic plasma membrane, mitochondrial and endoplasmic reticular calcium transport systems: implications to hepatotoxicity. Cell Bioch. Funct 2002, 20, 47–59. [Google Scholar]
- Michel, C.; Lahaye, M.; Bonnet, C.; Mabeau, S.; Barry, J.L. In vitro fermentation by human faecal bacteria of total and purified dietary fibres from brown seaweeds. Br. J. Nutr 1996, 75, 263–280. [Google Scholar]
- Sugiyama, K.; Puming, H.; Shingo, W.; Shigeru, S. Teas and other beverages suppress Dgalactosamine- induced liver injury in rats. J. Nutr 1999, 129, 1361–1367. [Google Scholar]
- Blumenkrantz, S.; Asboe-Haunsen, G. New method for quantitative determination of uronic acids. Anal. Biochem 1973, 54, 484–489. [Google Scholar]
- Kostecka, K. S. Atomic Absorption Spectroscopy of Calcium in Foodstuffs in Non- Science-Major Courses. J. Chem. Educ 2000, 77, 1321. [Google Scholar]
- Kravtchenko, T. P.; Pilnik, A. A simplified method for the determination of the intrinsic viscosity of pectin solutions by classical viscosimetry. In Gums and Stabilizers in the Food Industry 5; Phillips, G. O., Williams, P. A., Wedlock, D. J., Eds.; IRL Press: Oxford, 1990; pp. 281–285. [Google Scholar]
- Anderson, M.E. Determination of glutathione and glutathione disulfide in biological samples. Methods in Enzymology 1985, 113, 548–53. [Google Scholar]
- Van Handel, E. Estimation of glycogen in small amounts of tissue. Analyt. Biochem 1965, 11, 256–265. [Google Scholar]
- Greenberg, C.G.; Gaddock, P.R. Rapid single-step membrane protein assay. Clin. Chem 1982, 28, 1725–1726. [Google Scholar]
- Jocelyn, P.C. Spectrophotometric assay of thiols. Methods in Enzymology 1989, 143, 44–55. [Google Scholar]
- Rohn, T.T.; Hinds, T.R.; Vincenzi, F.F. Ion transport ATPases as targets for free radical damage. Biochem. Pharmacol 1993, 46, 525–534. [Google Scholar]
- Corongiu, F.P.; Banni, S. Detection of conjugated dienes by second derivative ultraviolet spectrophotometry. Methods in Enzymology 1994, 233, 303–310. [Google Scholar]
- Yagy, K. Assay for blood plasma or serum. Packer, L, Ed.; In Methods in Enzymology; New-York; Academic Press, 1984; Volume 105, pp. 328–331. [Google Scholar]
© 2004 by MDPI Reproduction is permitted for noncommercial purposes.
Share and Cite
Khotimchenko, Y.S.; Khotimchenko, M.Y. Healing and Preventive Effects of Calcium Alginate on Carbon Tetrachloride Induced Liver Injury in Rats. Mar. Drugs 2004, 2, 108-122. https://doi.org/10.3390/md203108
Khotimchenko YS, Khotimchenko MY. Healing and Preventive Effects of Calcium Alginate on Carbon Tetrachloride Induced Liver Injury in Rats. Marine Drugs. 2004; 2(3):108-122. https://doi.org/10.3390/md203108
Chicago/Turabian StyleKhotimchenko, Yuri S., and Maxim Y. Khotimchenko. 2004. "Healing and Preventive Effects of Calcium Alginate on Carbon Tetrachloride Induced Liver Injury in Rats" Marine Drugs 2, no. 3: 108-122. https://doi.org/10.3390/md203108
APA StyleKhotimchenko, Y. S., & Khotimchenko, M. Y. (2004). Healing and Preventive Effects of Calcium Alginate on Carbon Tetrachloride Induced Liver Injury in Rats. Marine Drugs, 2(3), 108-122. https://doi.org/10.3390/md203108