Sponges and Their Symbionts as a Source of Valuable Compounds in Cosmeceutical Field
Abstract
1. Introduction
2. Sponge Symbionts in Cosmeceutical Field
2.1. Bacteria
2.2. Fungi
3. Sponges
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, T.R.A.; Kavlekar, D.P.; LokaBharathi, P.A. Marine drugs from sponge-microbe association—A review. Mar. Drugs 2010, 8, 1417–1468. [Google Scholar] [CrossRef]
- Thacker, R.W.; Freeman, C.J. Sponge-microbe symbioses: Recent advances and new directions. Adv. Mar. Biol. 2012, 62, 57–111. [Google Scholar]
- Webster, N.S.; Taylor, M.W. Marine sponges and their microbial symbionts: Love and other relationships. Environ. Microbiol. 2012, 14, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Mehbub, M.F.; Lei, J.; Franco, C.; Zhang, W. Marine sponge derived natural products between 2001 and 2010: Trends and opportunities for discovery of bioactives. Mar. Drugs 2014, 12, 4539–4577. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.S.; Pal, A.K. A review of bioactive compounds from marine organisms with special mention on the potential of marine sponges in pharmacological applications. J. Mar. Biol. Assoc. India 2016, 58, 87–96. [Google Scholar] [CrossRef][Green Version]
- Bibi, F.; Faheem, M.; Azhar, E.; Yasir, M.; Alvi, S.; Kamal, M.; Ullah, I.; Naseer, M. Bacteria from marine sponges: A source of new drugs. Curr. Drug Metab. 2016, 17. [Google Scholar] [CrossRef]
- Perdicaris, S.; Vlachogianni, T.; Valavanidis, A. Bioactive natural substances from marine sponges: New developments and prospects for future pharmaceuticals. Nat. Prod. Chem. Res. 2013, 1, 3. [Google Scholar] [CrossRef]
- Simister, R.L.; Deines, P.; Botté, E.S.; Webster, N.S.; Taylor, M.W. Sponge-specific clusters revisited: A comprehensive phylogeny of sponge-associated microorganisms. Environ. Microbiol. 2012, 14, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Moitinho-Silva, L.; Nielsen, S.; Amir, A.; Gonzalez, A.; Ackermann, G.L.; Cerrano, C.; Astudillo-Garcia, C.; Easson, C.; Sipkema, D.; Liu, F.; et al. The sponge microbiome project. Gigascience 2017, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tianero, M.D.; Balaich, J.N.; Donia, M.S. Localized production of defence chemicals by intracellular symbionts of Haliclona sponges. Nat. Microbiol. 2019, 4, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, W.; Franco, C.M.M. Response of sponge microbiomes to environmental variations. In Symbiotic Microbiomes of Coral Reefs Sponges and Corals; Li, Z., Ed.; Springer Nature: Basingstoke, UK, 2019; pp. 181–247. ISBN 9789402416121. [Google Scholar]
- Freeman, C.J.; Thacker, R.W. Complex interactions between marine sponges and their symbiotic microbial communities. Limnol. Oceanogr. 2011, 56, 1577–1586. [Google Scholar] [CrossRef]
- Guzman, C.; Conaco, C. Gene expression dynamics accompanying the sponge thermal stress response. PLoS ONE 2016, 11, 1–15. [Google Scholar] [CrossRef]
- Marty, M.J.; Vicente, J.; Oyler, B.L.; Place, A.; Hill, R.T. Sponge symbioses between Xestospongia deweerdtae and Plakortis spp. are not motivated by shared chemical defense against predators. PLoS ONE 2017, 12, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Shinde, P.; Banerjee, P.; Mandhare, A. Marine natural products as source of new drugs: A patent review (2015–2018). Expert Opin. Ther. Pat. 2019, 29, 283–309. [Google Scholar] [CrossRef] [PubMed]
- Draelos, Z.D. Cosmeceuticals: What’s real, what’s not. Dermatol. Clin. 2019, 37, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, H. The biomolecules of beauty: Biochemical pharmacology and immunotoxicology of cosmeceuticals. J. Immunoass. Immunochem. 2019, 40, 91–108. [Google Scholar] [CrossRef]
- Alves, T.F.R.; Morsink, M.; Batain, F.; Chaud, M.V.; Almeida, T.; Fernandes, D.A.; Silva, C.F.; Souto, E.B. Synthetic polymers in cosmetic formulations. Cosmetics 2020, 7, 75. [Google Scholar] [CrossRef]
- Sharad, J. Cosmeceuticals. In Advances in Integrative Dermatology; França, K., Lotti, T., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; pp. 393–411. [Google Scholar]
- Khezri, K.; Saeedi, M.; Maleki Dizaj, S. Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations. Biomed. Pharmacother. 2018, 106, 1499–1505. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N. New insights on unique features and role of nanostructured materials in cosmetics. Cosmetics 2020, 7, 24. [Google Scholar] [CrossRef]
- Ben Haddada, M.; Gerometta, E.; Chawech, R.; Sorres, J.; Bialecki, A.; Pesnel, S.; Spadavecchia, J.; Morel, A.L. Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids Surf. B Biointerfaces 2020, 189, 110855. [Google Scholar] [CrossRef]
- Kesavan Pillai, S.; Kleyi, P.; de Beer, M.; Mudaly, P. Layered double hydroxides: An advanced encapsulation and delivery system for cosmetic ingredients-an overview. Appl. Clay Sci. 2020, 199, 105868. [Google Scholar] [CrossRef]
- Poulose, N.; Sajayan, A.; Ravindran, A.; Sreechithra, T.V.; Vardhan, V.; Selvin, J.; Kiran, G.S. Photoprotective effect of nanomelanin-seaweed concentrate in formulated cosmetic cream: With improved antioxidant and wound healing properties. J. Photochem. Photobiol. B Biol. 2020, 205, 111816. [Google Scholar] [CrossRef]
- Genç, Y.; Bardakci, H.; Yücel, Ç.; Karatoprak, G.Ş.; Akkol, E.K.; Barak, T.H.; Sobarzo-Sánchez, E. Oxidative stress and marine carotenoids: Application by using nanoformulations. Mar. Drugs 2020, 18, 423. [Google Scholar] [CrossRef]
- Gupta, R.K.; Soni, P.; Shrivastava, J.; Rajput, P.; Parashar, S.; Kalpana, B.; Nidana, R.; Vikriti, E. Cosmeceutical role of medicinal plants/herbs: A review on commercially available cosmetic ingredients. Int. J. Innov. Sci. Technol. 2018, 3, 70–73. [Google Scholar] [CrossRef]
- Joshi, L.S.; Pawar, H.A. Herbal cosmetics and cosmeceuticals: An overview. Nat. Prod. Chem. Res. 2015, 3, 170. [Google Scholar] [CrossRef]
- Charles Dorni, A.I.; Amalraj, A.; Gopi, S.; Varma, K.; Anjana, S.N. Novel cosmeceuticals from plants—An industry guided review. J. Appl. Res. Med. Aromat. Plants 2017, 7, 1–26. [Google Scholar] [CrossRef]
- Alves, A.; Sousa, E.; Kijjoa, A.; Pinto, M. Marine-derived compounds with potential use as cosmeceuticals and nutricosmetics. Molecules 2020, 25, 2536. [Google Scholar] [CrossRef] [PubMed]
- Pallela, R.; Na-Young, Y.; Kim, S.K. Anti-photoaging and photoprotective compounds derived from marine organisms. Mar. Drugs 2010, 8, 1189–1202. [Google Scholar] [CrossRef] [PubMed]
- Felician, F.F.; Xia, C.; Qi, W.; Xu, H. Collagen from marine biological sources and medical applications. Chem. Biodivers. 2018, 15, e1700557. [Google Scholar] [CrossRef] [PubMed]
- Manandhar, B.; Wagle, A.; Seong, S.H.; Paudel, P.; Kim, H.R.; Jung, H.A.; Choi, J.S. Phlorotannins with potential anti-tyrosinase and antioxidant activity isolated from the marine seaweed Ecklonia Stolonifera. Antioxid. 2019, 8, 240. [Google Scholar] [CrossRef] [PubMed]
- Couteau, C.; Coiffard, L. Phycocosmetics and other marine cosmetics, specific cosmetics formulated using marine resources. Mar. Drugs 2020, 18, 322. [Google Scholar] [CrossRef] [PubMed]
- Pilevneli, A.D.; Konuklugil, B. Marine derived tyrosinase inhibitors. Ege J. Fish. Aquat. Sci. 2020, 37, 427–436. [Google Scholar] [CrossRef]
- Solano, F. Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources. Molecules 2020, 25, 1537. [Google Scholar] [CrossRef]
- Chang, T.S. Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity. Materials 2012, 5, 1661–1685. [Google Scholar] [CrossRef]
- Balakrishnan, D.; Kandasamy, D.; Nithyanand, P. A review on antioxidant activity of marine organisms. Int. J. Chem. Tech. Res. 2014, 6, 3431–3436. [Google Scholar]
- Balboa, E.M.; Conde, E.; Soto, M.L.; Pérez-Armada, L.; Domínguez, H. Cosmetics from marine sources. In Springer Handbook of Marine Biotechnology; Kim, S.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 44, pp. 1015–1042. [Google Scholar]
- Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Barreiro, M.F.; González-Paramás, A.M.; Ferreira, I.C.F.R. Development of mushroom-based cosmeceutical formulations with anti-inflammatory, anti-tyrosinase, antioxidant, and antibacterial properties. Molecules 2016, 21, 1372. [Google Scholar] [CrossRef]
- Brunt, E.G.; Burgess, J.G. The promise of marine molecules as cosmetic active ingredients. Int. J. Cosmet. Sci. 2016, 40, 1–15. [Google Scholar] [CrossRef]
- Chrapusta, E.; Kaminski, A.; Duchnik, K.; Bober, B.; Adamski, M.; Bialczyk, J. Mycosporine-like amino acids: Potential health and beauty ingredients. Mar. Drugs 2017, 15, 326. [Google Scholar] [CrossRef] [PubMed]
- Galasso, C.; Corinaldesi, C.; Sansone, C. Carotenoids from marine organisms: Biological functions and industrial applications. Antioxidants 2017, 6, 96. [Google Scholar] [CrossRef]
- Núñez-Pons, L.; Avila, C.; Romano, G.; Verde, C.; Giordano, D. UV-protective compounds in marine organisms from the southern ocean. Mar. Drugs 2018, 16, 336. [Google Scholar] [CrossRef]
- Vílchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M. Marine carotenoids: Biological functions and commercial applications. Mar. Drugs 2011, 9, 319–333. [Google Scholar] [CrossRef]
- Wada, N.; Sakamoto, T.; Matsugo, S. Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxidants 2015, 4, 603–646. [Google Scholar] [CrossRef]
- Birben, E.; Sahiner, U.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. Science 1997, 22, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef] [PubMed]
- Sansone, C.; Brunet, C. Marine algal antioxidants. Antioxidants 2020, 9, 206. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, V.C.; Horam, S.; Singh, A.; Lata, M.; Reddy, T.J.; Arockiaraj, J.; Pasupuleti, M. The discovery of antioxidants in marine microorganisms and their protective effects on the hepatic cells from chemical-induced oxidative stress. Free Radic. Res. 2020, 54, 150–161. [Google Scholar] [CrossRef]
- Siavash, H.C.; Fadzilah, A.A.M. Cosmeceutical values, antimicrobial activities and antioxidant properties of cashew leaves extract. Afr. J. Biotechnol. 2011, 10, 4573–14582. [Google Scholar] [CrossRef][Green Version]
- Baldisserotto, A.; Malisardi, G.; Scalambra, E.; Andreotti, E.; Romagnoli, C.; Vicentini, C.B.; Manfredini, S.; Vertuani, S. Synthesis, antioxidant and antimicrobial activity of a new phloridzin derivative for dermo-cosmetic applications. Molecules 2012, 17, 13275–13289. [Google Scholar] [CrossRef]
- Herman, A.; Herman, A.P.; Domagalska, B.W.; Młynarczyk, A. Essential oils and herbal extracts as antimicrobial agents in cosmetic emulsion. Indian J. Microbiol. 2013, 53, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, T.; Arotupin, D.; Ekundayo, T. Antimicrobial activities of some commercial cosmetics on selected cutaneous microflora. J. Adv. Microbiol. 2017, 4, 1–9. [Google Scholar] [CrossRef][Green Version]
- Kim, J.W.; Yu, H.; Park, K.M.; Chang, P.S. Antimicrobial characterization of erythorbyl laurate for practical applications in food and cosmetics. J. Chem. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Gumus, C.E. Natural emulsifiers—Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Adv. Colloid Interface Sci. 2016, 234, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Adu, S.A.; Naughton, P.J.; Marchant, R.; Banat, I.M. Microbial biosurfactants in cosmetic and personal skincare pharmaceutical formulations. Pharmaceutics 2020, 12, 1099. [Google Scholar] [CrossRef]
- Corinaldesi, C.; Barone, G.; Marcellini, F.; Dell’Anno, A.; Danovaro, R. Marine microbial-derived molecules and their potential use in cosmeceutical and cosmetic products. Mar. Drugs 2017, 15, 118. [Google Scholar] [CrossRef]
- Kong, S.Z.; Li, J.C.; Li, S.D.; Liao, M.N.; Li, C.P.; Zheng, P.J.; Guo, M.H.; Tan, W.X.; Zheng, Z.H.; Hu, Z. Anti-aging effect of chitosan oligosaccharide on d-galactose-induced subacute aging in mice. Mar. Drugs 2018, 16, 181. [Google Scholar] [CrossRef]
- Jahan, A.; Ahmad, I.Z.; Fatima, N.; Ansari, V.A.; Akhtar, J. Algal bioactive compounds in the cosmeceutical industry: A review. Phycologia 2017, 56, 410–422. [Google Scholar] [CrossRef]
- Pereira, L. Seaweeds as source of bioactive substances and skin care therapy—Cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics 2018, 5, 68. [Google Scholar] [CrossRef]
- Hamidi, M.; Safarzadeh Kozani, P.; Safarzadeh Kozani, P.; Pierre, G.; Michaud, P.; Delattre, C. Marine bacteria versus microalgae: Who is the best for biotechnological production of bioactive compounds with antioxidant properties and other biological applications? Mar. Drugs 2020, 18, 28. [Google Scholar] [CrossRef]
- Thiyagarasaiyar, K.; Goh, B.H.; Jeon, Y.J.; Yow, Y.Y. Algae metabolites in cosmeceutical: An overview of current applications and challenges. Mar. Drugs 2020, 18, 323. [Google Scholar] [CrossRef]
- Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Mar. Drugs 2014, 12, 1066–1101. [Google Scholar] [CrossRef]
- Calado, R.; Leal, M.C.; Gaspar, H.; Santos, S.; Marques, A.; Nunes, M.L.; Vieira, H. How to succeed in marketing marine natural products for nutraceutical, pharmaceutical and cosmeceutical markets. In Grand Challenges in Biology and Biotechnology; Rampelotto, P.H., Trincone, A., Eds.; Springer International Publishing: Manhattan, NY, USA, 2018; pp. 317–403. ISBN 9783319690759. [Google Scholar]
- Hassane, C.S.; Fouillaud, M.; Le Goff, G.; Sklirou, A.D.; Boyer, J.B.; Trougakos, I.P.; Jerabek, M.; Bignon, J.; de Voogd, N.J.; Ouazzani, J.; et al. Microorganisms associated with the marine sponge Scopalina hapalia: A reservoir of bioactive molecules to slow down the aging process. Microorganisms 2020, 8, 1262. [Google Scholar] [CrossRef]
- Imhoff, J.F.; Labes, A.; Wiese, J. Bio-mining the microbial treasures of the ocean: New natural products. Biotechnol. Adv. 2011, 29, 468–482. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Garcia-Pichel, F. Microbial ultraviolet sunscreens. Nat. Rev. Microbiol. 2011, 9, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Morabito, K.; Shapley, N.C.; Steeley, K.G.; Tripathi, A. Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection. Int. J. Cosmet. Sci. 2011, 33, 385–390. [Google Scholar] [CrossRef]
- Young, A.J.; Lowe, G.L. Carotenoids—antioxidant properties. Antioxidants 2018, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Dharmaraj, S.; Ashokkumar, B.; Dhevendaran, K. Food-grade pigments from Streptomyces sp. isolated from the marine sponge Callyspongia diffusa. Food Res. Int. 2009, 42, 487–492. [Google Scholar] [CrossRef]
- Shindo, K.; Asagi, E.; Sano, A.; Hotta, E.; Minemura, N.; Mikami, K.; Tamesada, E.; Misawa, N.; Maoka, T. Diapolycopenedioic acid xylosyl esters A, B, and C, novel antioxidative glyco-C30-carotenoic acids produced by a new marine bacterium Rubritalea Squalenifaciens. J. Antibiot. (Tokyo) 2008, 61, 185–191. [Google Scholar] [CrossRef]
- Abdelmohsen, U.R.; Szesny, M.; Othman, E.M.; Schirmeister, T.; Grond, S.; Stopper, H.; Hentschel, U. Antioxidant and anti-protease activities of diazepinomicin from the sponge-associated Micromonospora strain RV115. Mar. Drugs 2012, 10, 2208–2221. [Google Scholar] [CrossRef]
- Arunachalam, K.; Amirtham Jacob Appadorai, R. Antioxidant potential and biochemical evaluation of metabolites from the marine bacteria Virgibacillus sp. associated with the sponge Callyspongia diffusa. Free Radic. Antioxid. 2013, 3, 47–51. [Google Scholar] [CrossRef]
- Dupont, S.; Carré-Mlouka, A.; Descarrega, F.; Ereskovsky, A.; Longeon, A.; Mouray, E.; Florent, I.; Bourguet-Kondracki, M.L. Diversity and biological activities of the bacterial community associated with the marine sponge Phorbas tenacior (Porifera, Demospongiae). Lett. Appl. Microbiol. 2014, 58, 42–52. [Google Scholar] [CrossRef]
- Balakrishnan, D.; Bibiana, A.S.; Vijayakumar, A.; Santhosh, R.S.; Dhevendaran, K.; Nithyanand, P. Antioxidant activity of bacteria associated with the marine sponge Tedania anhelans. Indian J. Microbiol. 2015, 55, 13–18. [Google Scholar] [CrossRef]
- Mohan, G.; Centre, N.; Sustainable, F.; Management, C.; Kumar, T.T.A. Marine natural product, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- (C7H10N2O2) of antioxidant properties from Bacillus species at Lakshadweep archipelago. J. Coast. Life Med. 2014, 2, 636–641. [Google Scholar] [CrossRef]
- Velho-Pereira, S.; Parvatkar, P.; Furtado, I.J. Evaluation of antioxidant producing potential of halophilic bacterial bionts from marine invertebrates. Indian J. Pharm. Sci. 2015, 77, 183–189. [Google Scholar]
- El-Moneam, N.M.A.; El-Assar, S.A.; Shreadah, M.A.; Nabil-Adam, A. Isolation, identification and molecular screening of Pseudomonas sp. metabolic pathways NRPs and PKS associated with the Red Sea Sponge, Hyrtios aff. erectus, Egypt. J. Pure Appl. Microbiol. 2017, 11, 1299–1311. [Google Scholar] [CrossRef]
- Vijayan, V.; Jasmin, C.; Anas, A.; Parakkaparambil Kuttan, S.; Vinothkumar, S.; Perunninakulath Subrayan, P.; Nair, S. Sponge-associated bacteria produce non-cytotoxic melanin which protects animal cells from photo-toxicity. Appl. Biochem. Biotechnol. 2017, 183, 396–411. [Google Scholar] [CrossRef] [PubMed]
- Prastya, M.E.; Astuti, R.I.; Batubara, I.; Wahyudi, A.T. Antioxidant, antiglycation and in vivo antiaging effects of metabolite extracts from marine sponge-associated bacteria. Indian J. Pharm. Sci. 2019, 81, 344–354. [Google Scholar] [CrossRef]
- Prastya, M.E.; Astuti, R.I.; Batubara, I.; Takagi, H.; Wahyudi, A.T. Chemical screening identifies an extract from marine Pseudomonas sp.-PTR-08 as an anti-aging agent that promotes fission yeast longevity by modulating the Pap1–ctt1+ pathway and the cell cycle. Mol. Biol. Rep. 2020, 47, 33–43. [Google Scholar] [CrossRef]
- Prastya, M.E.; Astuti, R.I.; Batubara, I.; Takagi, H.; Wahyudi, A.T. Natural extract and its fractions isolated from the marine bacterium Pseudoalteromonas flavipulchra STILL-33 have antioxidant and antiaging activities in Schizosaccharomyces pombe. FEMS Yeast Res. 2020, 20, 1–14. [Google Scholar] [CrossRef]
- Cheng, C.; Othman, E.M.; Reimer, A.; Grüne, M.; Kozjak-Pavlovic, V.; Stopper, H.; Hentschel, U.; Abdelmohsen, U.R. Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Lett. 2016, 57, 2786–2789. [Google Scholar] [CrossRef]
- Phadale, R.; Kumar, M.S. Characterization of an antimicrobial and antioxidant compound from a marine bacterium GSA10 associated with the sponge Halichondria glabrata. J. Microbiol. Biotechnol. Food Sci. 2018, 7, 651–658. [Google Scholar] [CrossRef]
- Odekina, P.A.; Agbo, M.O.; Omeje, E.O. Antimicrobial and antioxidant activities of novel marine bacteria (Bacillus 2011SOCCUF3) isolated from marine sponge (Spongia officinalis). Pharm. Sci. 2020, 26, 82–87. [Google Scholar] [CrossRef]
- Dhasayan, A.; Selvin, J.; Kiran, S. Biosurfactant production from marine bacteria associated with sponge Callyspongia diffusa. 3 Biotech 2015, 5, 443–454. [Google Scholar] [CrossRef]
- Alemán-Vega, M.; Sánchez-Lozano, I.; Hernández-Guerrero, C.J.; Hellio, C.; Quintana, E.T. Exploring antifouling activity of biosurfactants producing marine bacteria isolated from gulf of California. Int. J. Mol. Sci. 2020, 21, 6068. [Google Scholar] [CrossRef]
- Agrawal, S.; Adholeya, A.; Barrow, C.J.; Deshmukh, S.K. Marine fungi: An untapped bioresource for future cosmeceuticals. Phytochem. Lett. 2018, 23, 15–20. [Google Scholar] [CrossRef]
- Vitale, G.A.; Coppola, D.; Esposito, F.P.; Buonocore, C.; Ausuri, J.; Tortorella, E.; de Pascale, D. Antioxidant molecules from marine fungi: Methodologies and perspectives. Antioxidants 2020, 9, 1183. [Google Scholar] [CrossRef]
- Jeewon, R.; Luckhun, A.B.; Bhoyroo, V.; Sadeer, N.B.; Mahomoodally, M.F.; Rampadarath, S.; Puchooa, D.; Venkateswara Sarma, V.; Sundara, S.; Durairajan, K.; et al. Pharmaceutical potential of marine fungal endophytes. In Endophytes and Secondary Metabolites; Jha, S., Ed.; Springer Nature: Basingstoke, UK, 2019; pp. 1–23. [Google Scholar]
- Devi, R.; Kaur, T.; Guleria, G.; Rana, K.L.; Kour, D.; Yadav, N.; Yadav, A.N.; Saxena, A.K. Fungal secondary metabolites and their biotechnological applications for human health. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 147–161. [Google Scholar]
- Tanod, W.A.; Muliadin, M.; Adel, Y.S.; Dewanto, D.K. Potential marine-derived fungi isolated from sponges produce new and beneficial compounds. J. Fish. Mar. Aquat. Sci. 2020, 2, 52–66. [Google Scholar]
- Mohapatra, B.R.; Bapuji, M. Characterization of acetylcholinesterase from Arthrobacter ilicis associated with the marine sponge (Spirastrella sp.). J. Appl. Microbiol. 1998, 84, 393–398. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, X.; Kang, J.S.; Choi, H.D.; Son, B.W. Circumdatin I, a new ultraviolet-A protecting benzodiazepine alkaloid from a marine isolate of the fungus Exophiala. J. Antibiot. (Tokyo) 2008, 61, 40–42. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, B.; Liu, D.; Gao, S.; Proksch, P.; Lin, W. Brasilianoids A-F, new meroterpenoids from the sponge-associated fungus Penicillium brasilianum. Front. Chem. 2018, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.H.; Mao, W.J.; Jiao, J.Y.; Xu, J.C.; Li, H.Y.; Chen, Y.; Qi, X.H.; Chen, Y.L.; Xu, J.; Zhao, C.Q.; et al. Structural characterization of extracellular polysaccharides produced by the marine fungus Epicoccum nigrum JJY-40 and their antioxidant activities. Mar. Biotechnol. 2011, 13, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Lee, Y.M.; Hong, J.; Bae, K.S.; Choi, J.S.; Jung, J.H. A new antioxidant from the marine sponge-derived fungus Aspergillus versicolor. Nat. Prod. Sci. 2011, 17, 14–18. [Google Scholar]
- Kawahara, T.; Takagi, M.; Shin-Ya, K. JBIR-124: A novel antioxidative agent from a marine sponge-derived fungus Penicillium citrinum SpI080624G1f01. J. Antibiot. (Tokyo) 2012, 65, 45–47. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Monem, N.; Abdel-Azeem, A.M.; El Ashry, E.S.H.; Ghareeb, D.A.; Nabil-Adam, A. Assessment of secondary metabolites from marine-derived fungi as antioxidant. Open J. Med. Chem. 2013, 3, 60–73. [Google Scholar] [CrossRef][Green Version]
- Pang, X.; Lin, X.; Yang, J.; Zhou, X.; Yang, B.; Wang, J.; Liu, Y. Spiro-phthalides and Isocoumarins isolated from the marine-sponge-derived fungus Setosphaeria sp. SCSIO41009. J. Nat. Prod. 2018, 81, 1860–1868. [Google Scholar] [CrossRef]
- Du, X.; Liu, D.; Huang, J.; Zhang, C.; Proksch, P.; Lin, W. Polyketide derivatives from the sponge associated fungus Aspergillus europaeus with antioxidant and NO inhibitory activities. Fitoterapia 2018, 130, 190–197. [Google Scholar] [CrossRef]
- El-Hady, F.K.A.; Abdel-aziz, M.S.; Shaker, K.H.; El-shahid, Z.A.; Ibrahim, L.S. Antioxidant, acetylcholinesterase and α-glucosidase potentials of metabolites from the marine fungus. Int. J. Pharm. Sci. Rev. Res. 2015, 30, 272–278. [Google Scholar]
- Sun, Y.; Liu, J.; Li, L.; Gong, C.; Wang, S.; Yang, F.; Hua, H.; Lin, H. New butenolide derivatives from the marine sponge-derived fungus Aspergillus terreus. Bioorganic Med. Chem. Lett. 2018, 28, 315–318. [Google Scholar] [CrossRef]
- Henríquez, M.; Vergara, K.; Norambuena, J.; Beiza, A.; Maza, F.; Ubilla, P.; Araya, I.; Chávez, R.; San-Martín, A.; Darias, J.; et al. Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World J. Microbiol. Biotechnol. 2014, 30, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Julianti, E.; Oh, H.; Jang, K.H.; Lee, J.K.; Lee, S.K.; Oh, D.C.; Oh, K.B.; Shin, J. Acremostrictin, a highly oxygenated metabolite from the marine fungus Acremonium strictum. J. Nat. Prod. 2011, 74, 2592–2594. [Google Scholar] [CrossRef]
- Ding, L.J.; Gu, B.B.; Jiao, W.H.; Yuan, W.; Li, Y.X.; Tang, W.Z.; Yu, H.B.; Liao, X.J.; Han, B.N.; Li, Z.Y.; et al. New furan and cyclopentenone derivatives from the sponge-associated fungus Hypocrea koningii PF04. Mar. Drugs 2015, 13, 5579–5592. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.J.; Yuan, W.; Li, Y.X.; Liao, X.J.; Sun, H.; Peng, Q.; Han, B.N.; Lin, H.W.; Li, Z.Y.; Yang, F.; et al. Hypocrol A, a new tyrosol derivative from a sponge-derived strain of the fungus Hypocrea koningii. Nat. Prod. Res. 2016, 30, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- Sayed, M.A.; El-rahman, T.M.A.A.; El-diwany, A.I.; Product, M.; Sayed, S.M. Biodiversity and bioactivity of red sea sponge associated endophytic fungi. Int. J. Adv. Res. Eng. Appl. Sci. 2016, 5, 1–15. [Google Scholar]
- Zhao, Y.; Liu, D.; Proksch, P.; Yu, S.; Lin, W. Isocoumarin derivatives from the sponge-associated fungus Peyronellaea glomerata with antioxidant activities. Chem. Biodivers. 2016, 13, 1186–1193. [Google Scholar] [CrossRef] [PubMed]
- El-Hady, F.K.A.; Abdel-Aziz, M.S.; Shaker, K.H.; El-Shahid, Z.A. Tyrosinase, acetylcholinesterase inhibitory potential, antioxidant and antimicrobial activities of sponge derived fungi with correlation to their GC/MS analysis. Int. J. Pharm. Sci. Rev. Res. 2014, 26, 338–345. [Google Scholar]
- Trianto, A.; Widyaningsih, S.; Radjasa, O.; Pribadi, R. Symbiotic fungus of marine sponge Axinella sp. producing antibacterial agent. Conf. Ser. Earth Environ. Sci. 2017, 55, 012005. [Google Scholar] [CrossRef]
- Handayani, D.; Andalas, U.; Sandrawati, N.; Andalas, U.; Syafni, N.; Putra, D.P. Tyrosinase inhibitory activity of ethyl acetate extracts from marine sponge-derived fungi Haliclona fascigera. Biosci. Res. 2019, 16, 2369–2373. [Google Scholar]
- Scopel, M.; Abraham, W.R.; Henriques, A.T.; MacEdo, A.J. Dipeptide cis-cyclo(Leucyl-Tyrosyl) produced by sponge associated Penicillium sp. F37 inhibits biofilm formation of the pathogenic Staphylococcus epidermidis. Bioorganic Med. Chem. Lett. 2013, 23, 624–626. [Google Scholar] [CrossRef] [PubMed]
- Letsiou, S.; Bakea, A.; Le Goff, G.; Lopes, P.; Gardikis, K.; Weis, M.; Benayahu, Y.; Ouazzani, J. Marine fungus Aspergillus chevalieri TM2-S6 extract protects skin fibroblasts from oxidative stress. Mar. Drugs 2020, 18, 460. [Google Scholar] [CrossRef]
- Laport, M.S. Isolating bacteria from sponges: Why and how? Curr. Pharm. Biotechnol. 2018, 18, 1224–1236. [Google Scholar] [CrossRef]
- Amigó, M.; Terencio, M.C.; Mitova, M.; Iodice, C.; Payá, M.; De Rosa, S. Potential antipsoriatic avarol derivatives as antioxidants and inhibitors of PGE2 generation and proliferation in the HaCaT cell line. J. Nat. Prod. 2004, 67, 1459–1463. [Google Scholar] [CrossRef]
- Amigó, M.; Payá, M.; De Rosa, S.; Terencio, M.C. Antipsoriatic effects of avarol-3′-thiosalicylate are mediated by inhibition of TNF-α generation and NF-kB activation in mouse skin. Br. J. Pharmacol. 2007, 152, 353–365. [Google Scholar] [CrossRef]
- Chairman, K.; Singh, A.J.A.R.; Alagumuthu, G. Cytotoxic and antioxidant activity of selected marine sponges. Asian Pac. J. Trop. Dis. 2012, 2, 234–238. [Google Scholar] [CrossRef]
- Seradj, H.; Moein, M.; Eskandari, M.; Maaref, F. Antioxidant activity of six marine sponges collected from the Persian gulf. Iran. J. Pharm. Sci. 2012, 8, 249–255. [Google Scholar]
- Abdillah, S.; Nurhayati, A.P.D.; Nurhatika, S.; Setiawan, E.; Heffen, W.L. Cytotoxic and antioxidant activities of marine sponge diversity at Pecaron Bay Pasir Putih Situbondo East Java, Indonesia. J. Pharm. Res. 2013, 6, 685–689. [Google Scholar] [CrossRef]
- Aktas, N.; Genc, Y.; Gozcelioglu, B.; Konuklugil, B.; Sebnem Harput, U. Radical scavenging effect of different marine sponges from mediterranean coasts. Rec. Nat. Prod. 2013, 7, 96–104. [Google Scholar]
- Botić, T.; Cör, D.; Anesi, A.; Guella, G.; Sepčić, K.; Janussen, D.; Kersken, D.; Knez, Ž. Fatty acid composition and antioxidant activity of Antarctic marine sponges of the genus Latrunculia. Polar Biol. 2015, 38, 1605–1612. [Google Scholar] [CrossRef]
- Hagiwara, K.; Garcia Hernandez, J.E.; Harper, M.K.; Carroll, A.; Motti, C.A.; Awaya, J.; Nguyen, H.Y.; Wright, A.D. Puupehenol, a potent antioxidant antimicrobial meroterpenoid from a Hawaiian deep-water Dactylospongia sp. sponge. J. Nat. Prod. 2015, 78, 325–329. [Google Scholar] [CrossRef]
- Rhandour, Z.; Tarbaoui, M.; Oumam, M.; Elamraoui, B.; Bennamara, A.; Abourriche, A. Determination of polyphenols, tannins, flavonoids and antioxidant activity in extracts of two genus Ircinia marine sponges of Atlantic Morrocan Coast. Front. Mar. Sci. 2016, 3. [Google Scholar] [CrossRef]
- Rivera, A.P.; Uy, M.M. In vitro antioxidant and cytotoxic activities of some marine sponges collected off misamis oriental coast, Philippines. E-J. Chem. 2012, 9, 354–358. [Google Scholar] [CrossRef]
- Nabil-Adam, A.; Shreadah, M.A.; El Moneam, N.M.A.; El-Assar, S.A. Various in vitro bioactivities of secondary metabolites isolated from the sponge Hyrtios aff. erectus from the red sea coast of Egypt. Turk. J. Pharm. Sci. 2020, 17, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Oogarah, P.N.; Ramanjooloo, A.; Rovisham, J.; Doorga, S.; Meyepa, C.; Wilhelmus, R.; Van Soest, M.; Edgard, D.; Marie, P. Assessing antioxidant activity and phenolic content of marine sponges from mauritius waters. Int. J. Pharmacogn. Phytochem. Res. 2020, 12, 123–131. [Google Scholar] [CrossRef]
- Warsidah, M.; Sofiana, M.S.J.; Safitri, I.; Sapar, A.; Aritonang, A.B.; Muttalib, Y.S.; Fadly, D. Protein isolation from sponge Niphates sp. as an antibacterial and antioxidant. Syst. Rev. Pharm. 2020, 11, 518–521. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, D.; Park, J.S.; Park, H.J.; Shin, J.; Lee, S.K. Photoprotective activity of Topsentin, a bis(indole) alkaloid from the marine sponge Spongosorites genitrix, by regulation of COX-2 and Mir-4485 expression in UVB-irradiated human keratinocyte cells. Mar. Drugs 2020, 18, 87. [Google Scholar] [CrossRef]
- Cheung, F.W.K.; Guo, J.; Ling, Y.H.; Che, C.T.; Liu, W.K. Anti-melanogenic property of geoditin A in murine B16 melanoma cells. Mar. Drugs 2012, 10, 465–476. [Google Scholar] [CrossRef]
- Lee, H.Y.; Jang, E.J.; Bae, S.Y.; Jeon, J.E.; Park, H.J.; Shin, J.; Lee, S.K. Anti-melanogenic activity of Gagunin D, a highly oxygenated diterpenoid from the marine sponge Phorbas sp., via modulating tyrosinase expression and degradation. Mar. Drugs 2016, 14, 212. [Google Scholar] [CrossRef]
- Yanti, C.; Vendy, V.; Hwang, J.K. In vitro anti-acne activity of marine sponge Acanthella cavernosa extracts. Int. J. Biol. Pharm. Res. 2015, 6, 388–392. [Google Scholar]
- Chander, M.P.; Vijayachari, P. Antimicrobial and anti-oxidant potentials of marine sponges of South Andaman, India. Bangladesh J. Pharmacol. 2018, 13, 13–15. [Google Scholar] [CrossRef]
- Campos, P.E.; Herbette, G.; Chendo, C.; Clerc, P.; Tintillier, F.; Voogd, N.J.D.; Papanagnou, E.D.; Trougakos, I.P.; Jerabek, M.; Bignon, J.; et al. Osirisynes G-I, new long-chain highly oxygenated polyacetylenes from the Mayotte marine sponge Haliclona sp. Mar. Drugs 2020, 18, 350. [Google Scholar] [CrossRef]
- Ghatak, S.; Maytin, E.V.; MacK, J.A.; Hascall, V.C.; Atanelishvili, I.; Moreno Rodriguez, R.; Markwald, R.R.; Misra, S. Roles of proteoglycans and glycosaminoglycans in wound healing and fibrosis. Int. J. Cell Biol. 2015, 2015, 1–20. [Google Scholar] [CrossRef]
- Pallela, R.; Ehrlich, H.; Bhatnagar, I. Marine sponges: Chemico-biological and biomedical applications. In Marine Sponges: Chemicobiological and Biomedical Applications; Pallela, R., Ehrlich, H., Eds.; Springer: New Delhi, India, 2016; pp. 1–381. ISBN 9788132227946. [Google Scholar]
- Swatschek, D.; Schatton, W.; Kellermann, J.; Müller, W.E.G.; Kreuter, J. Marine sponge collagen: Isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur. J. Pharm. Biopharm. 2002, 53, 107–113. [Google Scholar] [CrossRef]
- Langasco, R.; Cadeddu, B.; Formato, M.; Lepedda, A.J.; Cossu, M.; Giunchedi, P.; Pronzato, R.; Rassu, G.; Manconi, R.; Gavini, E. Natural collagenic skeleton of marine sponges in pharmaceutics: Innovative biomaterial for topical drug delivery. Mater. Sci. Eng. C 2017, 70, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Pozzolini, M.; Millo, E.; Oliveri, C.; Mirata, S.; Salis, A.; Damonte, G.; Arkel, M.; Scarfì, S. Elicited ROS scavenging activity, photoprotective, and wound-healing properties of collagen-derived peptides from the marine sponge Chondrosia reniformis. Mar. Drugs 2018, 16, 465. [Google Scholar] [CrossRef] [PubMed]
Source | Sponge Host | Extract/Compound | Biological Activity | Reference |
---|---|---|---|---|
R. squalenifaciens | Halichondria okadai | Diapolycopenedioic acid xylosyl ester A | Anti-oxidant | [72] |
Streptomyces | C. diffusa | Carotenoid extracts | Anti-aging | [71] |
Micromonospora sp. RV115 | A. aerophoba | Diazepinomicin | Anti-oxidant | [73] |
Virgibacillus sp. | C. diffusa | Ethyl acetate extracts | Anti-oxidant | [74] |
Vibrio (P1Ma8 and P1Ma5) | P. tenacior | CH2Cl2/MeOH (1:1) extracts | Anti-oxidant | [75] |
Bacillus sp. | T. anhelans | Ethyl acetate extracts | Anti-oxidant | [76] |
Bacillus sp. | Sponges from Lakshadweep archipelago | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-C7H10N2O2 | Anti-oxidant | [77] |
Halomonas sp. MB-30 and Alcaligenes sp. MB-I9 | C. diffusa | Isolates of bacteria | Biosurfactants | [87] |
C. israelensis | Callyspongia fibrosa | Ethyl acetate extracts | Anti-oxidant | [78] |
Streptomyces sp. SBT345 | A. oroides | Ageloline A | Anti-oxidant | [84] |
Pseudomonas sp. | H. aff. Erectus | Ethyl acetate extracts | Anti-oxidant | [79] |
V. alginolyticus | H. pigmentifera, S. pumila and S. officinalis | Melanin extracts | Anti-oxidant | [80] |
GSA10 | H. glabrata | Ethyl acetate extracts | Anti-oxidant | [85] |
HAL-08, HAL-13, HAL-74 and PTR-21 | Haliclona sp. and Petrosia sp. | Ethyl acetate extracts | Anti-oxidant | [81] |
PTR-08, PTR-40, PTR-41, and PTR-47 | Petrosia sp. | Ethyl acetate extracts | Anti-oxidant | [82] |
P. flavipulchra STILL-33 | Stylotella sp. | Ethyl acetate extracts | Anti-oxidant and anti-aging | [83] |
B. niabensis (My-30) | M. ramulosa | Isolates of bacteria | Biosurfactants | [88] |
Bacillus 2011SOCCUF3 | S. officinalis | Methanol crude extracts | Anti-oxidant and anti-microbial | [86] |
SH-82 (M. fluostatini) | S. hapalia | Ethyl acetate and methanol extracts | Anti-oxidant | [66] |
Source | Sponge Host | Extract/Compound | Biological Activity | Reference |
---|---|---|---|---|
Exophiala | H. panicea | Circumdatin | Anti-UV | [95] |
A. strictum | Unidentified marine sponge of the class Choristida | Acremostrictin | Anti-microbial and anti-oxidant | [106] |
E. nigrum JJY-40 | Unidentified marine sponge | ENP1, ENP2 | Anti-oxidant | [97] |
A. versicolor | Petrosia sp. | Aromatic polyketide | Anti-oxidant | [98] |
P. citrinum SpI080624G1f01 | Unidentified marine sponge | JBIR-124 | Anti-oxidant | [99] |
C. globosum, G. dankaliensis and N. oryzae | H. communis | Ethyl acetate extract | Anti-oxidant and anti-inflammatory | [100] |
Penicillium sp. F37 | A. corrugata | Cis-cyclo(Leucyl-Tyrosyl) | Anti-biofilm | [114] |
A. sydowii strain W4-2 and unidentified fungus FS1 | Agelas sp. and Amphimedon viridis | Crude extract of static cultures | Anti-oxidant, anti-tyrosinase and anti-microbial | [111] |
F09T15-3, F09-T15-6, F09-T18-16 | Tedania sp., Hymeniacidon sp., Dendrilla sp. and three Poecilosclerida | Ethyl acetate extract of culture medium | Anti-oxidant | [105] |
H. koningii PF04 | P. fusca | Hypofurans A/B and Hypocrenones A/B/C | Anti-microbial | [107] |
A. unguis RSPG_204 | Agelas sp. | Several metabolites from mycelia and culture supernatant extracts | Anti-oxidant and anti-tyrosinase | [103] |
H. koningii PF04 | P. fusca | Hypocrol A and Trichodenol B | Anti-microbial and anti-oxidant | [108] |
A. oryzae, C. cladosporioides, A. fumigatus | A. citrina, S. rigida, O. lobularis, C. girardae, M. miriabilis, C. celata and S. difficilis | Mycelia and culture filtrate extracts | Anti-microbial and antioxidant | [109] |
P. glomerata | Amphimedon sp. | Alternariol and Peyroisocumarins A and B | Anti-microbial and anti-oxidant | [110] |
A. sydowii | KN-15-3 | Culture extract | Anti-microbial | [112] |
A. europaeus WZXY-SX-4-1 | X. testudinaria | Eurobenzophenone C, 3-de-O-methylsulochrin and 14-de-Omethyl-5-methoxysulochrin | Anti-oxidant | [102] |
Setosphaeria sp. SCSIO41009 | Callyspongia sp. | 7-O-demethylmonocerin | Anti-oxidant | [101] |
A. terreus | P. fusca | Butyrolactone I, Butyrolactone II, 5-[(3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-6-yl)-methyl]-3-hydroxy-4-(4-hydroxyphenyl)-2(5H)-furanone and Aspernolide A | Anti-oxidant | [104] |
P. brasilianum WZXY-m122-9 | Unidentified marine sponge | Brasilianoid A | Anti-UV | [96] |
Penicilium sp., A. niger and T. megninii | H. fascigera | Ethyl acetate extract | Anti-tyrosinase | [113] |
A. chavalieri TM2-S6 | Axinella sp. | Tetrahydroauroglaucin and Flavoglaucin | Anti-aging and anti-oxidant | [115] |
Sponge Species and Genera | Extract/Compound | Biological Activity | Reference |
---|---|---|---|
C. reniformis | Collagen | Wound healing | [138] |
D. avara | Avarol-3′-thiosalicylate | Anti-oxidant and anti-inflammatory | [117] |
D. avara | Avarol-3′-thiosalicylate | Anti-oxidant and anti-inflammatory | [118] |
R. globostellata and S. inconstans | Ethyl acetate extracts | Anti-oxidant | [119] |
G. japonica | Geoditin A | Skin whitening | [131] |
A. suberitoides, D. elegans, S. massa and Haliclona sp. | Hexane and ethyl acetate extracts | Anti-oxidant | [126] |
F. reticulata, C. siphonella, N. furcata, Callyspongia sp., C. clavata and P. clavatus | Dichloromethane and methanol extracts | Anti-oxidant | [120] |
F. reticulata, Acanthella sp., P. contignata, X. exigua and A. suberitoides | Total extracts | Anti-oxidant | [121] |
D. avara and C. carbolloi | Methanol extracts | Anti-oxidant | [122] |
Latrunculia bocagei and Latrunculia biformis | Fatty acids extracts | Anti-oxidant | [123] |
Dactylospongia sp. | Puupehenol | Anti-oxidant and anti-microbial | [124] |
A. cavernosa | Methanol, ethanol and hexane extracts | Anti-acne | [133] |
Phorbas sp. | Gagunin D | Skin whitening | [132] |
I. spinulosa | Crude extract | Anti-oxidant | [125] |
S. lamella, S. officinalis, H. communis and S. spinosulus | Glycosaminoglycans | Wound healing | [139] |
N. exigu, H. erecta and X. testudinaria | Methanol extracts | Anti-oxidant and anti-fungal | [134] |
C. reniformis | Collagen hydrolysate fractions | Wound healing and anti-oxidant | [140] |
Haliclona sp. | Osirisynes A, B, E, G, H and I | Anti-aging | [135] |
S. genitrix | Topsentin | Anti-inflammatory | [130] |
H. aff. erectus | Crude extract | Anti-oxidant | [127] |
A. donnani and Pseudosuberites sp. | Crude extract | Anti-oxidant | [128] |
Niphates sp. | Protein extract and the ammonium sulfate fractions | Anti-oxidant | [129] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, R.; Ruocco, N.; Viel, T.; Federico, S.; Zupo, V.; Costantini, M. Sponges and Their Symbionts as a Source of Valuable Compounds in Cosmeceutical Field. Mar. Drugs 2021, 19, 444. https://doi.org/10.3390/md19080444
Esposito R, Ruocco N, Viel T, Federico S, Zupo V, Costantini M. Sponges and Their Symbionts as a Source of Valuable Compounds in Cosmeceutical Field. Marine Drugs. 2021; 19(8):444. https://doi.org/10.3390/md19080444
Chicago/Turabian StyleEsposito, Roberta, Nadia Ruocco, Thomas Viel, Serena Federico, Valerio Zupo, and Maria Costantini. 2021. "Sponges and Their Symbionts as a Source of Valuable Compounds in Cosmeceutical Field" Marine Drugs 19, no. 8: 444. https://doi.org/10.3390/md19080444
APA StyleEsposito, R., Ruocco, N., Viel, T., Federico, S., Zupo, V., & Costantini, M. (2021). Sponges and Their Symbionts as a Source of Valuable Compounds in Cosmeceutical Field. Marine Drugs, 19(8), 444. https://doi.org/10.3390/md19080444