Docosahexaenoic Acid Is Naturally Concentrated at the sn-2 Position in Triacylglycerols of the Australian Thraustochytrid Aurantiochytrium sp. Strain TC 20
Abstract
:1. Introduction
2. Results and Discussion
Thraustochytrid and Marine Oils—13C Nuclear Magnetic Resonance Spectroscopy
3. Materials and Methods
3.1. Lipid Class Composition
3.2. Methylation and Analysis of Fatty Acid Methyl Esters (FAME)
3.3. 13C Nuclear Magnetic Resonance Spectroscopy (13C NMR) Analysis
3.4. Liquid Chromatography Mass Spectrometry Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diau, G.-Y.; Hsieh, A.T.; Sarkadi-Nagy, E.A.; Wijendran, V.; Nathanielsz, P.W.; Brenna, J.T. The influence of long chain polyunsaturate supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system. BMC Med. 2005, 3, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gammone, M.A.; Riccioni, G.; Parrinello, G.; D’Orazio, N. Omega-3 polyunsaturated fatty acids: Benefits and endpoints in sport. Nutrients 2019, 11, 46. [Google Scholar] [CrossRef] [Green Version]
- Sawada, Y.; Saito-Sasaki, N.; Nakamura, M. Omega 3 fatty acid and skin diseases. Front. Immunol. 2021, 11, 3818. [Google Scholar] [CrossRef] [PubMed]
- Lee Chang, K.J.; Parrish, C.C.; Simon, C.J.; Revill, A.T.; Nichols, P.D. Feeding whole thraustochytrid biomass to cultured Atlantic salmon (Salmo salar) fingerlings: Culture performance and fatty acid incorporation. J. Mar. Sci. Eng. 2020, 8, 207. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.R.; Nichols, P.D.; Carter, C.G. Replacement of fish oil with thraustochytrid Schizochytrium sp. L oil in Atlantic salmon parr (Salmo salar L.) diets. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 148, 382–392. [Google Scholar] [CrossRef]
- Lee Chang, K.; Dumsday, G.; Nichols, P.; Dunstan, G.; Blackburn, S.; Koutoulis, A. High cell density cultivation of a novel Aurantiochytrium sp. strain TC 20 in a fed-batch system using glycerol to produce feedstock for biodiesel and omega-3 oils. Appl. Microbiol. Biotechnol. 2013, 1–12. [Google Scholar] [CrossRef]
- Chen, C.T.; Kitson, A.P.; Hopperton, K.E.; Domenichiello, A.F.; Trépanier, M.-O.; Lin, L.E.; Ermini, L.; Post, M.; Thies, F.; Bazinet, R.P. Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain. Sci. Rep. 2015, 5, 15791. [Google Scholar] [CrossRef] [Green Version]
- Karupaiah, T.; Sundram, K. Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: A review of their nutritional implications. Nutr. Metab. 2007, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Kubow, S. The influence of positional distribution of fatty acids in native, interesterified and structure-specific lipids on lipoprotein metabolism and atherogenesis. J. Nutr. Biochem. 1996, 7, 530–541. [Google Scholar] [CrossRef]
- Jin, J.; Jin, Q.; Wang, X.; Akoh, C.C. High sn-2 docosahexaenoic acid lipids for brain benefits, and their enzymatic syntheses: A review. Engineering 2020, 6, 424–431. [Google Scholar] [CrossRef]
- Bandarra, N.M.; Lopes, P.A.; Martins, S.V.; Ferreira, J.; Alfaia, C.M.; Rolo, E.A.; Correia, J.J.; Pinto, R.M.A.; Ramos-Bueno, R.P.; Batista, I.; et al. Docosahexaenoic acid at the sn-2 position of structured triacylglycerols improved n-3 polyunsaturated fatty acid assimilation in tissues of hamsters. Nutr. Res. 2016, 36, 452–463. [Google Scholar] [CrossRef]
- Straarup, E.M.; Lauritzen, L.; Faerk, J.; Høy Deceased, C.E.; Michaelsen, K.F. The stereospecific triacylglycerol structures and fatty acid profiles of human milk and infant formulas. J. Pediatr. Gastroenterol. Nutr. 2006, 42, 293–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Innis, S.M.; Nelson, C.M. Dietary triacyglycerols rich in sn-2 palmitate alter post-prandial lipoprotein and unesterified fatty acids in term infants. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, C.E.; French, M.A.; Goh, Y.K.; Clandinin, M.T. Cholesterolaemic influence of palmitic acid in the sn-1, 3 v. the sn-2 position with high or low dietary linoleic acid in healthy young men. Br. J. Nutr. 2007, 98, 337–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carta, G.; Murru, E.; Lisai, S.; Sirigu, A.; Piras, A.; Collu, M.; Batetta, B.; Gambelli, L.; Banni, S. Dietary triacylglycerols with palmitic acid in the sn-2 position modulate levels of N-acylethanolamides in rat tissues. PLoS ONE 2015, 10, e0120424. [Google Scholar] [CrossRef] [Green Version]
- Christensen, M.S.; Høy, C.E.; Becker, C.C.; Redgrave, T.G. Intestinal absorption and lymphatic transport of eicosapentaenoic (EPA), docosahexaenoic (DHA), and decanoic acids: Dependence on intramolecular triacylglycerol structure. Am. J. Clin. Nutr. 1995, 61, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, H.; Zhang, Y.; Shen, Y.; Su, H.; Jin, J.; Jin, Q.; Wang, X. Characterization of positional distribution of fatty acids and triacylglycerol molecular compositions of marine fish oils rich in omega-3 polyunsaturated fatty acids. BioMed Res. Int. 2018, 2018, 3529682. [Google Scholar] [CrossRef]
- Nagachinta, S.; Akoh, C. Enrichment of palm olein with long chain polyunsaturated fatty acids by enzymatic acidolysis. LWT-Food Sci. Technol. 2012, 46, 29–35. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Zou, S.; Xie, D.; Jin, Q.; Wang, X. Synthesis of 2-docosahexaenoylglycerol by enzymatic ethanolysis. Bioresour. Technol. 2018, 251, 334–340. [Google Scholar] [CrossRef]
- Petrie, J.; Nichols, P.; Devine, M.; Singh, S. Engineered oil seed crops with fish oil DHA levels. Inform 2013, 24, 648–652. [Google Scholar]
- Petrie, J.R.; Shrestha, P.; Belide, S.; Kennedy, Y.; Lester, G.; Liu, Q.; Divi, U.K.; Mulder, R.J.; Mansour, M.P.; Nichols, P.D.; et al. Metabolic engineering Camelina sativa with fish oil-like levels of DHA. PLoS ONE 2014, 9, e85061. [Google Scholar] [CrossRef] [PubMed]
- Petrie, J.R.; Shrestha, P.; Zhou, X.-R.; Mansour, M.P.; Liu, Q.; Belide, S.; Nichols, P.D.; Singh, S.P. Metabolic engineering plant seeds with fish oil-like levels of DHA. PLoS ONE 2012, 7, e49165. [Google Scholar] [CrossRef] [Green Version]
- Petrie, J.R.; Zhou, X.-R.; Leonforte, A.; McAllister, J.; Shrestha, P.; Kennedy, Y.; Belide, S.; Buzza, G.; Gororo, N.; Gao, W. Development of a Brassica napus (Canola) crop containing fish oil-like levels of DHA in the seed oil. Front. Plant Sci. 2020, 11, 727. [Google Scholar] [CrossRef] [PubMed]
- Lee Chang, K.J.; Dunstan, G.A.; Abell, G.; Clementson, L.; Blackburn, S.; Nichols, P.D.; Koutoulis, A. Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Appl. Microbiol. Biotechnol. 2012, 93, 2215–2231. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Bakes, M.J.; Nichols, P.D. Lipid, fatty acid and squalene composition of liver oil from six species of deep-sea sharks collected in southern Australian waters. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1995, 110, 267–275. [Google Scholar] [CrossRef]
- Lee Chang, K.J.; Mansour, M.P.; Dunstan, G.A.; Blackburn, S.I.; Koutoulis, A.; Nichols, P.D. Odd-chain polyunsaturated fatty acids in thraustochytrids. Phytochemistry 2011, 72, 1460–1465. [Google Scholar] [CrossRef] [PubMed]
- Standal, I.B.; Axelson, D.E.; Aursand, M. Differentiation of fish oils according to species by 13C-NMR regiospecific analyses of triacyglycerols. J. Am. Oil Chem. Soc. 2009, 86, 401–407. [Google Scholar] [CrossRef]
- Aursand, M.; Jørgensen, L.; Grasdalen, H. Positional distribution of ω3 fatty acids in marine lipid triacylglycerols by high-resolution 13C nuclear magnetic resonance spectroscopy. J. Am. Oil Chem. Soc. 1995, 72, 293–297. [Google Scholar] [CrossRef]
%DHA | SD | a-DHA: sn-1+3 | b-DHA: sn-2 | a/b sn-1+3 /sn-2 | SD | a-EPA: sn-1+3 | b-EPA: sn-2 | a/b sn-1+3/ sn-2 | |
---|---|---|---|---|---|---|---|---|---|
Algal oils | |||||||||
Aurantiochytrium sp. strain TC 20 oil | 35.2 | 1.5 | 10.68 | 22.93 | 0.47 | 0.03 | 0 | 0 | |
Neuromins Algal DHA oil | 36.2 | 0.4 | 16.66 | 19.19 | 0.87 | 0.003 | 0 | 0 | |
Solgar Algal DHA oil | 17.8 | 0.5 | 4.56 | 4.25 | 1.07 | 0.001 | 0 | 0 | |
Marine oils | |||||||||
Healthy Care Fish oil | 10.1 | 0.2 | 3.80 | 6.04 | 0.63 | 0.01 | 12.99 | 3.26 | 3.99 |
Tuna oil | 21.6 | 0.3 | 10.19 | 11.14 | 0.92 | 0.01 | 4.44 | 2.73 | 1.62 |
Swisse Salmon oil | 6.9 | 0.3 | 2.02 | 4.86 | 0.42 | 5.07 | 3.50 | 1.45 | |
Seal oil | 6.0 | 0.3 | 5.44 | 0.18 | 29.70 | 4.71 | 0.32 | 14.55 |
Sum Composition | Lipid Species | m/z | TAG% |
---|---|---|---|
TAG(54:6) | TAG (16:0/22:6/16:0) | 896.77 | 34.4 |
TAG(60:12) | TAG (16:0/22:6/22:6) | 968.77 | 16.6 |
TAG(52:6) | TAG (16:0/22:6/14:0) | 868.74 | 7.3 |
TAG(54:5) | TAG (16:0/22:5/16:0) | 898.79 | 6.3 |
TAG(60:11) | TAG (16:0/22:6/22:5) and TAG (16:0/22:5/22:6) | 970.79 | 4.8 |
TAG(48:0) | TAG (16:0/16:0/16:0) | 824.77 | 3.4 |
TAG(56:6) | TAG (16:0/22:6/18:0) | 924.8 | 2.6 |
TAG(46:0) | TAG (16:0/16:0/14:0) | 796.74 | 2.1 |
TAG(52:5) | TAG (16:0/22:5/14:0) | 870.75 | 1.5 |
TAG(66:18) | TAG (22:6/22:6/22:6) | 1040.77 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee-Chang, K.J.; Taylor, M.C.; Drummond, G.; Mulder, R.J.; Mansour, M.P.; Brock, M.; Nichols, P.D. Docosahexaenoic Acid Is Naturally Concentrated at the sn-2 Position in Triacylglycerols of the Australian Thraustochytrid Aurantiochytrium sp. Strain TC 20. Mar. Drugs 2021, 19, 382. https://doi.org/10.3390/md19070382
Lee-Chang KJ, Taylor MC, Drummond G, Mulder RJ, Mansour MP, Brock M, Nichols PD. Docosahexaenoic Acid Is Naturally Concentrated at the sn-2 Position in Triacylglycerols of the Australian Thraustochytrid Aurantiochytrium sp. Strain TC 20. Marine Drugs. 2021; 19(7):382. https://doi.org/10.3390/md19070382
Chicago/Turabian StyleLee-Chang, Kim Jye, Matthew C. Taylor, Guy Drummond, Roger J. Mulder, Maged Peter Mansour, Mina Brock, and Peter D. Nichols. 2021. "Docosahexaenoic Acid Is Naturally Concentrated at the sn-2 Position in Triacylglycerols of the Australian Thraustochytrid Aurantiochytrium sp. Strain TC 20" Marine Drugs 19, no. 7: 382. https://doi.org/10.3390/md19070382
APA StyleLee-Chang, K. J., Taylor, M. C., Drummond, G., Mulder, R. J., Mansour, M. P., Brock, M., & Nichols, P. D. (2021). Docosahexaenoic Acid Is Naturally Concentrated at the sn-2 Position in Triacylglycerols of the Australian Thraustochytrid Aurantiochytrium sp. Strain TC 20. Marine Drugs, 19(7), 382. https://doi.org/10.3390/md19070382