Spirulina Microalgae and Brain Health: A Scoping Review of Experimental and Clinical Evidence
Abstract
:1. Introduction
2. Spirulina Microalgae: Sources, Chemical Composition, and Bioavailability
Nutrients | mg/g | Brain biological activities and molecular mechanisms | Ref. |
B Vitamins (B12) | 0.3–0.8 (2–4 μg/g) | Energy production, synthesis of neurotransmitters and signaling molecules, DNA/RNA synthesis/repair, genomic and non-genomic methylation, cognitive functions | [23,24,26,37] |
Phosphorus | 3–10 | energy storage, brain metabolism | [24,37] |
Magnesium | 1–5 | Cognitive functions, enhancement of learning abilities, working memory, and short- and long-term memory; GABA synthesis; | [24,38] |
Manganese | 2–4 | Superoxide dismutase cofactor, influence synaptic neurotransmission, | [24,39] |
BCAAs | 100–200 | Reduced mental fatigue, neurotransmitter synthesis, protein synthesis, food intake regulation | [40] |
other amino acids | 300–600 | Glycine, Serotonin, Dopamine, and Glutammate/GABA synthesis | [41] |
GLA | 10–20 | Anti-inflammatory | [42,43] |
Phytoderivates | mg/g | Brain biological activities and molecularmechanisms | Ref. |
Carotenoids (Beta-carotene, Zeaxanthin) | 5–20 | Neuroprotection, epigenetic regulation, improved signaling efficacy, retina protection, | [24,44,45] |
Total Phycocyanins (C-Phycocyanin) | 400–600 (100–300) | Neuroprotection, antioxidant, anti-inflammatory | [24,46,47] |
Others | |||
Superoxide Dismutase | 1080 units | Radical scavenging, neuronal protection | [44,48] |
3. Spirulina and Brain Health: In Vivo Evidence and Related Mechanism of Action
4. Spirulina and Brain Health: Potential Clinical Application
Type of Spirulina | Subjects | Dose and Timing | Measured Parameters | Results | Reference |
---|---|---|---|---|---|
Spirulina spp. | 78 healthy individuals aged 60–87 years | 8 g/day for 16 weeks | Oxidative stress, inflammation and lipids-related biomarkers | Antioxidant, inflammation-lowering effect and cholesterol-lowering effect. | [67] |
Spirulina platensis | 17 healthy male individuals aged 20–43 years | 3 g/day for 8 weeks | Mental and physical fatigue | Improvements in mental and physical of fatigue | [68] |
Spirulina maxima | 40 overweight and hypertensive individuals aged 40–60 years | 2 g/day for 3 months | Hypertension biomarkers | Reduction in systolic blood pressure and stiffness index | [71] |
Spirulina platensis | 64 obese individuals aged 20–50 years | 1 g/day for 12 weeks | Appetite | Reduction of appetite | [72] |
Spirulina maxima | 16 individuals with systemic arterial hypertension | 4.5 g/day for 12 weeks | Hypertension and oxidative stress biomarkers | Reduction of systolic blood pressure and improvement in oxidative stress biomarkers | [73] |
Spirulina platensis | 501 infants aged 6–18 months | Spirulina-enriched diet, for 16 months | Motor, language and social skills development | Improvement in the measured parameters | [70] |
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frackowiak, R.S. Human Brain Function; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Gómez-Pinilla, F. Brain foods: The effects of nutrients on brain function. Nat. Rev. Neurosci. 2008, 9, 568–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, R.J.; Mohanakumar, K.P.; Beart, P.M. Neuro-Nutraceuticals: The Path to Brain Health via Nourishment Is Not So Distant; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Cian, R.E.; Drago, S.R.; De Medina, F.S.; Martínez-Augustin, O. Proteins and carbohydrates from red seaweeds: Evidence for beneficial effects on gut function and microbiota. Mar. Drugs 2015, 13, 5358–5383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reilly, P.; O’doherty, J.; Pierce, K.; Callan, J.; O’sullivan, J.; Sweeney, T. The effects of seaweed extract inclusion on gut morphology, selected intestinal microbiota, nutrient digestibility, volatile fatty acid concentrations and the immune status of the weaned pig. Animal 2008, 2, 1465–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Cornish, M.L.; Critchley, A.T.; Mouritsen, O.G. Consumption of seaweeds and the human brain. J. Appl. Phycol. 2017, 29, 2377–2398. [Google Scholar] [CrossRef]
- Rosa, G.P.; Tavares, W.R.; Sousa, P.; Seca, A.M.; Pinto, D.C. Seaweed secondary metabolites with beneficial health effects: An overview of successes in in vivo studies and clinical trials. Mar. Drugs 2020, 18, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, L.; Valado, A. The Seaweed Diet in Prevention and Treatment of the Neurodegenerative Diseases. Mar. Drugs 2021, 19, 128. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, C.-F.; Chou, J.; Chen, H.-L.; Deng, X.; Harvey, B.K.; Cadet, J.L.; Bickford, P.C. Dietary supplementation with blueberries, spinach, or spirulina reduces ischemic brain damage. Exp. Neurol. 2005, 193, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.; Cintra, R.; Barros, S.d.M.; Mancini-Filho, J. Antioxidant activity of the microalga Spirulina maxima. Braz. J. Med. Biol. Res. 1998, 31, 1075–1079. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, N.S.; Jeong, Y.G.; Lee, J.-H.; Kim, E.J.; Han, S.Y. Protective efficacy of an Ecklonia cava extract used to treat transient focal ischemia of the rat brain. Anat. Cell Biol. 2012, 45, 103. [Google Scholar] [CrossRef] [Green Version]
- Um, M.Y.; Lim, D.W.; Son, H.J.; Cho, S.; Lee, C. Phlorotannin-rich fraction from Ishige foliacea brown seaweed prevents the scopolamine-induced memory impairment via regulation of ERK-CREB-BDNF pathway. J. Funct. Foods 2018, 40, 110–116. [Google Scholar] [CrossRef]
- Allaert, F.-A.; Demais, H.; Collén, P.N. A randomized controlled double-blind clinical trial comparing versus placebo the effect of an edible algal extract (Ulva Lactuca) on the component of depression in healthy volunteers with anhedonia. BMC Psychiatry 2018, 18, 215. [Google Scholar] [CrossRef] [Green Version]
- Reid, S.N.; Ryu, J.-K.; Kim, Y.; Jeon, B.H. The effects of fermented Laminaria japonica on short-term working memory and physical fitness in the elderly. Evid. Based Complementary Altern. Med. 2018, 2018, 8109621. [Google Scholar]
- Haskell-Ramsay, C.F.; Jackson, P.A.; Dodd, F.L.; Forster, J.S.; Bérubé, J.; Levinton, C.; Kennedy, D.O. Acute post-prandial cognitive effects of brown seaweed extract in humans. Nutrients 2018, 10, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannan, M.; Dash, R.; Haque, M.; Mohibbullah, M.; Sohag, A.A.M.; Rahman, M.; Uddin, M.J.; Alam, M.; Moon, I.S. Neuroprotective potentials of marine algae and their bioactive metabolites: Pharmacological insights and therapeutic advances. Mar. Drugs 2020, 18, 347. [Google Scholar] [CrossRef]
- Khan, Z.; Bhadouria, P.; Bisen, P. Nutritional and therapeutic potential of Spirulina. Curr. Pharm. Biotechnol. 2005, 6, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Clément, G.; Giddey, C.; Menzi, R. Amino acid composition and nutritive value of the alga Spirulina maxima. J. Sci. Food Agric. 1967, 18, 497–501. [Google Scholar] [CrossRef]
- Tomaselli, L. Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis. In Spirulina Platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology; Taylor & Francis: Abingdon, UK, 1997; pp. 1–16. [Google Scholar]
- Belay, A. Spirulina (Arthrospira): Production and quality assurance. In Spirulina in Human Nutrition and Health; CRC Press: Boca Raton, FL, USA, 2008; Volume 1. [Google Scholar]
- Babadzhanov, A.; Abdusamatova, N.; Yusupova, F.; Faizullaeva, N.; Mezhlumyan, L.; Malikova, M.K. Chemical Composition of Spirulina platensis Cultivated in Uzbekistan. Chem. Nat. Compd. 2004, 40, 276–279. [Google Scholar] [CrossRef]
- Vonshak, A. Spirulina Platensis Arthrospira: Physiology, Cell-Biology and Biotechnology; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Liestianty, D.; Rodianawati, I.; Arfah, R.A.; Assa, A. Nutritional analysis of spirulina sp to promote as superfood candidate. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509, 012031. [Google Scholar] [CrossRef]
- Karkos, P.; Leong, S.; Karkos, C.; Sivaji, N.; Assimakopoulos, D. Spirulina in clinical practice: Evidence-based human applications. Evid. Based Complementary Altern. Med. 2011, 2011, 531053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, D.O. B vitamins and the brain: Mechanisms, dose and efficacy—A review. Nutrients 2016, 8, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as nutritional and functional food sources: Revisiting our understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef]
- Makkar, R.; Behl, T.; Bungau, S.; Zengin, G.; Mehta, V.; Kumar, A.; Uddin, M.; Ashraf, G.M.; Abdel-Daim, M.M.; Arora, S. Nutraceuticals in neurological disorders. Int. J. Mol. Sci. 2020, 21, 4424. [Google Scholar] [CrossRef] [PubMed]
- Sorrenti, V.; Fortinguerra, S.; Caudullo, G.; Buriani, A. Deciphering the Role of Polyphenols in Sports Performance: From Nutritional Genomics to the Gut Microbiota toward Phytonutritional Epigenomics. Nutrients 2020, 12, 1265. [Google Scholar] [CrossRef] [PubMed]
- Sorrenti, V.; Ali, S.; Mancin, L.; Davinelli, S.; Paoli, A.; Scapagnini, G. Cocoa Polyphenols and Gut Microbiota Interplay: Bioavailability, Prebiotic Effect, and Impact on Human Health. Nutrients 2020, 12, 1908. [Google Scholar] [CrossRef]
- Neyrinck, A.M.; Taminiau, B.; Walgrave, H.; Daube, G.; Cani, P.D.; Bindels, L.B.; Delzenne, N.M. Spirulina protects against hepatic inflammation in aging: An effect related to the modulation of the gut microbiota? Nutrients 2017, 9, 633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Li, Y.; Pakpour, S.; Wang, S.; Pan, Z.; Liu, J.; Wei, Q.; She, J.; Cang, H.; Zhang, R.X. Dose effects of orally administered Spirulina suspension on colonic microbiota in healthy mice. Front. Cell. Infect. Microbiol. 2019, 9, 243. [Google Scholar] [CrossRef]
- Morais, L.H.; Schreiber, H.L.; Mazmanian, S.K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 2021, 119, 241–255. [Google Scholar] [CrossRef]
- Westfall, S.; Lomis, N.; Kahouli, I.; Dia, S.Y.; Singh, S.P.; Prakash, S. Microbiome, probiotics and neurodegenerative diseases: Deciphering the gut brain axis. Cell. Mol. Life Sci. 2017, 74, 3769–3787. [Google Scholar] [CrossRef]
- Yu, T.; Wang, Y.; Chen, X.; Xiong, W.; Tang, Y.; Lin, L. Spirulina platensis alleviates chronic inflammation with modulation of gut microbiota and intestinal permeability in rats fed a high-fat diet. J. Cell. Mol. Med. 2020, 24, 8603–8613. [Google Scholar] [CrossRef]
- Xie, Y.; Li, W.; Zhu, L.; Zhai, S.; Qin, S.; Du, Z. Effects of phycocyanin in modulating the intestinal microbiota of mice. MicrobiologyOpen 2019, 8, e00825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.-C.; Han, S.-H.; Byun, M.S.; Yi, D.; Lee, J.H.; Park, K.; Lee, D.Y.; Mook-Jung, I. Low serum phosphorus correlates with cerebral Aβ deposition in cognitively impaired subjects: Results from the KBASE study. Front. Aging Neurosci. 2017, 9, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slutsky, I.; Abumaria, N.; Wu, L.-J.; Huang, C.; Zhang, L.; Li, B.; Zhao, X.; Govindarajan, A.; Zhao, M.-G.; Zhuo, M. Enhancement of learning and memory by elevating brain magnesium. Neuron 2010, 65, 165–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, A. Manganese action in brain function. Brain Res. Rev. 2003, 41, 79–87. [Google Scholar] [CrossRef]
- Sperringer, J.E.; Addington, A.; Hutson, S.M. Branched-chain amino acids and brain metabolism. Neurochem. Res. 2017, 42, 1697–1709. [Google Scholar] [CrossRef] [PubMed]
- Fernstrom, J.D. Dietary amino acids and brain function. J. Am. Diet. Assoc. 1994, 94, 71–77. [Google Scholar] [CrossRef]
- Kapoor, R.; Huang, Y.-S. Gamma linolenic acid: An antiinflammatory omega-6 fatty acid. Curr. Pharm. Biotechnol. 2006, 7, 531–534. [Google Scholar] [CrossRef] [Green Version]
- Biessels, G.J.; Smale, S.; Duis, S.E.; Kamal, A.; Gispen, W.H. The effect of gamma-linolenic acid–alpha-lipoic acid on functional deficits in the peripheral and central nervous system of streptozotocin-diabetic rats. J. Neurol. Sci. 2001, 182, 99–106. [Google Scholar] [CrossRef]
- Desai, K.; Sivakami, S. Purification and biochemical characterization of a superoxide dismutase from the soluble fraction of the cyanobacterium, Spirulina platensis. World J. Microbiol. Biotechnol. 2007, 23, 1661–1666. [Google Scholar] [CrossRef]
- Bachstetter, A.D.; Jernberg, J.; Schlunk, A.; Vila, J.L.; Hudson, C.; Cole, M.J.; Shytle, R.D.; Tan, J.; Sanberg, P.R.; Sanberg, C.D. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation. PLoS ONE 2010, 5, e10496. [Google Scholar] [CrossRef]
- Patil, J.; Matte, A.; Nissbrandt, H.; Mallard, C.; Sandberg, M. Sustained effects of neonatal systemic lipopolysaccharide on IL-1β and Nrf2 in adult rat substantia nigra are partly normalized by a spirulina-enriched diet. Neuroimmunomodulation 2016, 23, 250–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, J.; Matte, A.; Mallard, C.; Sandberg, M. Spirulina diet to lactating mothers protects the antioxidant system and reduces inflammation in post-natal brain after systemic inflammation. Nutr. Neurosci. 2018, 21, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Fried, R. Superoxide dismutase activity in the nervous system. J. Neurosci. Res. 1979, 4, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-H.; Lee, I.-T.; Jeng, K.-C.; Wang, M.-F.; Hou, R.C.-W.; Wu, S.-M.; Chan, Y.-C. Spirulina prevents memory dysfunction, reduces oxidative stress damage and augments antioxidant activity in senescence-accelerated mice. J. Nutr. Sci. Vitaminol. 2011, 57, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Koh, E.-J.; Kim, K.-J.; Song, J.-H.; Choi, J.; Lee, H.Y.; Kang, D.-H.; Heo, H.J.; Lee, B.-Y. Spirulina maxima extract ameliorates learning and memory impairments via inhibiting GSK-3β phosphorylation induced by intracerebroventricular injection of amyloid-β 1–42 in mice. Int. J. Mol. Sci. 2017, 18, 2401. [Google Scholar] [CrossRef] [Green Version]
- Pabon, M.M.; Jernberg, J.N.; Morganti, J.; Contreras, J.; Hudson, C.E.; Klein, R.L.; Bickford, P.C. A Spirulina-Enhanced diet provides neuroprotection in an α-synuclein model of Parkinson’s disease. PLoS ONE 2012, 7, e45256. [Google Scholar] [CrossRef] [Green Version]
- Lima, F.A.V.; Joventino, I.P.; Joventino, F.P.; de Almeida, A.C.; Neves, K.R.T.; do Carmo, M.R.; Leal, L.K.A.M.; de Andrade, G.M.; de Barros Viana, G.S. Neuroprotective activities of Spirulina platensis in the 6-OHDA model of Parkinson’s disease are related to its anti-inflammatory effects. Neurochem. Res. 2017, 42, 3390–3400. [Google Scholar] [CrossRef]
- Choi, W.Y.; Kang, D.H.; Lee, H.Y. Effect of fermented Spirulina maxima extract on cognitive-enhancing activities in mice with scopolamine-induced dementia. Evid. Based Complementary Altern. Med. 2018, 2018, 7218504. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.-C.; Hwang, J.-H. Effects of Spirulina on the functions and redox status of auditory system in senescence-accelerated prone-8 mice. PLoS ONE 2017, 12, e0178916. [Google Scholar] [CrossRef] [Green Version]
- Gargouri, M.; Ghorbel-Koubaa, F.; Bonenfant-Magné, M.; Magné, C.; Dauvergne, X.; Ksouri, R.; Krichen, Y.; Abdelly, C.; El Feki, A. Spirulina or dandelion-enriched diet of mothers alleviates lead-induced damages in brain and cerebellum of newborn rats. Food Chem. Toxicol. 2012, 50, 2303–2310. [Google Scholar] [CrossRef]
- Galal, M.K.; Elleithy, E.M.; Abdrabou, M.I.; Yasin, N.A.; Shaheen, Y.M. Modulation of caspase-3 gene expression and protective effects of garlic and spirulina against CNS neurotoxicity induced by lead exposure in male rats. NeuroToxicology 2019, 72, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Banji, D.; Banji, O.J.; Pratusha, N.G.; Annamalai, A. Investigation on the role of Spirulina platensis in ameliorating behavioural changes, thyroid dysfunction and oxidative stress in offspring of pregnant rats exposed to fluoride. Food Chem. 2013, 140, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, F.; Nomier, M.A.; Sabik, L.M.; Shaheen, M.A. Manganese-induced neurotoxicity and the potential protective effects of lipoic acid and Spirulina platensis. Toxicol. Mech. Methods 2020, 30, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Thaakur, S.; Sravanthi, R. Neuroprotective effect of Spirulina in cerebral ischemia–reperfusion injury in rats. J. Neural Transm. 2010, 117, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Madhavadas, S.; Subramanian, S. Combination of Spirulina with glycyrrhizin prevents cognitive dysfunction in aged obese rats. Indian J. Pharmacol. 2015, 47, 39. [Google Scholar]
- Zhu, H.-Z.; Zhang, Y.; Zhu, M.-J.; Wu, R.-L.; Zeng, Z.-G. Protective effects of spirulina on hippocampal injury in exercise-fatigue mice and its mechanism. Chin. J. Appl. Physiol. 2018, 34, 562. [Google Scholar]
- Okamoto, T.; Kawashima, H.; Osada, H.; Toda, E.; Homma, K.; Nagai, N.; Imai, Y.; Tsubota, K.; Ozawa, Y. Dietary spirulina supplementation protects visual function from photostress by suppressing retinal neurodegeneration in mice. Transl. Vis. Sci. Technol. 2019, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Cui, Y.; Fan, X.; Qi, P.; Liu, C.; Zhou, X.; Zhang, X. Anti-obesity effects of Spirulina platensis protein hydrolysate by modulating brain-liver axis in high-fat diet fed mice. PLoS ONE 2019, 14, e0218543. [Google Scholar] [CrossRef] [Green Version]
- Moradi-Kor, N.; Ghanbari, A.; Rashidipour, H.; Bandegi, A.R.; Yousefi, B.; Barati, M.; Kokhaei, P.; Rashidy-Pour, A. Therapeutic effects of spirulina platensis against adolescent stress-induced oxidative stress, brain-derived neurotrophic factor alterations and morphological remodeling in the amygdala of adult female rats. J. Exp. Pharmacol. 2020, 12, 75. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.; Patro, N.; Tiwari, P.; Patro, I.K. Maternal Spirulina supplementation during pregnancy and lactation partially prevents oxidative stress, glial activation and neuronal damage in protein malnourished F1 progeny. Neurochem. Int. 2020, 141, 104877. [Google Scholar] [CrossRef]
- Khalil, S.R.; Khalifa, H.A.; Abdel-Motal, S.M.; Mohammed, H.H.; Elewa, Y.H.; Mahmoud, H.A. Spirulina platensis attenuates the associated neurobehavioral and inflammatory response impairments in rats exposed to lead acetate. Ecotoxicol. Environ. Saf. 2018, 157, 255–265. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, Y.J.; Ryu, H.K.; Kim, M.H.; Chung, H.W.; Kim, W.Y. A randomized double-blind, placebo-controlled study to establish the effects of spirulina in elderly Koreans. Ann. Nutr. Metab. 2008, 52, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Hassinger, L.; Davis, J.; Devor, S.T.; DiSilvestro, R.A. A randomized, double blind, placebo controlled study of spirulina supplementation on indices of mental and physical fatigue in men. Int. J. Food Sci. Nutr. 2016, 67, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Lepe, M.A.; Wall-Medrano, A.; López-Díaz, J.A.; Juárez-Oropeza, M.A.; Luqueño-Bocardo, O.I.; Hernández-Torres, R.P.; Ramos-Jiménez, A. Hypolipidemic effect of Arthrospira (Spirulina) maxima supplementation and a systematic physical exercise program in overweight and obese men: A double-blind, randomized, and crossover controlled trial. Mar. Drugs 2019, 17, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, K.; Chitundu, M. Multiple micronutrient supplementation using Spirulina platensis during the first 1000 days is positively associated with development in children under five years: A follow up of a randomized trial in Zambia. Nutrients 2019, 11, 730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miczke, A.; Szulinska, M.; Hansdorfer-Korzon, R.; Kregielska-Narozna, M.; Suliburska, J.; Walkowiak, J.; Bogdanski, P. Effects of spirulina consumption on body weight, blood pressure, and endothelial function in overweight hypertensive Caucasians: A double-blind, placebo-controlled, randomized trial. Eur. Rev. Med. Pharm. Sci. 2016, 20, 150–156. [Google Scholar]
- Zeinalian, R.; Farhangi, M.A.; Shariat, A.; Saghafi-Asl, M. The effects of Spirulina Platensis on anthropometric indices, appetite, lipid profile and serum vascular endothelial growth factor (VEGF) in obese individuals: A randomized double blinded placebo controlled trial. BMC Complementary Altern. Med. 2017, 17, 225. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sámano, J.; Torres-Montes de Oca, A.; Luqueño-Bocardo, O.I.; Torres-Durán, P.V.; Juárez-Oropeza, M.A. Spirulina maxima decreases endothelial damage and oxidative stress indicators in patients with systemic arterial hypertension: Results from exploratory controlled clinical trial. Mar. Drugs 2018, 16, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buriani, A.; Fortinguerra, S.; Carrara, M.; Pelkonen, O. Systems network pharmaco-toxicology in the study of herbal medicines. In Toxicology of Herbal Products; Springer: Berlin/Heidelberg, Germany, 2017; pp. 129–164. [Google Scholar]
- Buriani, A.; Fortinguerra, S.; Sorrenti, V.; Caudullo, G.; Carrara, M. Essential Oil Phytocomplex Activity, a Review with a Focus on Multivariate Analysis for a Network Pharmacology-Informed Phytogenomic Approach. Molecules 2020, 25, 1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type of Spirulina | Animal Model | Dose and Timing | Parameters | Results | Reference |
---|---|---|---|---|---|
Spirulina spp. | Rat (model of neuroinflammation) | Diet 0.1% w/w Spirulina for 28 days before and 2 days after LPS injection | Glial activation, neuronal progenitor cells proliferation | Protection from astrogliosis and maintainance of neuronal progenitor cells proliferation. | [45] |
Spirulina maxima | Rat (model of ischemia-reperfusion injury) | 45, 90, 180 mg/kg, for 7 days prior to middle cerebral artery occlusion | Neurological deficit, oxidative stress biomarkers, histopathological alterations in brain sections | Improvement of neurological deficit score, reduction of oxidative stress biomarkers, improvement in histopathological signs | [59] |
hSpirulina platensis | Mouse (model of senescence/ Alzheimer’s disease) | 50, 200 mg/kg/day, for 12 weeks | Memory dysfunctions, amyloid-β deposition, oxidative stress biomarkers | Improvement of the measured parameters | [49] |
Spirulina platensis | Rat (model of lactation and lead-induced toxicity) | Diet 5% w/w Spirulina (lactating mothers), from 5th day of gestation to the 14th day of lactation, combined with lead acetate diet | Oxidative stress and histopathological alterations in brain and cerebellum in the progeny | Improvement of the measured parameters | [55] |
Spirulina spp. | Rat (model of Parkinson’s disease) | Diet 0.1% w/w Spirulina, for 30 days before and 1, 4, 16 weeks after α-synuclein treatment | Tyrosin-Hydroxylase positive cells analysis, microglial activation | Neuroprotection, reduction of microglial activation | [51] |
Spirulina platensis | Rat (model of pregnancy, lactation and fluoride intoxication) | 250, 500 mg/kg/day, from embryonic day 6 to postnatal day 15 | Neurobehavioral changes and oxidative stress in the progeny | Protection against the fluoride intoxication effects | [57] |
Spirulina maxima | Rat (model of obesity) | 1000 mg/kg/day for 30 days | Cognitive dysfunctions | Improvement of the measured parameters | [60] |
Spirulina platensis | Rat (model of neuroinflammation) | Diet 0.1% w/w Spirulina (lactating mothers), starting 24 h before LPS injection in pups | Biochemical markers of neuroinflammation and oxidative stress | Slight improvement only for specific biomarkers | [46] |
Spirulina platensis | Mouse (model of senescence) | 400 mg/kg/day for 6 weeks | Auditory system impairments, oxidative stress biomarkers | Slight improvement only for specific auditory stimulations, reduction of oxidative stress | [54] |
Spirulina maxima | Mouse (model of Alzheimer’s disease) | 150, 450 mg/kg/day for 2 weeks before and 2 weeks after amyloid-β injection | Learning and memory dysfunctions, oxidative stress biomarkers, GSK-3β pathway | Improvement of the measured parameters, and proposal of a possible mechanism of action | [50] |
Spirulina platensis | Rat (model of Parkinson’s disease) | 25, 50 mg/kg/day for 2 weeks, starting 24 h after 6-OH-dopamine injection | Locomotor activity, biomarkers of oxidative stress and inflammation | Improvement of the measured parameters | [52] |
Spirulina maxima | Mouse (model of dementia) | 50, 100, 200, 400 mg/kg/day (no information about the duration of the treatment) | Memory dysfunctions, analysis of possibile pathways (p-ERK, p-CREB, BDNF) | Improvement of the measured parameters, and proposal of a possible mechanism of action | [53] |
Spirulina platensis | Rat (model of lead-induced toxicity) | 300 mg/kg/day for 15 days before and 15 days after lead acetate injections | Neurobehavioral alterations, oxidative stress and inflammatory response | Improvement in the behavior, and in the oxidative stress and inflammatory biomarkers | [66] |
Spirulina platensis | Rat (lactation and neuroinflammation model) | Diet 0.1% w/w Spirulina (lactating mothers), starting 24 h before LPS injection in pups | Oxidative stress and neuroinflammation biomarkers in the progeny | Reduction of inflammation and oxidative stress in the brain | [47] |
Spirulina spp. | Rat (model of fatigue) | 300 mg/kg/day for 3 weeks | Neurotrophic signaling in hippocampal injury, and histopathological alterations in the hippocampus | Improvement of the measured parameters | [61] |
Spirulina maxima | Rat (model of lead-induced toxicity) | 500 mg/kg/day for 1 month | Oxidative stress, caspase-3 expression and histological alterations | Reduction of oxidative stress and caspase-3, improvement of histological condition of brain and cerebellum | [56] |
Spirulina platensis | Mouse (model of photostress) | Diet 20% w/w Spirulina for 4 weeks | Visual functions, histological retinal damages, oxidative stress biomarkers | Improvement of visual functions and retinal damages, reduction of oxidative stress biomarkers | [62] |
Spirulina platensis | Mouse (model of obesity) | 2000 mg/kg/day for 4 weeks Three subtypes of Spirulina diet (whole, proteins and protein hydrolysate) | Effects on body weight, serum concentrations of lipoproteins and glucose, activation of specific pathways | Modulation of biochemical pathways in the brain–liver axis | [63] |
Spirulina platensis | Rat (model of manganese-induced neurotoxicity | 300 mg/kg for 8 weeks, alone and in combination with 50 mg/kg of alpha-lipoic acid | Neurobehavioral and biochemical changes | Detoxification from Mn and protection from the neurotoxicity | [58] |
Spirulina platensis | Rat (model of stress) | 200 mg/kg/day for 15 days, after a 2 h/10 days stress induction period | Biochemical, molecular and morphological alterations in the amygdala | Improvement of the measured parameters | [64] |
Spirulina platensis | Rat (pregnancy, lactation and protein malnutrition model) | 400 mg/kg, during gestation and lactation period | Oxidative stress, glial activation, hippocampal neuronal damage in the progeny | Protection against oxidative stress, reduction of glial activation, restoration of hippocampal cellular damage | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorrenti, V.; Castagna, D.A.; Fortinguerra, S.; Buriani, A.; Scapagnini, G.; Willcox, D.C. Spirulina Microalgae and Brain Health: A Scoping Review of Experimental and Clinical Evidence. Mar. Drugs 2021, 19, 293. https://doi.org/10.3390/md19060293
Sorrenti V, Castagna DA, Fortinguerra S, Buriani A, Scapagnini G, Willcox DC. Spirulina Microalgae and Brain Health: A Scoping Review of Experimental and Clinical Evidence. Marine Drugs. 2021; 19(6):293. https://doi.org/10.3390/md19060293
Chicago/Turabian StyleSorrenti, Vincenzo, Davide Augusto Castagna, Stefano Fortinguerra, Alessandro Buriani, Giovanni Scapagnini, and Donald Craig Willcox. 2021. "Spirulina Microalgae and Brain Health: A Scoping Review of Experimental and Clinical Evidence" Marine Drugs 19, no. 6: 293. https://doi.org/10.3390/md19060293
APA StyleSorrenti, V., Castagna, D. A., Fortinguerra, S., Buriani, A., Scapagnini, G., & Willcox, D. C. (2021). Spirulina Microalgae and Brain Health: A Scoping Review of Experimental and Clinical Evidence. Marine Drugs, 19(6), 293. https://doi.org/10.3390/md19060293