Volatile Organic Compounds, Indole, and Biogenic Amines Assessment in Two Mediterranean Irciniidae (Porifera, Demospongiae)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sponge Collection
4.2. Chemicals
4.3. Solid Phase Microextraction (SPME) Fibers and Gas Chromatography-Mass Spectrometry (GC-MS) System
4.4. SPME-GC-MS Experimental Conditions
4.4.1. Volatile Organic Compounds (VOCs) Analyses
4.4.2. Indole and Biogenic Amines (BAs) Analyses
4.5. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Soest, R.W.M.; Boury-Esnault, N.; Vacelet, J.; Dohrmann, M.; Erpenbeck, D.; de Voogd, N.J.; Santodomingo, N.; Vanhoorne, B.; Kelly, M.; Hooper, J.N.A. Global diversity of sponges (Porifera). PLoS ONE 2012, 7, e35105. [Google Scholar] [CrossRef]
- Webster, N.S.; Taylor, M.W. Marine sponges and their microbial symbionts: Love and other relationships. Environ. Microbiol. 2012, 14, 335–346. [Google Scholar] [CrossRef]
- Pita, L.; Rix, L.; Slaby, B.M.; Franke, A.; Hentschel, U. The sponge holobiont in a changing ocean: From microbes to ecosystems. Microbiome 2018, 6, 46. [Google Scholar] [CrossRef]
- Genta-Jouve, G.; Cachet, N.; Oberhänsli, F.; Noyer, C.; Teyssié, J.L.; Thomas, O.P.; Lacoue-Labarthe, T. Comparative bioaccumulation kinetics of trace elements in Mediterranean marine sponges. Chemosphere 2012, 89, 340–349. [Google Scholar] [CrossRef] [Green Version]
- Rohde, S.; Nietzer, S.; Schupp, P.J. Prevalence and mechanisms of dynamic chemical defenses in tropical sponges. PLoS ONE 2015, 10, e0132236. [Google Scholar] [CrossRef]
- Rust, M.; Helfrich, E.J.N.; Freeman, M.F.; Nanudorn, P.; Field, C.M.; Rückert, C.; Kündig, T.; Page, M.J.; Webb, V.L.; Kalinowski, J. A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli. Proc. Natl. Acad. Sci. USA 2020, 117, 9508–9518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.-J.; Cho, Y.; Tran, H.N.K. Secondary metabolites from the marine sponges of the genus Petrosia: A literature review of 43 years of research. Mar. Drugs 2021, 19, 122. [Google Scholar] [CrossRef] [PubMed]
- Mehbub, M.F.; Perkins, M.V.; Zhang, W.; Franco, C.M.M. New marine natural products from sponges (Porifera) of the order Dictyoceratida (2001 to 2012); a promising source for drug discovery, exploration and future prospects. Biotechnol. Adv. 2016, 34, 473–491. [Google Scholar] [CrossRef]
- Abdelaleem, E.R.; Samy, M.N.; Desoukey, S.Y.; Liu, M.; Quinn, R.J.; Abdelmohsen, U.R. Marine natural products from sponges (Porifera) of the order Dictyoceratida (2013 to 2019); a promising source for drug discovery. RSC Adv. 2020, 10, 34959–34976. [Google Scholar] [CrossRef]
- Mercurio, M.; Longo, C.; Nonnis Marzano, C.; Scalera Liaci, L.; Corriero, G. L’allevamento di spugne commerciali nella Riserva Naturale Marina ‘Isola di Ustica’. Biol. Mar. Mediterr. 2003, 10, 462–464. [Google Scholar]
- Corriero, G.; Longo, C.; Mercurio, M.; Nonnis Marzano, C.; Lembo, G.; Spedicato, M.T. Rearing performance of Spongia officinalis on suspended ropes off the Southern Italian Coast (Central Mediterranean Sea). Aquaculture 2004, 338, 195–205. [Google Scholar] [CrossRef]
- Baldacconi, R.; Cardone, F.; Longo, C.; Mercurio, M.; Nonnis Marzano, C.; Gaino, E.; Corriero, G. Transplantation of Spongia officinalis L. (Porifera, Demospongiae): A technical approach for restocking this endangered species. Mar. Ecol. Evol. Persp. 2010, 31, 309–317. [Google Scholar] [CrossRef]
- Giangrande, A.; Pierri, C.; Arduini, D.; Borghese, J.; Licciano, M.; Trani, R.; Corriero, G.; Basile, G.; Cecere, E.; Petrocelli, A.; et al. An innovative IMTA system: Polychaetes, sponges and macroalgae co-cultured in a Southern Italian in-shore mariculture plant (Ionian Sea). J. Mar. Sci. Eng. 2020, 8, 733. [Google Scholar] [CrossRef]
- Longo, C.; Scrascia, M.; Trani, R.; Pierri, C.; Cariglia, A.; Cariglia, F.; Cariglia, M. Assesment of sponge mariculture potential in polyculture system in Manfredonia Gulf toward the IMTA implementation. In Proceedings of the Aquafarm Novelfarm 2020, Pordenone, Italy, 19–20 February 2020; p. 1. [Google Scholar]
- Christophersen, C.; Anthoni, U.; Nielsen, P.H.; Jacobsen, N.; Tendal, O.S. Source of a nauseating stench from the marine sponge, Halichondria panicea, collected at Clever Bank in the North Sea. Biochem. Syst. Ecol. 1989, 17, 459–461. [Google Scholar] [CrossRef]
- Roussis, V.; Mazomenos, B.E.; Vayas, K.; Harvala, C. Comparative study on the volatile metabolites of two marine sponge species of the genus Plakortis. J. Essent. Oil Res. 1995, 7, 393–397. [Google Scholar] [CrossRef]
- Duque, C.; Bonilla, A.; Bautista, E.; Zea, S. Exudation of low molecular weight compounds (thiobismethane, methyl isocyanide, and methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix. Biochem. Syst. Ecol. 2001, 29, 459–467. [Google Scholar] [CrossRef]
- De Rosa, S.; Kamenarska, Z.; Seizova, K.; Iodice, C.; Petrova, A.; Nedelcheva, D.; Stefanov, K.; Popev, S. Volatile and polar compounds from Geodia cydonium and two Tedania species. Bulg. Chem. Commun. 2008, 40, 48–53. [Google Scholar]
- Mollo, E.; Fontana, A.; Roussis, V.; Polese, G.; Amodeo, P.; Ghiselin, M.T. Sensing marine biomolecules: Smell, taste, and the evolutionary transition from aquatic to terrestrial life. Front. Chem. 2014, 2, 92. [Google Scholar] [CrossRef] [Green Version]
- Mollo, E.; Garson, M.J.; Polese, G.; Amodeo, P.; Ghiselin, M.T. Taste and smell in aquatic and terrestrial environments. Nat. Prod. Rep. 2017, 34, 496–513. [Google Scholar] [CrossRef]
- Pawlik, J.R.; McFall, G.; Zea, S. Does the odor from sponges of the genus Ircinia protect them from fish predators? J. Chem. Ecol. 2002, 28, 1103–1115. [Google Scholar] [CrossRef] [PubMed]
- Abed, C. Spongiaires Irciniidae de Méditerranée: Chimiotaxonomie, Métabolites Volatils et Bio-Indicateurs de Pollution par les Eléments Traces Métalliques. Ph.D. Thesis, Universite de la Mediterranee Aix-Marseille II, Marseille, France, 2011, unpublished. [Google Scholar]
- da Frota, M.J.L.C.; da Silva, R.B.; Mothes, B.; Henriques, A.T.; Moreira, J.C.F. Current status on natural products with antitumor activity from Brazilian marine sponges. Curr. Pharm. Biotechnol. 2012, 13, 235–244. [Google Scholar]
- Longeon, A.; Copp, B.R.; Quévrain, E.; Roué, M.; Kientz, B.; Cresteil, T.; Petek, S.; Debitus, C.; Bourguet-Kondracki, M.-L. Bioactive indole derivatives from the South Pacific marine sponges Rhopaloeides odorabile and Hyrtios sp. Mar. Drugs 2011, 9, 879–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanif, N.; Yamada, K.; Kitamura, M.; Kawazoe, Y.; de Voogd, N.J.; Uemura, D. New Indole Alkaloids from the Sponge Plakortis sp. Chem. Nat. Compd. 2015, 51, 1130–1133. [Google Scholar] [CrossRef]
- Erdag, D.; Merhan, O.; Yildiz, B. Biochemical and pharmacological properties of biogenic amines. Biog. Amin. 2018, 8, 1–14. [Google Scholar]
- Doeun, D.; Davaatseren, M.; Chung, M.-S. Biogenic amines in foods. Food Sci. Biotechnol. 2017, 26, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- De Vietro, N.; Aresta, A.M.; Picciariello, A.; Rotelli, M.T.; Zambonin, C. Determination of VOCs in Surgical Resected Tissues from Colorectal Cancer Patients by Solid Phase Microextraction Coupled to Gas Chromatography–Mass Spectrometry. Appl. Sci. 2021, 11, 6910. [Google Scholar] [CrossRef]
- Anjum, K.; Abbas, S.Q.; Shah, S.A.A.; Akhter, N.; Batool, S.; Hassan, S.S.U. Marine Sponges as a Drug Treasure. Biomol. Ther. 2016, 24, 347–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehbub, M.F.; Lei, J.; Franco, C.; Zhang, W. Marine sponge derived natural products between 2001 and 2010: Trends and opportunities for discovery of bioactives. Mar. Drugs 2014, 12, 4539–4577. [Google Scholar] [CrossRef] [Green Version]
- Thakur, N.L.; Singh, A. Chemical ecology of marine sponges. In Marine Sponges: Chemicobiological and Biomedical Applications; Springer: New Delhi, India, 2016; pp. 37–52. [Google Scholar]
- Misharina, T.A.; Terenina, M.b.; Krikunova, N.I. Determination of volatile organic compounds by solid-phase microextraction. Appl. Biochem. Microbiol. 2017, 53, 600–609. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, C.; Mu, Y.; Shen, Q.; Feng, Y. Indole affects biofilm formation in bacteria. Indian J. Microbiol. 2010, 50, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Al Bulushi, I.; Poole, S.; Deeth, H.; Dykes, G. Evaluation the spoilage and biogenic amines formation potential of marine Gram-positive bacteria. Int. Food Res. J. 2018, 25, 2143–2148. [Google Scholar]
- Al Bulushi, I.; Poole, S.; Deeth, H.C.; Dykes, G.A. Biogenic amines in fish: Roles in intoxication, spoilage, and nitrosamine formation—A review. Crit. Rev. Food Sci. Nutr. 2009, 49, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, M.; Lambropoulou, D.; Morrison, C.; Namieśnik, J.; Płotka-Wasylka, J. Direct solid phase microextraction combined with gas chromatography–Mass spectrometry for the determination of biogenic amines in wine. Talanta 2018, 183, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Leys, S.P. Elements of a ‘nervous system’ in sponges. J. Exp. Biol. 2015, 218, 581–591. [Google Scholar] [CrossRef] [Green Version]
- D’Aniello, E.; Paganos, P.; Anishchenko, E.; D’Aniello, S.; Arnone, M.I. Comparative Neurobiology of Biogenic Amines in Animal Models in Deuterostomes. Front. Ecol. Evol. 2020, 8, 322. [Google Scholar] [CrossRef]
- Agell, G.; Uriz, M.; Cebrian, E.; Martí, R. Does stress protein induction by copper modify natural toxicity in sponges? Environ. Toxicol. Chem. Int. J. 2001, 20, 2588–2593. [Google Scholar] [CrossRef]
- Stévenne, C.; Micha, M.; Plumier, J.-C.; Roberty, S. Corals and Sponges Under the Light of the Holobiont Concept: How Microbiomes Underpin Our Understanding of Marine Ecosystems. Front. Mar. Sci. 2021, 8, 698853. [Google Scholar] [CrossRef]
- Hardoim, C.C.P.; Costa, R. Microbial communities and bioactive compounds in marine sponges of the family Irciniidae—A review. Mar. Drugs 2014, 12, 5089–5122. [Google Scholar] [CrossRef] [Green Version]
RT (min) | Compound | MF | P (%) | SPME Fiber Coating | |
---|---|---|---|---|---|
CAR/PDMS | DVB/CAR/PDMS | ||||
2.01 ± 0.01 | dimethyl sulfide | 915 | 70.1 | Iv/Ss | Iv/Ss |
4.94 ± 0.02 | methyl isothiocyanate | 875 | 82.5 | Ss | Ss |
10.90 ± 0.03 | dimethyl trisulfide | 869 | 91.9 | Ss |
RT (min) | m/z Ions (Relative Intensities) | Compound |
---|---|---|
4.79 ± 0.02 | 104 (74) 160 (45) 130 (34) 86 (25) | propylamine |
5.40 ± 0.06 | 130 (66) 118 (34) 100 (12) 173 (5) 158 (3) | isobutylamine |
6.76 ± 0.07 | 132 (100) 130 (98) 118 (36) 114 (29) 187 (15) | isopentylamine |
10.23 ± 0.09 | 104 (100) 130 (79) 91 (76) 221 (30) 148 (18) | 2-phenylethylamine |
12.19 ± 0.06 | 170 (100) 130 (63) 288 (10) | putrescine |
12.52 ± 0.09 | 84 (85) 130 (80) 129 (73) 302 (2) | cadaverine |
13.61 ± 0.06 | 130 (100) 143 (59) 260 (19) 187 (4) | tryptamine |
14.58 ± 0.07 | 194 (100) 138 (25) 238 (16) | histamine |
Compound | Equation | R2 | Within-Day (% RSD) | Between-Days (% RSD) | LOD (ng/mL) | LOQ (ng/mL) |
---|---|---|---|---|---|---|
2-phenylethylamine | y = 3.3 × 103x + 28 | 0.9988 | 3.6 | 7.3 | 0.03 | 0.10 |
cadaverine | y = 1.4 × 103x − 33 | 0.9981 | 5.8 | 8.1 | 0.12 | 0.40 |
histamine | y = 0.2 × 102x − 8 | 0.9988 | 6.2 | 9.9 | 0.17 | 0.57 |
isobutylamine | y = 0.9 × 103x − 98 | 0.9987 | 3.7 | 10.3 | 0.95 | 3.16 |
isopentylamine | y = 0.8 × 103x + 24 | 0.9984 | 4.3 | 7.2 | 0.06 | 0.19 |
propylamine | y = 1.7 × 103x + 96 | 0.9995 | 6.1 | 14.3 | 0.21 | 0.70 |
putrescine | y = 8.0 × 103x − 94 | 0.9981 | 4.5 | 11.4 | 0.03 | 0.10 |
tryptamine | y = 3.1 × 103x + 22 | 0.9951 | 4.6 | 11.4 | 0.07 | 0.23 |
Compound | Ss (µg/g) | % Rec (n = 6) | Iv (µg/g) | % Rec (n = 9) |
---|---|---|---|---|
2-phenylethylamine | 3.56 ± 1.30 | 99 ± 2 | 0.65 ± 026 | 85 ± 3 |
cadaverine | 41.27 ± 20.30 | 98 ± 3 | 0.82 ± 0.32 | 87 ± 4 |
histamine | 2.35 ± 0.98 | 96 ± 3 | 1.54 ± 0.89 | 89 ± 5 |
isobutylamine | 3.22 ± 1.42 | 99 ± 1 | ||
isopentylamine | 10.09 ± 3.09 | 93 ± 4 | 0.05 ± 0.03 | 88 ± 3 |
propylamine | 0.17 ± 0.09 | 92 ± 3 | ||
putrescine | 3.59 ± 1.01 | 85 ± 3 | 0.10 ± 0.05 | 88 ± 3 |
tryptamine | 7.91 ± 2.56 | 85 ± 3 |
Species | Specimens | Weight (g) | Bad Smell |
---|---|---|---|
Iv | 1 | 40.62 | ++ |
Iv | 2 | 61.68 | ++ |
Iv | 3 | 50.79 | ++ |
Ss | 1 | 63.59 | +++ |
Ss | 2 | 63.16 | +++ |
Ss | 3 | 39.74 | +++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aresta, A.; Cotugno, P.; De Vietro, N.; Longo, C.; Mercurio, M.; Ferriol, P.; Zambonin, C.; Nonnis Marzano, C. Volatile Organic Compounds, Indole, and Biogenic Amines Assessment in Two Mediterranean Irciniidae (Porifera, Demospongiae). Mar. Drugs 2021, 19, 711. https://doi.org/10.3390/md19120711
Aresta A, Cotugno P, De Vietro N, Longo C, Mercurio M, Ferriol P, Zambonin C, Nonnis Marzano C. Volatile Organic Compounds, Indole, and Biogenic Amines Assessment in Two Mediterranean Irciniidae (Porifera, Demospongiae). Marine Drugs. 2021; 19(12):711. https://doi.org/10.3390/md19120711
Chicago/Turabian StyleAresta, Antonella, Pietro Cotugno, Nicoletta De Vietro, Caterina Longo, Maria Mercurio, Pere Ferriol, Carlo Zambonin, and Carlotta Nonnis Marzano. 2021. "Volatile Organic Compounds, Indole, and Biogenic Amines Assessment in Two Mediterranean Irciniidae (Porifera, Demospongiae)" Marine Drugs 19, no. 12: 711. https://doi.org/10.3390/md19120711
APA StyleAresta, A., Cotugno, P., De Vietro, N., Longo, C., Mercurio, M., Ferriol, P., Zambonin, C., & Nonnis Marzano, C. (2021). Volatile Organic Compounds, Indole, and Biogenic Amines Assessment in Two Mediterranean Irciniidae (Porifera, Demospongiae). Marine Drugs, 19(12), 711. https://doi.org/10.3390/md19120711