New Hydroquinone Monoterpenoid and Cembranoid-Related Metabolites from the Soft Coral Sarcophyton tenuispiculatum
Abstract
1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Experimental Procedures
3.2. Animal Material
3.3. Extraction and Isolation
3.4. Cytotoxicity Testing
3.5. Anti-Inflammatory Assay
3.6. PPAR-γ Transcription Factor Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, W.C.; Sung, P.J.; Duh, C.Y.; Chen, B.W.; Sheu, J.H.; Yang, N.S. Anti-inflammatory activities of nature products isolated from soft corals of Taiwan between 2008 and 2012. Mar. Drugs 2013, 11, 4083–4126. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, J.; Shmeuli, U.; Zadock, E.; Kashman, Y.; Néeman, I. Sarcophine, a new epoxy cembranolide from marine origin. Tetrahedron 1974, 30, 2817–2824. [Google Scholar] [CrossRef]
- Katsuyama, I.; Fahmy, H.; Zjawiony, J.K.; Khalifa, S.I.; Kilada, R.W.; Konoshima, T.; Takasaki, M.; Tokuda, H. Semisynthesis of new sarcophine derivatives with chemopreventive activity. J. Nat. Prod. 2002, 65, 1809–1814. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, M.E.F.; Elshamy, A.I.; Mohamed, T.A.; Hamed, A.R.; Ibrahim, M.A.A.; Ohta, S.; Paré, P.W. Cembrene diterpenoids with ether linkages from Sarcophyton ehrenbergi: An anti-proliferation and molecular-docking assessment. Mar. Drugs 2017, 15, 192. [Google Scholar] [CrossRef]
- Elkhateeb, A.; El-Beih, A.A.; Gamal-Eldeen, A.M.; Alhammady, M.A.; Ohta, S.; Paré, P.W.; Hegazy, M.E.F. New terpenes from the Egyptian soft coral Sarcophyton ehrenbergi. Mar. Drugs 2014, 12, 1977–1986. [Google Scholar] [CrossRef]
- Abou El-Ezz, R.F.; Ahmed, S.A.; Radwan, M.M.; Ayoub, N.A.; Afifi, M.S.; Ross, S.A.; Szymanski, P.T.; Fahmy, H.; Khalifa, S.I. Bioactive cembranoids from the Red Sea soft coral Sarcophyton glacucum. Tetrahedron Lett. 2013, 54, 989–992. [Google Scholar] [CrossRef]
- Wang, S.K.; Hsieh, M.K.; Duh, C.Y. Three new cembranoids from the Taiwanese soft coral Sarcophyton ehrenbergi. Mar. Drugs 2012, 10, 1433–1444. [Google Scholar] [CrossRef]
- Hegazy, M.E.F.; Eldeen, A.M.G.; Shahat, A.A.; Abdel-Latif, F.F.; Mohamed, T.A.; Whittlesey, B.R.; Paré, P.W. Bioactive hydroperoxyl cembranoids from the Red Sea soft coral Sarcophyton glaucum. Mar. Drugs 2012, 10, 209–222. [Google Scholar] [CrossRef]
- Huang, H.C.; Ahmed, A.F.; Su, J.H.; Chao, C.H.; Wu, Y.C.; Chiang, M.Y.; Sheu, J.H. Crassocolides A−F, cembranoids with a trans-fused lactone from the soft coral Sarcophyton crassocaule. J. Nat. Prod. 2006, 69, 1554–1559. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Su, J.; Liang, Y.; Yang, X.; Zheng, K.; Zeng, L. Cytotoxic diterpenoids from the soft coral Sarcophyton crassocaule. J. Nat. Prod. 2006, 69, 1476–1480. [Google Scholar] [CrossRef]
- Peng, C.C.; Huang, C.Y.; Ahmed, A.F.; Hwang, T.L.; Dai, C.F.; Sheu, J.H. New cembranoids and a biscembranoid peroxide from the soft coral Sarcophyton cherbonnieri. Mar. Drugs 2018, 16, 276. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.F.; Chen, Y.W.; Huang, C.Y.; Tseng, Y.J.; Lin, C.C.; Dai, C.F.; Wu, Y.C.; Sheu, J.H. Isolation and structure elucidation of cembranoids from a Dongsha Atoll soft coral Sarcophyton stellatum. Mar. Drugs 2018, 16, 210. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.Y.; Chen, B.W.; Huang, C.Y.; Wen, Z.H.; Sung, P.J.; Su, J.H.; Dai, C.F.; Sheu, J.H. Bioactive cembranoids, sarcocrassocolides P–R, from the Dongsha Atoll soft coral Sarcophyton crassocaule. Mar. Drugs 2014, 12, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.Y.; Su, J.H.; Lu, Y.; Wen, Z.H.; Dai, C.F.; Kuo, Y.H.; Sheu, J.H. Cytotoxic and anti-inflammatory cembranoids from the Dongsha Atoll soft coral Sarcophyton crassocaule. Bioorg. Med. Chem. 2010, 18, 1936–1941. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Wang, S.K.; Hsieh, M.K.; Duh, C.Y. Polyoxygenated cembrane diterpenoids from the soft coral Sarcophyton ehrenbergi. Int. J. Mol. Sci. 2015, 16, 6140–6152. [Google Scholar] [CrossRef]
- Chen, S.P.; Chen, B.W.; Dai, C.F.; Sung, P.J.; Wu, Y.C.; Sheu, J.H. Sarcophytonins F and G, new dihydrofuranocembranoids from a Dongsha Atoll soft coral Sarcophyton sp. Bull. Chem. Soc. Jpn. 2012, 85, 920–922. [Google Scholar] [CrossRef]
- Nii, K.; Tagami, K.; Kijima, M.; Munakata, T.; Ooi, T.; Kusumi, T. Acid-catalyzed reactions of sarcophytoxide, a marine cembranoid: An apparently enantio-directive reaction, unusual products and stereochemical reconsideration of epoxide–ketone rearrangement. Bull. Chem. Soc. Jpn. 2008, 81, 562–573. [Google Scholar] [CrossRef]
- Kato, T.; Kobayashi, T.; Kitahara, Y. Cyclization of polyenes XVI. Biogenetic type synthesis of cembrane type compounds. Tetrahedron Lett. 1975, 38, 3299–3302. [Google Scholar] [CrossRef]
- El Sayed, K.A.; Hamann, M.T.; Waddling, C.A.; Jensen, C.; Lee, S.K.; Dunstan, C.A.; Pezzuto, J.M. Structurally novel bioconversion products of the marine natural product sarcophine effectively inhibit JB6 cell transformation. J. Org. Chem. 1998, 63, 7449–7455. [Google Scholar] [CrossRef]
- Kobayashi, M. Marine terpenes and terpenoids. Part 12. Autoxidation of dihydrofuranocembranoids. J. Chem. Res. Synop. 1991, 11, 310–311. [Google Scholar]
- Frincke, J.M.; Mcintyre, D.E.; Faulkner, D.J. Deoxosarcophine from a soft coral Sarcophyton sp. Tetrahedron Lett. 1980, 21, 735–738. [Google Scholar] [CrossRef]
- Kotta-Loizou, I.; Giaginis, C.; Theocharis, S. The role of peroxisome proliferator-activated receptor-γ in breast cancer. Anticancer Agents Med. Chem. 2012, 12, 1025–1044. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Moreau, F.; Chadee, K. PPAR-γ is an E3 ligase that induces the degradation of NF-κB/p65. Nat. Commun. 2012, 3, 1300. [Google Scholar] [CrossRef] [PubMed]
- Myokai, F.; Takashiba, S.; Lebo, R.; Amar, S. A novel lipopolysaccharide-induced transcription factor regulating tumor necrosis factor α gene expression: Molecular cloning, sequencing, characterization, and chromosomal assignment. Proc. Natl. Acad. Sci. USA 1999, 96, 4518–4523. [Google Scholar] [CrossRef]
- Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011, 117, 3720–3732. [Google Scholar] [CrossRef]
- Dayer, J.M.; Oliviero, F.; Punzi, L. A brief history of IL-1 and IL-1 Ra in rheumatology. Front. Pharmacol. 2017, 8, 293. [Google Scholar] [CrossRef]
- Kay, J.; Calabrese, L. The role of interleukin-1 in the pathogenesis of rheumatoid arthritis. Rheumatology 2004, 43, iii2–iii9. [Google Scholar] [CrossRef]
- Szekely, Y.; Arbel, Y. A review of interleukin-1 in heart disease: Where do we stand today? Cardiol. Ther. 2018, 7, 25–44. [Google Scholar] [CrossRef]
- Dinarello, C.A.; Donath, M.Y.; Mandrup-Poulsen, T. Role of IL-1β in type 2 diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 314–321. [Google Scholar] [CrossRef]
- Lin, Y.F.; Kuo, C.Y.; Wen, Z.H.; Lin, Y.Y.; Wang, W.H.; Su, J.H.; Sheu, J.H.; Sung, P.J. Flexibilisquinone, a new anti-inflammatory quinone from the cultured soft coral Sinularia flexibilis. Molecules 2013, 18, 8160–8167. [Google Scholar] [CrossRef]
- Cole, S.P.C. Rapid chemosensitivity testing of human lung tumor cells using the MTT assay. Cancer Chemother. Pharmacol. 1986, 17, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.Y.; Huang, C.Y.; Chao, C.H.; Lin, C.C.; Dai, C.F.; Su, J.H.; Sung, P.J.; Wu, S.H.; Sheu, J.H. New biscembranoids sardigitolides A−D and known cembranoid-related compounds from Sarcophyton digitatum: Isolation, structure elucidation, and bioactivities. Mar. Drugs 2020, 18, 452. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lin, S.X.; Agha-Majzoub, R.; Overbergh, L.; Mathieu, C.; Chan, L.S. CCL27 is a critical factor for the development of atopic dermatitis in the keratin-14 IL-4 transgenic mouse model. Int. Immunol. 2006, 18, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.R.; Bai, L.Y.; Chiu, C.F.; Hu, J.L.; Chiu, S.J.; Wu, C.Y. Cucurbitane triterpenoid from Momordica charantia induces apoptosis and autophagy in breast cancer cells, in part, through peroxisome proliferator-activated receptor γ activation. Evid. Based Complement. Alternat. Med. 2013, 2013, 935675. [Google Scholar] [CrossRef]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2020, 37, 175–223. [Google Scholar] [CrossRef]
- Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.E.F.; Moustafa, M.S.; El-Wahed, A.A.; Al-Mousawi, S.M.; Musharraf, S.G.; et al. Marine natural products: A source of novel anticancer drugs. Mar. Drugs 2019, 17, 491. [Google Scholar] [CrossRef]
- Sang, V.T.; Dat, T.T.H.; Vinh, L.B.; Cuong, L.C.V.; Oanh, P.T.T.; Ha, H.; Kim, Y.H.; Anh, H.L.T.; Yang, S.Y. Coral and coral-associated microorganisms: A prolific source of potential bioactive natural products. Mar. Drugs 2019, 17, 468. [Google Scholar] [CrossRef]
Position | 1 | |||
---|---|---|---|---|
13Cα | 1H b | COSY | HMBC | |
1 | 177.3 (C) | |||
2 | 39.4 (CH)c | 2.46, sext (6.8)d | H2-3, H3-9 | C-1, C-3 |
3 | 34.2 (CH2) | 1.41, m; 1.65 m | H2-2, H2-4 | |
4 | 21.3 (CH2) | 1.42, m | H2-3, H2-5 | |
5 | 39.3 (CH2) | 1.49, m; 1.56, m | H2-4 | |
6 | 74.2 (C) | |||
7 | 31.5 (CH2) | 1.76, m | H2-8 | C-6, C-8, C-1′ |
8 | 20.7 (CH2) | 2.60, t (7.2) | H2-7 | C-6, C-7, C-1′, C-2′, C-6′ |
9 | 17.0 (CH3) | 1.14, d (7.2) | C-1, C-2, C-3 | |
10 | 23.7 (CH3) | 1.21, s | C-5, C-6, C-7 | |
1′ | 117.2 (C) | |||
2′ | 118.5 (C) | |||
3′ | 144.6 (C) | |||
4′ | 121.0 (C) | |||
5′ | 122.6 (C) | |||
6′ | 145.3 (C) | |||
7′ | 11.3 (CH3) | 2.11, s | C-1′, C-2′, C-3′ | |
8′ | 12.2 (CH3) | 2.16, s | C-3′, C-4′, C-5′ | |
9′ | 11.8 (CH3) | 2.10, s | C-4′, C-5′, C-6′ | |
OMe | 51.5 (CH3) | 3.66, s | C-1 |
Position | 2 α | 3 α | 4 b |
---|---|---|---|
1 | 153.8 (C) | 142.5 (C) | 151.9 (C) |
2 | 119.8 (CH) c | 82.6 (CH) | 148.1 (C) |
3 | 58.5 (CH) | 124.5 (CH) | 124.5 (CH) |
4 | 61.9 (C) | 141.2 (C) | 72.9 (C) |
5 | 36.8 (CH2) | 37.6 (CH2) | 42.5 (CH2) |
6 | 21.8 (CH2) | 25.2 (CH2) | 24.5 (CH2) |
7 | 125.4 (CH) | 61.8 (CH) | 124.5 (CH) |
8 | 134.5 (C) | 59.9 (C) | 133.9 (C) |
9 | 39.1 (CH2) | 39.7 (CH2) | 38.4 (CH2) |
10 | 24.2 (CH2) | 23.5 (CH2) | 23.0 (CH2) |
11 | 125.1 (CH) | 123.9 (CH) | 126.8 (CH) |
12 | 135.1 (C) | 136.4 (C) | 131.5 (C) |
13 | 40.8 (CH2) | 36.5 (CH2) | 36.7 (CH2) |
14 | 28.0 (CH2) | 26.3 (CH2) | 22.7 (CH2) |
15 | 73.7 (C) | 124.4 (C) | 123.2 (C) |
16 | 29.9 (CH3) | 114.3 (CH) | 170.1 (C) |
17 | 30.0 (CH3) | 10.2 (CH3) | 9.1 (CH3) |
18 | 18.9 (CH3) | 15.7 (CH3) | 30.3 (CH3) |
19 | 15.9 (CH3) | 16.9 (CH3) | 16.4 (CH3) |
20 | 16.0 (CH3) | 15.1 (CH3) | 16.5 (CH3) |
Position | 2 α | 3 α | 4 b |
---|---|---|---|
2 | 5.37, d (7.6) c | 5.67, d (10.0) | |
3 | 3.42, d (7.6) | 5.13, d (10.0) | 5.30, s |
5 | 1.68, m | 2.37, m | 1.96, m |
1.99, m | |||
6 | 1.98, m | 1.65, m | 2.10, m |
2.15, m | 1.94, m | ||
7 | 5.00, t (6.4) | 2.69, t (3.6) | 4.90, t (7.0) |
9 | 2.01, m | 1.01, t (12.8) | 1.97, m |
2.12, m | 2.12, dt (3.6, 12.8) | ||
10 | 2.12, m | 1.91, m | 2.12 m |
2.18, m | 2.27 m | 2.38 m | |
11 | 5.07, t (6.8) | 5.11, m | 4.92, t (7.0) |
13 | 2.20, m | 1.92, m | 2.31, m |
2.23, m | 2.00, m | ||
14 | 2.25, m | 1.72, m | 2.52 m |
2.50, m | 2.59, m | 2.57 m | |
16 | 1.37, s | 5.97, d (4.0) | |
17 | 1.37, s | 1.73, s | 1.94, s |
18 | 1.28, s | 1.85, s | 1.45, s |
19 | 1.57, s | 1.28, s | 1.57, s |
20 | 1.64, s | 1.60, s | 1.58, s |
OOH | 8.47, brs |
Compound | MCF-7 | MDA-MB-231 | HepG2 | HeLa |
---|---|---|---|---|
1 | 25.3 ± 2.8 | 36.4 ± 3.6 | – a | – |
2 | 34.3 ± 3.7 | – | – | – |
6 | 37.6 ± 4.2 | – | 35.2 ± 4.4 | – |
7 | 33.3 ± 3.5 | – | 28.6 ± 3.4 | – |
9 | 30.1 ± 3.1 | 38.6 ± 5.0 | – | – |
10 | 24.3 ± 3.0 | – | 34.5 ± 4.2 | – |
11 | 27.2 ± 4.0 | – | 36.4 ± 5.3 | – |
Doxorubicin | 6.8 ± 1.4 | 6.3 ± 1.2 | 9.6 ± 1.8 | 8.1 ± 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.-Y.; Huang, C.-Y.; Chen, S.-R.; Weng, J.-R.; Tu, T.-H.; Cheng, Y.-B.; Wu, S.-H.; Sheu, J.-H. New Hydroquinone Monoterpenoid and Cembranoid-Related Metabolites from the Soft Coral Sarcophyton tenuispiculatum. Mar. Drugs 2021, 19, 8. https://doi.org/10.3390/md19010008
Huang T-Y, Huang C-Y, Chen S-R, Weng J-R, Tu T-H, Cheng Y-B, Wu S-H, Sheu J-H. New Hydroquinone Monoterpenoid and Cembranoid-Related Metabolites from the Soft Coral Sarcophyton tenuispiculatum. Marine Drugs. 2021; 19(1):8. https://doi.org/10.3390/md19010008
Chicago/Turabian StyleHuang, Tzu-Yin, Chiung-Yao Huang, Shu-Rong Chen, Jing-Ru Weng, Tzu-Hsuan Tu, Yuan-Bin Cheng, Shih-Hsiung Wu, and Jyh-Horng Sheu. 2021. "New Hydroquinone Monoterpenoid and Cembranoid-Related Metabolites from the Soft Coral Sarcophyton tenuispiculatum" Marine Drugs 19, no. 1: 8. https://doi.org/10.3390/md19010008
APA StyleHuang, T.-Y., Huang, C.-Y., Chen, S.-R., Weng, J.-R., Tu, T.-H., Cheng, Y.-B., Wu, S.-H., & Sheu, J.-H. (2021). New Hydroquinone Monoterpenoid and Cembranoid-Related Metabolites from the Soft Coral Sarcophyton tenuispiculatum. Marine Drugs, 19(1), 8. https://doi.org/10.3390/md19010008