Transfer of the Neurotoxin β-N-methylamino-l-alanine (BMAA) in the Agro–Aqua Cycle
Abstract
:1. Introduction
2. Results
2.1. Total BMAA Concentration in Individual Chickens
2.2. BMAA Concentration in Protein-Associated and Free Forms
3. Discussion
4. Materials and Methods
4.1. The Culture and Collection of the Chicken Sample
4.2. Sample Preparation and BMAA Extraction
4.3. Protein Extraction and Quantification
4.4. Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry
4.5. Standard Curve for BMAA Quantification
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Cox, P.A.; Banack, S.A.; Murch, S.J. Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc. Natl. Acad. Sci. USA 2003, 100, 13380–13383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Eriksson, J.; Lage, S.; Jonasson, S.; Shams, S.; Mehine, M.; Ilag, L.L.; Rasmussen, U. Diatoms: A novel source for the neurotoxin BMAA in aquatic environments. PLoS ONE 2014, 9, e84578. [Google Scholar] [CrossRef] [PubMed]
- Lage, S.G.; Kopel, L.; Bernoche, C.S.; Timerman, S.; Kern, K.B. Therapeutic hypothermia after sudden cardiac arrest: Endothelial function evaluation. Resuscitation 2014, 85, e47–e48. [Google Scholar] [CrossRef]
- Pablo, J.; Banack, S.A.; Cox, P.A.; Johnson, T.E.; Papapetropoulos, S.; Bradley, W.G.; Buck, A.; Mash, D.C. Cyanobacterial neurotoxin BMAA in ALS and Alzheimer’s disease. Acta Neurol. Scand. 2009, 120, 216–225. [Google Scholar] [CrossRef]
- Weiss, J.H.; Christine, C.W.; Choi, D.W. Bicarbonate dependence of glutamate receptor activation by beta-N-methylamino-L-alanine: Channel recording and study with related compounds. Neuron 1989, 3, 321–326. [Google Scholar] [CrossRef]
- Zeevalk, G.D.; Nicklas, W.J. Acute excitotoxicity in chick retina caused by the unusual amino acids BOAA and BMAA: Effects of MK-801 and kynurenate. Neurosci. Lett. 1989, 102, 284–290. [Google Scholar] [CrossRef]
- Lindstrom, H.; Luthman, J.; Mouton, P.; Spencer, P.; Olson, L. Plant-derived neurotoxic amino acids (beta-N-oxalylamino-L-alanine and beta-N-methylamino-L-alanine): Effects on central monoamine neurons. J. Neurochem. 1990, 55, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Rakonczay, Z.; Matsuoka, Y.; Giacobini, E. Effects of L-beta-N-methylamino-L-alanine (L-BMAA) on the cortical cholinergic and glutamatergic systems of the rat. J. Neurosci. Res. 1991, 29, 121–126. [Google Scholar] [CrossRef]
- Copani, A.; Canonico, P.L.; Catania, M.V.; Aronica, E.; Bruno, V.; Ratti, E.; van Amsterdam, F.T.; Gaviraghi, G.; Nicoletti, F. Interaction between beta-N-methylamino-L-alanine and excitatory amino acid receptors in brain slices and neuronal cultures. Brain Res. 1991, 558, 79–86. [Google Scholar] [CrossRef]
- Rao, S.D.; Banack, S.A.; Cox, P.A.; Weiss, J.H. BMAA selectively injures motor neurons via AMPA/kainate receptor activation. Exp. Neurol. 2006, 201, 244–252. [Google Scholar] [CrossRef]
- Liu, X.O.; Rush, T.; Ciske, J.; Lobner, D. Selective death of cholinergic neurons induced by beta-methylamino-L-alanine. Neuroreport 2009, 21, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Cucchiaroni, M.L.; Viscomi, M.T.; Bernardi, G.; Molinari, M.; Guatteo, E.; Mercuri, N.B. Metabotropic glutamate receptor 1 mediates the electrophysiological and toxic actions of the cycad derivative beta-N-Methylamino-L-alanine on substantia nigra pars compacta DAergic neurons. J. Neurosci. 2010, 30, 5176–5188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunlop, R.A.; Cox, P.A.; Banack, S.A.; Rodgers, K.J. The non-protein amino acid BMAA is misincorporated into human proteins in place of L-serine causing protein misfolding and aggregation. PLoS ONE 2013, 8, e75376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, H.M. Monthly Report to the Medical Officer in Command; U.S. Government Printing Office: Washington, DC, USA, 1945.
- Arnold, A.; Edgren, D.C.; Palladino, V.S. Amyotrophic lateral sclerosis; fifty cases observed on Guam. J. Nerv. Ment. Dis. 1953, 117, 135–139. [Google Scholar] [CrossRef]
- Kurland, L.T.; Mulder, D.W. Epidemiologic investigations of amyotrophic lateral sclerosis. Neurology 1954, 4, 355–378. [Google Scholar] [CrossRef]
- Whiting, M.G. In Food practices in ALS foci in Japan, the Marianas, and New Guinea. In Proceedings of the Federation Third Conference on Toxicity of Cycads, Chicago, IL, USA, 1 November 1964; pp. 1343–1345. [Google Scholar]
- Vega, A.; Bell, A. A-Amino-/5- methylaminopropionic acid, a new amino acid from seeds of Cycas Circinalis. Phytochemistry 1967, 6, 759–762. [Google Scholar] [CrossRef]
- Spencer, P.S.; Hugon, J.; Ludolph, A.; Nunn, P.B.; Ross, S.M.; Roy, D.N.; Schaumburg, H.H. Discovery and partial characterization of primate motor-system toxins. Ciba Found. Symp. 1987, 126, 221–238. [Google Scholar]
- Spencer, P.S.; Nunn, P.B.; Hugon, J.; Ludolph, A.C.; Ross, S.M.; Roy, D.N.; Robertson, R.C. Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 1987, 237, 517–522. [Google Scholar] [CrossRef]
- Spencer, P.S.; Ross, S.M.; Nunn, P.B.; Roy, D.N.; Seelig, M. Detection and characterization of plant-derived amino acid motorsystem toxins in mouse CNS cultures. Prog. Clin. Biol. Res. 1987, 253, 349–361. [Google Scholar]
- Murch, S.J.; Cox, P.A.; Banack, S.A. A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam. Proc. Natl. Acad. Sci. USA 2004, 101, 12228–12231. [Google Scholar] [CrossRef] [Green Version]
- Murch, S.J.; Cox, P.A.; Banack, S.A.; Steele, J.C.; Sacks, O.W. Occurrence of beta-methylamino-l-alanine (BMAA) in ALS/PDC patients from Guam. Acta Neurol. Scand. 2004, 110, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Brand, L.E.; Pablo, J.; Compton, A.; Hammerschlag, N.; Mash, D.C. Cyanobacterial blooms and the occurrence of the neurotoxin beta-N-methylamino-L-alanine (BMAA) in south Florida aquatic food webs. Harmful Algae 2010, 9, 620–635. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Chen, Q.; Chen, X.; Wang, X.; Liao, X.; Jiang, L.; Wu, J.; Yang, L. Occurrence and transfer of a cyanobacterial neurotoxin β-methylamino-l-alanine within the aquatic food webs of Gonghu Bay (Lake Taihu, China) to evaluate the potential human health risk. Sci. Total Environ. 2014, 468, 457–463. [Google Scholar] [CrossRef]
- Lage, S.; Annadotter, H.; Rasmussen, U.; Rydberg, S. Biotransfer of beta-N-methylamino-L-alanine (BMAA) in a eutrophicated freshwater lake. Mar. Drugs 2015, 13, 1185–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonasson, S.; Eriksson, J.; Berntzon, L.; Spacil, Z.; Ilag, L.L.; Ronnevi, L.O.; Rasmussen, U.; Bergman, B. Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure. Proc. Natl. Acad. Sci. USA 2010, 107, 9252–9257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amorim, A.; Vasconcelos, V. Dynamics of microcystins in the mussel Mytilus galloprovincialis. Toxicon 1999, 37, 1041–1052. [Google Scholar] [CrossRef]
- Kankaanpaa, H.; Leinio, S.; Olin, M.; Sjovall, O.; Meriluoto, J.; Lehtonen, K.K. Accumulation and depuration of cyanobacterial toxin nodularin and biomarker responses in the mussel Mytilus edulis. Chemosphere 2007, 68, 1210–1217. [Google Scholar] [CrossRef]
- Osswald, J.; Rellan, S.; Gago, A.; Vasconcelos, V. Uptake and depuration of anatoxin-a by the mussel Mytilus galloprovincialis (Lamarck, 1819) under laboratory conditions. Chemosphere 2008, 72, 1235–1241. [Google Scholar] [CrossRef]
- Sipiä, V.O.; Kankaanpää, H.T.; Pflugmacher, S.; Flinkman, J.; Furey, A.; James, K.J. Bioaccumulation and detoxication of nodularin in tissues of flounder (Platichthys flesus), mussels (Mytilus edulis, Dreissena polymorpha), and clams (Macoma balthica) from the northern Baltic Sea. Ecotox. Environ. Safe 2002, 53, 305–311. [Google Scholar] [CrossRef]
- Stommel, E.W.; Field, N.C.; Caller, T.A. Aerosolization of cyanobacteria as a risk factor for amyotrophic lateral sclerosis. Med. Hypotheses 2013, 80, 142–145. [Google Scholar] [CrossRef]
- Banack, S.A.; Caller, T.; Henegan, P.; Haney, J.; Murby, A.; Metcalf, J.S.; Powell, J.; Cox, P.A.; Stommel, E. Detection of cyanotoxins, beta-N-methylamino-l-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis. Toxins 2015, 7, 322–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caller, T.A.; Doolin, J.W.; Haney, J.F.; Murby, A.J.; West, K.G.; Farrar, H.E.; Ball, A.; Harris, B.T.; Stommel, E.W. A cluster of amyotrophic lateral sclerosis in New Hampshire: A possible role for toxic cyanobacteria blooms. Amyotroph. Lateral Scler. 2009, 10, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Sienko, D.G.; Davis, J.P.; Taylor, J.A.; Brooks, B.R. Amyotrophic lateral sclerosis-A case-control study following detection of a cluster in a small Wisconsin community. Arch Neurol Chic. 1990, 47, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Masseret, E.; Banack, S.; Boumediene, F.; Abadie, E.; Brient, L.; Pernet, F.; Juntas-Morales, R.; Pageot, N.; Metcalf, J.; Cox, P.; et al. Dietary BMAA exposure in an amyotrophic lateral sclerosis cluster from southern France. PLoS ONE 2013, 8, e83406. [Google Scholar] [CrossRef] [Green Version]
- Minnhagen, S. Farming of Blue Mussels in the Baltic Sea. A Review of Pilot Studies 2007–2016; European Union: Bruxelles, Belgium, 2017. [Google Scholar]
- Carlsson, M.S.; Engstrom, P.; Lindahl, O.; Ljungqvist, L.; Petersen, J.K.; Svanberg, L.; Holmer, M. Effects of mussel farms on the benthic nitrogen cycle on the Swedish west coast. Aquacult. Environ. Interac. 2012, 2, 177–191. [Google Scholar] [CrossRef] [Green Version]
- Schroder, T.; Stank, J.; Schernewski, G.; Krost, P. The impact of a mussel farm on water transparency in the Kiel Fjord. Ocean Coast Manag. 2014, 101, 42–52. [Google Scholar] [CrossRef]
- Maar, M.; Saurel, C.; Landes, A.; Dolmer, P.; Petersen, J.K. Growth potential of blue mussels (M. edulis) exposed to different salinities evaluated by a dynamic energy budget model. J. Mar. Syst. 2015, 148, 48–55. [Google Scholar] [CrossRef]
- Riisgard, H.U.; Larsen, P.S.; Turja, R.; Lundgreen, K. Dwarfism of blue mussels in the low saline Baltic Sea-growth to the lower salinity limit. Mar. Ecol. Prog. Ser. 2014, 517, 181–192. [Google Scholar] [CrossRef]
- Riisgard, H.U.; Larsen, P.S.; Pleissner, D. Allometric equations for maximum filtration rate in blue mussels Mytilus edulis and importance of condition index. Helgol. Mar. Res. 2014, 68, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Petersen, J.K.; Loo, L.-O. Miljøkonsekvenser af Dyrkning af blåmuslinger. Rapport til Interreg-Projekterne ”Gränslöst Samarbete” og ”Forum Skagerrak II”; Institut for Akvatiske Ressourcer: Charlottenlund, Denmark, 2004; p. 42. [Google Scholar]
- Bertilius, K. Poultry Trial Feeding Result; European Union: Bruxelles, Belgium, 2019. [Google Scholar]
- Reveillon, D.; Abadie, E.; Sechet, V.; Masseret, E.; Hess, P.; Amzil, Z. Beta-N-methylamino-l-alanine (BMAA) and isomers: Distribution in different food web compartments of Thau lagoon, French Mediterranean Sea. Mar. Environ. Res. 2015, 110, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Christensen, S.J.; Hemscheidt, T.K.; Trapido-Rosenthal, H.; Laws, E.A.; Bidigare, R.R. Detection and quantification of beta-methylamino-L-alanine in aquatic invertebrates. Limnol. Oceanogr. Meth. 2012, 10, 891–898. [Google Scholar] [CrossRef]
- Downing, S.; Contardo-Jara, V.; Pflugmacher, S.; Downing, T.G. The fate of the cyanobacterial toxin beta-N-methylamino-L-alanine in freshwater mussels. Ecotoxicol. Environ. Saf. 2014, 101, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Contardo-Jara, V.; Otterstein, S.K.B.; Downing, S.; Downing, T.G.; Pflugmacher, S. Response of antioxidant and biotransformation systems of selected freshwater mussels (Dreissena polymorpha, Anadonta cygnea, Unio tumidus, and Corbicula javanicus) to the cyanobacterial neurotoxin β-N-methylamino-L-alanine. Toxicol. Environ. Chem. 2014, 96, 451–465. [Google Scholar] [CrossRef]
- Banack, S.A.; Murch, S.J.; Cox, P.A. Neurotoxic flying foxes as dietary items for the Chamorro people, Marianas islands. J. Ethnopharmacol. 2006, 106, 97–104. [Google Scholar] [CrossRef]
- Andersson, M.; Karlsson, O.; Brandt, I. The environmental neurotoxin beta-N-methylamino-l-alanine (l-BMAA) is deposited into birds’ eggs. Ecotoxicol. Environ. Saf. 2018, 147, 720–724. [Google Scholar] [CrossRef]
- Karlsson, O.; Berg, C.; Brittebo, E.B.; Lindquist, N.G. Retention of the cyanobacterial neurotoxin beta-N-methylamino-l-alanine in melanin and neuromelanin-containing cells-a possible link between Parkinson-dementia complex and pigmentary retinopathy. Pigment Cell Melanoma. R 2009, 22, 120–130. [Google Scholar] [CrossRef]
- Campbell, R.J.; Steele, J.C.; Cox, T.A.; Loerzel, A.J.; Belli, M.; Belli, D.D.; Kurland, L.T. Pathologic findings in the retinal pigment epitheliopathy associated with the amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam. Ophthalmology 1993, 100, 37–42. [Google Scholar] [CrossRef]
- Cox, T.A.; McDarby, J.V.; Lavine, L.; Steele, J.C.; Calne, D.B. A retinopathy on Guam with high prevalence in lytico-bodig. Ophthalmology 1989, 96, 1731–1735. [Google Scholar] [CrossRef]
- Berisha, F.; Feke, G.T.; Trempe, C.L.; McMeel, J.W.; Schepens, C.L. Retinal abnormalities in early Alzheimer’s disease. Invest. Ophth. Vis. Sci. 2007, 48, 2285–2289. [Google Scholar] [CrossRef] [Green Version]
- Tzekov, R.T.; Gautier, M.; Mouzon, B.; Ojo, J.; Biggins, D.; Crawford, F. Retinal ganglion cell loss and optic nerve changes in mice at two weeks and eight months post repeated traumatic brain injury. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3842. [Google Scholar]
- Bulut, M.; Yaman, A.; Erol, M.K.; Kurtulus, F.; Toslak, D.; Dogan, B.; Turgut Coban, D.; Kaya Basar, E. Choroidal thickness in patients with mild cognitive impairment and Alzheimer’s type dementia. J. Ophthalmol. 2016, 2016, 7291257. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.; Goh, Y.T.; Zhang, J.; Wu, C.; Guccione, E. Modeling cerebrovascular pathophysiology in amyloid-beta metabolism using neural-crest-derived smooth muscle cells. Cell Rep. 2014, 9, 391–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, L.E.; Muffat, J.A.; Cherny, R.A.; Moir, R.D.; Ericsson, M.H.; Huang, X.D.; Mavros, C.; Coccia, J.A.; Faget, K.Y.; Fitch, K.A.; et al. Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer’s disease. Lancet 2003, 361, 1258–1265. [Google Scholar] [CrossRef]
- Lage, S.; Burian, A.; Rasmussen, U.; Costa, P.R.; Annadotter, H.; Godhe, A.; Rydberg, S. BMAA extraction of cyanobacteria samples: Which method to choose? Environ. Sci. Pollut. Res. Int. 2016, 23, 338–350. [Google Scholar] [CrossRef] [PubMed]
Feed | BMAA µg/g DW | |
---|---|---|
Number | Concentration | |
SF | 0/12 | ND |
MF | 11/12 | 0.1818 ± 0.0319 |
Chicken Group | BMAA µg/g DW | |
---|---|---|
Number | Concentration | |
CG | 8/12 | 0.0291 ± 0.0044 |
TG | 12/17 | 0.1644 ± 0.0443 |
Tissue. | BMAA µg/g DW | |||||||
---|---|---|---|---|---|---|---|---|
Free-BMAA | Pro-BMAA | |||||||
CG | TG | CG | TG | |||||
Number | Concentration | Number | Concentration | Number | Concentration | Number | Concentration | |
Muscle | 0/12 | NQ | 1/17 | 0.0045 | 0/12 | NQ | 4/17 | 0.2300 ± 0.0974 |
Liver | 7/12 | 0.0240 ± 0.0071 | 3/17 | 0.0370 ± 0.0212 | 0/12 | NQ | 2/17 | 0.0348 ± 0.0081 |
Brain | 0/12 | NQ | 1/17 | 0.0072 | 0/12 | NQ | 8/17 | 0.0871 ± 0.0091 |
Eye | 3/12 | 0.0216 ± 0.0065 | 0/17 | NQ | 1/12 | 0.109 | 2/17 | 0.0823 ± 0.0025 |
Common Name (Species) | Concentration (µg BMAA g−1 DW) | References |
---|---|---|
Mussel (Mytilus edulis) | 0.151 ± 0.009 to 0.201 ± 0.07 | [27] |
Mussel (Mytilus galloprovincialis) | ~9.7 | [45] |
Mussel (Mytilus galloprovincialis) | 1.8 to 6.0 | [36] |
Oyster (Crassostrea gigas) | 0.6 ± 0.07 to 1.6 ± 0.82 | [36] |
Oyster (Crassostrea virginica) | 6.8 to 46.9 | [46] |
Flying fox (Pteropus mariannus and P. Yapensis) | 13 to 1859 | [49] |
Fish (Gymnocephalus cernua) | 0.00320 ± 0.00329 to 0.00864 ± 0.00479 | [26] |
Fish (Tinca tinca) | 0.00141 to 0.00561 | [26] |
Fish (Abramis brama) | 0.00103 ± 0.00027 to 0.00200 ± 0.00173 | [26] |
Fish (Osmerus eperlanus) | 0.016 ± 0.0009 to 0.24 ± 0.003 | [27] |
Fish (Scophthalmus maximus) | 0.0008 ± 0.0003 to 1.29 ± 0.03 | [27] |
Fish (Clupea harengus) | 0.0007 ± 0.00008 to 0.010 ± 0.001 | [27] |
Fish (Coregonus lavaretus) | 0.0019 ± 7.E-5 to 0.059 ± 0.004 | [27] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-Y.; Rydberg, S. Transfer of the Neurotoxin β-N-methylamino-l-alanine (BMAA) in the Agro–Aqua Cycle. Mar. Drugs 2020, 18, 244. https://doi.org/10.3390/md18050244
Kim S-Y, Rydberg S. Transfer of the Neurotoxin β-N-methylamino-l-alanine (BMAA) in the Agro–Aqua Cycle. Marine Drugs. 2020; 18(5):244. https://doi.org/10.3390/md18050244
Chicago/Turabian StyleKim, Sea-Yong, and Sara Rydberg. 2020. "Transfer of the Neurotoxin β-N-methylamino-l-alanine (BMAA) in the Agro–Aqua Cycle" Marine Drugs 18, no. 5: 244. https://doi.org/10.3390/md18050244
APA StyleKim, S. -Y., & Rydberg, S. (2020). Transfer of the Neurotoxin β-N-methylamino-l-alanine (BMAA) in the Agro–Aqua Cycle. Marine Drugs, 18(5), 244. https://doi.org/10.3390/md18050244