Alkaline Phosphatase Immobilization on New Chitosan Membranes with Mg2+ for Biomedical Applications
Abstract
:1. Introduction
2. Results
2.1. Fourier Transform Infrared (FT-IR) Spectroscopy
2.2. Enzymatic Activity for Samples with Different Metal Ion Concentrations
2.3. Contact Angle Measurements
2.4. Scanning Electron Microscopy (SEM)
2.5. Antibacterial Activity
2.6. Hemolytic Study
2.7. In Vitro Biocompatibility
3. Materials and Methods
3.1. Materials
3.2. Membranes Preparation
3.3. FT-IR Spectroscopy
3.4. ICP-MS Measurement
3.5. Enzymatic Activity
3.6. Contact Angle Measurements
3.7. Scanning Electron Microscopy (SEM)
3.8. Antibacterial Activity
3.9. Hemolytic Study
3.10. In Vitro Biocompatibility
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Thirumavalavan, M.; Lee, J.F. A short review on chitosan membrane for biomolecules immobilization. J. Mol. Genet. Med. 2015, 9, 178. [Google Scholar] [CrossRef]
- Nisha, S.; Arun Karthick, S.; Gobi, N.A. review on methods, application and properties of immobilized enzyme. Che. Sci. Rev. Lett. 2012, 1, 148–155. [Google Scholar]
- Mohamad, N.R.; Che Marzuki, N.H.; Buang, N.A.; Huyop, F.; Abdul Wahab, R. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skwarczyńska, A.; Biniaś, D.; Modrzejewska, Z. Structural research of thermosensitive chitosan-collagen gels containing ALP. Prog. Chem. Appl. Chitin Deriv. 2016, 21, 176–186. [Google Scholar] [CrossRef]
- Jafary, F.; Panjehpour, M.; Varshosaz, J.; Yaghmaei, P. Stability improvement of immobilized alkaline phosphatase using chitosan nanoparticles. Braz. J. Chem. Eng. 2016, 33, 243–250. [Google Scholar] [CrossRef]
- Krajewska, B. Application of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzyme Microb. Technol. 2004, 35, 126–139. [Google Scholar] [CrossRef]
- Lisková, J.; Bačaková, L.; Skwarczyńska, A.L.; Musial, O.; Bliznuk, V.; De Schamphelaere, K.; Modrzejewska, Z.; Douglas, T.E.L. Development of thermosensitive hydrogels of chitosan, sodium and magnesium glycerophosphate for bone regeneration applications. J. Funct. Biomater. 2015, 6, 192–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanachi, P.; Jafary, F.; Jafary, F.; Motamedi, S. Immobilization of the alkaline phosphatase on collagen surface via cross-linking method. Iran J. Biotechnol. 2015, 13, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Mao, J.; Yin, Y.; Liu, W.; Cui, Y.; Cai, K.; Zhao, F. Chitosan/gelatin network based biomaterials in tissue engineering. Biomed. Eng. (Singapore). 2002, 14, 115–121. [Google Scholar] [CrossRef]
- Nazarudin, M.F.; Shamsuri, A.A.; Shamsudin, M.N. Physicochemical characterization of chitosan/agar blend gel beads prepared via the interphase method with different drying techniques. Int. J. Pure Appl. Sci. Technol. 2011, 3, 35–43. [Google Scholar]
- Li, B.; Shan, C.L.; Zhou, Q.; Fang, Y.; Wang, Y.L.; Xu, F.; Han, L.R.; Ibrahim, M.; Guo, L.B.; Xie, G.L.; et al. Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Mar. Drugs 2013, 11, 1534–1552. [Google Scholar] [CrossRef] [PubMed]
- Berteanu, E.; Ionita, D.; Simoiu, M.; Paraschiv, M.; Tatia, R.; Apatean, A.; Sidoroff, M.; Tcacenco, L. Evaluation of biodegradation and biocompatibility of collagen/chitosan/alkaline phosphatase biopolymeric membranes. Bull. Mater. Sci. 2016, 39, 377–383. [Google Scholar] [CrossRef]
- Pokhrel, S.; Yadav, P.N.; Adhikari, R. Applications of chitin and chitosan in industry and medical science: A Review. Nepal J. Sci. Technol. 2015, 16, 99–104. [Google Scholar] [CrossRef]
- Ho, M.H.; Wang, D.M.; Hsieh, H.J.; Liu, H.C.; Hsien, T.Y.; Lai, J.Y.; Hou, L.T. Preparation and characterization of RGD-immobilized chitosan scaffolds. Biomaterials 2005, 26, 3197–3206. [Google Scholar] [CrossRef] [PubMed]
- Sanjari, A.J.; Asghari, M. A Review on chitosan utilization in membrane synthesis. Chem. Bio. Eng. Rev. 2016, 3, 134–158. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Wang, Y.; Wang, X.; Wang, Q.; Chen, M. Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol. Adv. 2014, 32, 1301–1316. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Z.C.; Yu, S.H.; Chao, A.C.; Dong, G.C. Preparation and characterization of dexamethasone-immobilized chitosan scaffold. J. Biosci. Bioeng. 2012, 113, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Yamaguchi, T.; Sakairi, N.; Nishi, N.; Tokura, S. Antimicrobial activity by fractionated chitosan oligomers. In Advances in Chitin Science, Proceedings of the 7th International Conference on Chitin Chitosan and Euchis ’97, Potsdam, Lyon, France, 3–5 September 1997; Domard, A., Roberts, G.A.F., Varum, K.M., Eds.; Jacques Andre: Lyon, France, 1997; pp. 156–161. ISBN 2907922572. [Google Scholar]
- Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.; Asan-Ozusaglam, M.; Erdogan, S. Comparison of antimicrobial activities of newly obtained low molecular weight scorpion chitosan and medium molecular weight commercial chitosan. J. Biosci. Bioeng. 2016, 121, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Du, Y.; Fan, L.; Liu, H.; Wang, X. Structures and properties of chitosan-starch-sodium benzoate blend films. J. Wuhan Univ. (Nat. Sci. Ed.) 2003, 49, 725–730. [Google Scholar]
- Ding, F.; Deng, H.; Du, Y.; Shi, X.; Wang, Q. Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale 2014, 16, 9477–9493. [Google Scholar] [CrossRef] [PubMed]
- Henkel, J.; Woodruff, M.A.; Empari, D.R.; Steck, R.; Glatt, V.; Dickinson, I.C.; Choong, P.F.; Schuetz, M.A.; Hutmacher, D.W. Bone regeneration based on tissue engineering conceptions-A 21st Century Perspective. Bone Res. 2013, 1, 216–248. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, D.; Nazarian, H.; Marouf, N.; Aghalu, F.; Nojehdehyan, H.; Dastjerdi, E.V. Alkalinephosphatase activity of osteoblast cells on three-dimensional chitosan-gelatin/hydroxyapatite composite scaffolds. J. Dent. Sch. 2013, 30, 203–209. [Google Scholar]
- Osathanon, T.; Giachelli, C.M.; Somerman, M.J. Immobilization of alkaline phosphatase on microporous nanofibrous fibrin scaffolds for bone tissue engineering. Biomaterials 2009, 30, 4513–4521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muginova, S.V.; Zhavoronkova, A.M.; Polyakov, A.E.; Shekhovtsova, T.N. Application of alkaline phosphatases from different sources in pharmaceutical and clinical analysis for the determination of their cofactors; zinc and magnesium ions. Anal. Sci. 2007, 23, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Bujor-Ionescu, I.; Iordăchescu, D.; Popescu, R.G.; Demetrescu, I.; Iovu, H. Composition of Biopolymeric Film Based on Collagen Gel and the Obtaining Process. RO Patent RO122673 B1, 30 November 2009. [Google Scholar]
- Bujor-Ionescu, I.; Zgirian, G.T.; Demetrescu, I.; Iovu, H.; Iordachescu, D. Biopolymeric Composition and the OBtaining Process. RO Patent RO122282 B1, 30 March 2009. [Google Scholar]
- Tihan, G.T.; Bujor-Ionescu, I.; Demetrescu, I.; Meghea, A. Ternary Biopolymeric Films. RO Patent RO122287 B1, 30 March 2009. [Google Scholar]
- Berteanu, E.; Ionita, D.; Paraschiv, M.; Apatean (Toma), A.; Sidoroff, M.; Iordachel, C.; Tcacenco, L. Elaboration and physical, chemical and biological characterization of new chitosan and gelatin membranes. U.P.B. Sci. Bull. Ser. B 2015, 77, 255–264. [Google Scholar]
- Hermanto, S.; Sumarlin, L.O.; Fatimah, W. Differentiation of Bovine and Porcine Gelatin Based on Spectroscopic and Electrophoretic Analysis. J. Food Pharm. Sci. 2013, 1, 68–73. [Google Scholar]
- Yang, F.; Xia, S.; Tan, C.; Zhang, X. Preparation and evaluation of chitosan-calcium-gellan gum beads for controlled release of protein. Eur. Food Res. Technol. 2013, 237, 467–479. [Google Scholar] [CrossRef]
- Liao, C.T.; Ho, M.H. The fabrication of biomimetic chitosan scaffolds by using SBF treatment with different crosslinking agents. Membranes 2011, 1, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Rabea, E.I.; Badawy, M.E.T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Helander, I.M.; Nurmiaho-Lassila, E.L.; Ahvenainen, R.; Rhoades, J.; Roller, S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int. J. Food Microbiol. 2001, 71, 235–244. [Google Scholar] [CrossRef]
- Chen, Y.M.; Chung, Y.C.; Wang, L.W.; Chen, K.T.; Li, S.Y. Antibacterial properties of chitosan in waterborne pathogen. J. Environ. Sci. Health A 2002, 37, 1379–1390. [Google Scholar] [CrossRef]
- Harrison, P. Progress in the assessment of platelet function. Br. J. Hematol. 2000, 111, 733–744. [Google Scholar] [CrossRef]
- Ghiaci, M.; Aghaei, H.; Soleimanian, S.; Sedagat, M.E. Enzyme immobilization: Part 2: Immobilization of alkaline phosphatase on Na-bentonite and modified bentonite. Appl. Clay Sci. 2009, 43, 308–316. [Google Scholar] [CrossRef]
- International Organization for Standardization: ISO 10993-4:2017: Biological Evaluation of Medical Devices-Part 4: Selection of Tests for Interaction with Blood 2017. Available online: https://www.iso.org/standard/63448.html. (accessed on 30 June 2018).
- American Society for Testing of Materials: ASTM F 756-00: Standard practice for assessment of hemolytic properties of materials. 2000. Available online: https://www.astm.org/DATABASE.CART/HISTORICAL/F756-00.htm. (accessed on 30 June 2018).
- Scudiero, D.A.; Shoemaker, R.H.; Paull, K.D.; Monks, A.; Tierney, S.; Nofziger, T.H.; Currens, M.J.; Seniff, D.; Boyd, M.R. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 1988, 48, 4827–4833. [Google Scholar] [PubMed]
- Quetin-Leclercq, J.; Elias, R.; Balansard, G. Cytotoxic activity of some triterpenoid saponins. Planta Med. 1992, 58, 279–281. [Google Scholar] [CrossRef] [PubMed]
Sample | Metal Ion (µg/mL) | Enzymatic Activity (U/mg/min) | |
---|---|---|---|
Mg2+ | Zn2+ | ||
ALP (powder) | 0.151 | 0.107 | 474 |
F * CHI:GEL (1:1), ALP, GA | 0.068 | 0.038 | 91 |
G * CHI:GEL (1:1), ALP, GA, 0.01% MgCl2 | 0.091 | 0.049 | 122 |
H * CHI:GEL (1:1), ALP, GA, 0.1% MgCl2 | 3.750 | 0.057 | 286 |
I * CHI:GEL (1:1), ALP, GA, 0.2% MgCl2 | 5.812 | 0.081 | 237 |
Bacteria | Inhibition of Bacteria Growth on Membranes (%) | ||||||
---|---|---|---|---|---|---|---|
A | B | C | F | G | H | I | |
E. coli | 44.82 ± 1.68 | 36.01 ± 1.51 | 36.78 ± 1.45 | 11.87 ± 1.43 | 12.49 ± 2.06 | 14.55 ± 1.72 | 16.72 ± 1.12 |
S. aureus | 38.98 ± 1.52 | 28.61 ± 1.28 | 32.61 ± 1.48 | 9.52 ± 2.10 | 10.96 ± 1.82 | 12.42 ± 2.08 | 12.05 ± 1.86 |
Membrane | Composition |
---|---|
A | CHI |
B | GEL |
C | CHI:GEL (1:1), GA |
D | CHI:GEL (1:1), ALP |
E | CHI:GEL (1:2), ALP |
F | CHI:GEL (1:1), ALP, GA |
G | CHI:GEL (1:1), ALP, GA, 0.01% MgCl2 |
H | CHI:GEL (1:1), ALP, GA, 0.1% MgCl2 |
I | CHI:GEL (1:1), ALP, GA, 0.2% MgCl2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tihan, G.T.; Zgarian, R.G.; Berteanu, E.; Ionita, D.; Totea, G.; Iordachel, C.; Tatia, R.; Prodana, M.; Demetrescu, I. Alkaline Phosphatase Immobilization on New Chitosan Membranes with Mg2+ for Biomedical Applications. Mar. Drugs 2018, 16, 287. https://doi.org/10.3390/md16080287
Tihan GT, Zgarian RG, Berteanu E, Ionita D, Totea G, Iordachel C, Tatia R, Prodana M, Demetrescu I. Alkaline Phosphatase Immobilization on New Chitosan Membranes with Mg2+ for Biomedical Applications. Marine Drugs. 2018; 16(8):287. https://doi.org/10.3390/md16080287
Chicago/Turabian StyleTihan, Gratiela Teodora, Roxana Gabriela Zgarian, Elena Berteanu, Daniela Ionita, Georgeta Totea, Catalin Iordachel, Rodica Tatia, Mariana Prodana, and Ioana Demetrescu. 2018. "Alkaline Phosphatase Immobilization on New Chitosan Membranes with Mg2+ for Biomedical Applications" Marine Drugs 16, no. 8: 287. https://doi.org/10.3390/md16080287
APA StyleTihan, G. T., Zgarian, R. G., Berteanu, E., Ionita, D., Totea, G., Iordachel, C., Tatia, R., Prodana, M., & Demetrescu, I. (2018). Alkaline Phosphatase Immobilization on New Chitosan Membranes with Mg2+ for Biomedical Applications. Marine Drugs, 16(8), 287. https://doi.org/10.3390/md16080287