R-Phycoerythrin Induces SGC-7901 Apoptosis by Arresting Cell Cycle at S Phase
Abstract
:1. Introduction
2. Results
2.1. Effect of R-PE on SGC-7901 Cell Viability
2.2. Effect of R-PE on SGC-7901 Cell Morphology and Cell Nuclei Morphology
2.3. R-PE Induces Apoptosis Rate of SGC-7901 Cells
2.4. Effect of R-PE on the Cell Cycle in SGC-7901 Cells
2.5. Effect of R-PE on Cycle-Associated Protein Expression in SGC-7901 Cells
3. Discussion
4. Materials and Methods
4.1. Chemicals and Other Reagents
4.2. Cell Line and Culture Conditions
4.3. Cell Viability and Cytotoxicity
4.4. Cell Morphology and Cell Nuclear Morphology Observation (Hoechst 33258)
4.5. Flow Cytometric Analysis of Apoptosis
4.6. Flow Cytometric Analysis of Cell Cycle
4.7. Total Protein Extraction and Western Blot Assay
4.8. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhao, M.R.; Sun, L.; Sun, S.C.; Gong, X.Q.; Fu, X.J.; Chen, M. The 42.1 and 53.7 kDa bands in SDS-PAGE of R-phycoerythrin from Polysiphonia urceolata. Int. J. Biol. Macromol. 2013, 60, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Manirafasha, E.; Ndikubwimana, T.; Zeng, X.H.; Lu, Y.H.; Jing, K.J. Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochem. Eng. J. 2016, 109, 282–296. [Google Scholar] [CrossRef]
- Galland-Irmouli, A.V.; Pons, L.; Lucon, M.; Villaume, C.; Mrabet, N.T.; Gueant, J.L.; Fleurence, J. One-step purification of R-phycoerythrin from the red macroalga Palmaria palmata using preparative polyacrylamide gel electrophoresis. J. Chromatogr. B Biomed. Sci. Appl. 2000, 739, 117–123. [Google Scholar] [CrossRef]
- Stadnichuk, I.N. Phycobiliproteins-determination of chromophore composition and content. Phytochem. Anal. 1995, 6, 281–288. [Google Scholar] [CrossRef]
- Wang, L.; Wang, S.M.; Fu, X.J.; Sun, L. Characteristics of an R-phycoerythrin with two gamma subunits prepared from red macroalga Polysiphonia urceolata. PLoS ONE 2015, 10, e0120333. [Google Scholar]
- Wilson, K.M.; Morrison, I.E.G.; Smith, P.R.; Fernandez, N.; Cherry, R.J. Single particle tracking of cell-surface HLA-DR molecules using R-phycoerythrin labeled monoclonal antibodies and fluorescence digital imaging. J. Cell Sci. 1996, 109, 2101–2109. [Google Scholar] [PubMed]
- Bradford, J.A.; Buller, G.; Suter, M.; Ignatius, M.; Beechem, J.M. Fluorescence-intensity multiplexing: Simultaneous seven-marker, two-color immunophenotyping using flow cytometry. Cytometry A 2004, 61, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Selva, C.; Malferrari, M.; Ballardini, R.; Ventola, A.; Francia, F.; Venturoli, G. Trehalose preserves the integrity of lyophilized phycoerythrin-antihuman CD8 antibody conjugates and enhances their thermal stability in flow cytometric assays. J. Pharm. Sci. 2013, 102, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Kim, T.S. R-phycoerythrin-conjugated antibodies are inappropriate for intracellular staining of murine plasma cells. Cytometry A 2013, 83, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Hilditch, C.M.; Balding, P.; Jenkins, R.; Smith, A.J.; Rogers, L.J. R-Phycoerythrin from the macroalga corallina-officinalis (rhodophyceae) and application of a derived phycofluor probe for detecting sugar-binding sites on cell-membranes. J. Appl. Phycol. 1991, 3, 345–354. [Google Scholar] [CrossRef]
- Zhang, F.; Li, J.F.; Zou, M.Q.; Chen, Y.; Wang, Y.F.; Qi, X.H. Simultaneous Detection of Clavibacter michiganensis subsp nebraskensis and Pantoea stewartii subsp. stewartii based on microsphere immunoreaction. J. Biomol. Screen. 2013, 18, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Munier, M.; Jubeau, S.; Wijaya, A.; Morancais, M.; Dumay, J.; Marchal, L.; Jaouen, P.; Fleurence, J. Physicochemical factors affecting the stability of two pigments: R-Phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum. Food Chem. 2014, 150, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wang, G.C.; Zeng, C.K.; Li, Z.G. The experimental research of R-phycoerythrin subunits on cancer treatment: A new photosensitizer in PDT. Cancer Biother. Radiopharm. 2002, 17, 35–42. [Google Scholar] [PubMed]
- Wu, Q.; Fu, X.P.; Sun, L.C.; Zhang, Q.; Liu, G.M.; Cao, M.J.; Cai, Q.F. Effects of physicochemical factors and in vitro gastrointestinal digestion on antioxidant activity of R-phycoerythrin from red algae Bangia fusco-purpurea. Int. J. Food Sci. Technol. 2015, 50, 1445–1451. [Google Scholar] [CrossRef]
- Senthilkumar, N.; Kurinjimalar, C.; Thangam, R.; Suresh, V.; Kavitha, G.; Gunasekaran, P.; Rengasamy, R. Further studies and biological activities of macromolecular protein R-phycoerythrin from Portieria homemannii. Int. J.Biol. Macromol. 2013, 62, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.W.; Chen, M.Z.; Li, J.; Wu, Y.; Zhen, C.; Liang, B. Antitumor function and mechanism of phycoerythrin from Porphyra haitanensis. Biol. Res. 2013, 46, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Sonani, R.R.; Singh, N.K.; Awasthi, A.; Prasad, B.; Kumar, J.; Madamwar, D. Phycoerythrin extends life span and health span of Caenorhabditis elegans. Age 2014, 36, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Daniel, B.; DeCoster, M.A. Quantification of sPLA2-induced early and late apoptosis changes in neuronal cell cultures using combined TUNEL and DAPI staining. Brain Res. 2004, 13, 144–450. [Google Scholar] [CrossRef] [PubMed]
- Marcellus, R.C.; Lavoie, J.N.; Boivin, D.; Shore, G.C.; Ketner, G.; Branton, P.E. The early region 4 orf4 protein of human adenovirus type 5 induces p53-independent cell death by apoptosis. J. Virol. 1998, 72, 7144–7153. [Google Scholar] [PubMed]
- Jia, S.G.; Wang, X.M.; Qian, H.; Li, T.Y.; Sun, J.; Wang, L.; Yu, J.; Li, X.G.; Yin, J.L.; Liu, T.; et al. Phylogenomic analysis of transcriptomic sequences of mitochondria and chloroplasts for marine red algae (Rhodophyta) in China. Acta Oceanol. Sin. 2014, 33, 86–93. [Google Scholar] [CrossRef]
- Thomas, D. Seaweeds; The Natural History Museum: London, UK, 2002. [Google Scholar]
- Sukhoverkhov, S.V.; Kadnikova, I.A.; Podkorytova, A.V. Preparation of agar and agarose from the red algae Ahnfeltia tobuchiensis. Prikl. Biokhim. Mikrobiol. 2000, 36, 238–240. [Google Scholar] [PubMed]
- Ermak, I.M.; Reunov, A.V.; Lapshina, L.A.; Byankina, A.O.; Bratskaya, S.Y.; Sokolova, E.V. Physicochemical and electron-microscopic study of carrageenans, sulfated polysaccharides from red algae of the families Tichocarpaceae and Gigartinaceae. Chem. Nat. Compd. 2013, 49, 593–595. [Google Scholar] [CrossRef]
- Murugan, K.; Iyer, V.V. Differential growth inhibition of cancer cell lines and antioxidant activity of extracts of red, brown, and green marine algae. In Vitro Cell. Dev. Biol. Anim. 2013, 49, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Zandi, K.; Tajbakhsh, S.; Nabipour, I.; Rastian, Z.; Yousefi, F.; Sharafian, S.; Sartavi, K. In vitro antitumor activity of Gracilaria corticata (a red alga) against Jurkat and molt-4 human cancer cell lines. Afr. J. Biotechnol. 2010, 9, 6787–6790. [Google Scholar]
- Allmendinger, A.; Spavieri, J.; Kaiser, M.; Casey, R.; Hingley-Wilson, S.; Lalvani, A.; Guiry, M.; Blunden, G.; Tasdemir, D. Antiprotozoal, antimycobacterial and cytotoxic potential of twenty-three british and irish red algae. Phytother. Res. 2010, 24, 1099–1103. [Google Scholar] [CrossRef] [PubMed]
- Raman, M.; Doble, M. kappa-Carrageenan from marine red algae, Kappaphycus alvarezii—A functional food to prevent colon carcinogenesis. J. Funct. Foods 2015, 15, 354–364. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhang, Z.S. The antitumor activity of a red alga polysaccharide complexes carrying 5-fluorouracil. Int. J. Biol. Macromol. 2014, 69, 542–545. [Google Scholar] [CrossRef] [PubMed]
- Kazlowska, K.; Lin, H.T.V.; Chang, S.H.; Tsai, G.J. In Vitro and In Vivo Anticancer Effects of Sterol Fraction from Red Algae Porphyra dentata. Evid. Based Complement. Altern. Med. 2013. [Google Scholar] [CrossRef]
- Lin, A.S.; Engel, S.; Smith, B.A.; Fairchild, C.R.; Aalbersberg, W.; Hay, M.E.; Kubanek, J. Structure and biological evaluation of novel cytotoxic sterol glycosides from the marine red alga Peyssonnelia sp. Bioorg. Med. Chem. 2010, 18, 8264–8269. [Google Scholar] [CrossRef] [PubMed]
- George Rosenker, K.M.; Paquette, W.D.; Johnston, P.A.; Sharlow, E.R.; Vogt, A.; Bakan, A.; Lazo, J.S.; Wipf, P. Synthesis and biological evaluation of 3-aminoisoquinolin-1 (2H)-one based inhibitors of the dual-specificity phosphatase Cdc25B. Bioorg. Med. Chem. 2015, 23, 2810–2818. [Google Scholar] [CrossRef] [PubMed]
- Tilaoui, M.; Mouse, H.A.; Jaafari, A.; Zyad, A. Differential effect of artemisinin against cancer cell lines. Nat. Prod. Bioprospect. 2014, 4, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.Y.; Li, J.; Wang, L.; Sun, Q.J.; Gong, Y.F.; Gang, J.; Su, Y.J.; Ji, Y.B. Ethanol but not aqueous extracts of tubers of Sauromatum giganteum (Engl.) Cusimano and Hett inhibit cancer cell proliferation. Asian Pac. J. Cancer Prev. 2014, 15, 10613–10619. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Tan, H.; Zhu, N.; Gao, H.; Lv, C.; Gang, J.; Ji, Y. Oridonin induces apoptosis through the mitochondrial pathway in human gastric cancer SGC-7901 cells. Int. J. Oncol. 2016, 48, 2453–2460. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.Y.; Gong, Y.F.; Sun, Q.J.; Bai, J.; Wang, L.; Fan, Z.Q.; Sun, Y.; Su, Y.J.; Gang, J.; Ji, Y.B. Screening antitumor bioactive fraction from Sauromatum giganteum (Engl.) Cusimano & Hett and sensitive cell lines with the serum pharmacology method and identification by UPLC-TOF-MS. Molecules 2015, 20, 4290–4306. [Google Scholar] [PubMed]
- Gao, S.Y.; Li, J.; Qu, X.Y.; Zhu, N.; Ji, Y.B. Downregulation of Cdk1 and CyclinB1 Expression Contributes to Oridonin-induced Cell Cycle Arrest at G (2)/M Phase and Growth Inhibition in SGC-7901 Gastric Cancer Cells. Asian Pac. J. Cancer Prev. 2014, 15, 6437–6441. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
Groups | IC50 (μM) |
---|---|
R-PE | 2.55 |
ADR | 2.91 |
Group | Concentration (μM) | Apoptosis Rate (%) |
---|---|---|
Control | — | 4.03 ± 2.64 |
ADR | 7.36 | 23.83 ± 2.02 b |
R-PE | 1.30 | 12.37 ± 4.62 b |
2.60 | 18.67 ± 3.06 b | |
5.20 | 24.50 ± 1.64 b |
Group | Concentration (μM) | G0/G1 Phase (%) | S Phase (%) | G2/M Phase (%) |
---|---|---|---|---|
Control | — | 55.17 ± 5.96 | 23.17 ± 3.50 | 21.67 ± 6.01 |
ADR | 1.84 | 50.93 ± 6.33 | 44.10 ± 0.70 b | 5.00 ± 6.46 |
R-PE | 0.1625 | 67.97 ± 4.31 | 28.60 ± 1.66 a | 3.43 ± 5.95 |
0.325 | 63.00 ± 8.43 | 33.43 ± 2.95 b | 3.57 ± 6.18 | |
0.65 | 56.17 ± 5.35 | 40.50 ± 2.26 b | 3.33 ± 3.09 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, H.; Gao, S.; Zhuang, Y.; Dong, Y.; Guan, W.; Zhang, K.; Xu, J.; Cui, J. R-Phycoerythrin Induces SGC-7901 Apoptosis by Arresting Cell Cycle at S Phase. Mar. Drugs 2016, 14, 166. https://doi.org/10.3390/md14090166
Tan H, Gao S, Zhuang Y, Dong Y, Guan W, Zhang K, Xu J, Cui J. R-Phycoerythrin Induces SGC-7901 Apoptosis by Arresting Cell Cycle at S Phase. Marine Drugs. 2016; 14(9):166. https://doi.org/10.3390/md14090166
Chicago/Turabian StyleTan, Huixin, Shiyong Gao, Yan Zhuang, Yanhong Dong, Wenhui Guan, Kun Zhang, Jian Xu, and Jingru Cui. 2016. "R-Phycoerythrin Induces SGC-7901 Apoptosis by Arresting Cell Cycle at S Phase" Marine Drugs 14, no. 9: 166. https://doi.org/10.3390/md14090166
APA StyleTan, H., Gao, S., Zhuang, Y., Dong, Y., Guan, W., Zhang, K., Xu, J., & Cui, J. (2016). R-Phycoerythrin Induces SGC-7901 Apoptosis by Arresting Cell Cycle at S Phase. Marine Drugs, 14(9), 166. https://doi.org/10.3390/md14090166